1
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Benthin S, Nielsen J, Villadsen J. Transport of sugars via two anomer-specific sites on mannose-phosphotransferase system in Lactococcus cremoris: in vivo study of mechanism, kinetics, and adaptation. Biotechnol Bioeng 2010; 42:440-8. [PMID: 18613047 DOI: 10.1002/bit.260420406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glucose uptake in Lactococcus lactis subsp. cremoris FD1 occurs via the mannose phosphotransferase system (Man-PTS), which is quite unspecific and allows transport of many different sugars and sugar analogues. It was previously shown (Benthin, S., Nielsen, J., Villadsen, J. Biotechnol. Bioeng. 40:137-146, 1992) that the kinetics of in vivo glucose uptake in a glucose-limited chemostat culture is best described by assuming that the glucose transport system has two anomer-specific sites with a relative uptake rate of 36% through the alpha-site. In the present study, the existence of anomer-specific sites on Man-PTS is shown by experiments where alpha-glucose, beta-glucose, mannose, and 2-deoxyglucose are added to glucose-limited chemostat cultures. A quantitative description of the competitive uptake of the involved sugars at the two sites is given. In a mannose-limited chemostat culture, the relative glucose flux via the alpha-site is 50%, corresponding to a change toward the equilibrium composition of mannose (68%). Furthermore, when the feed to a mannose-limited chemostat culture is changed to glucose, the rate of change of relative glucose flux through the alpha-site corresponds to constitutive synthesis of Man-PTS with 36% alpha-site stoichiometry in new cells. When N-acetylglucosamine (73% alpha-anomer at equilibrium) is the limiting substrate, the relative glucose flux through the alpha-site is also 48% to 50%. With a feed of alpha-glucose generated enzymatically from nonmetabolizable sucrose the relative glucose flux through the alpha-site can be as high as 78%. Finally, growth in the presence of nonmetabolizable alpha-methylglucoside leads to formation of cells with a relative glucose flux through the alpha-site of 29% to 30%. The adaptation of the flux distribution between the alpha- and beta-site is tentatively explained by the hypothesis that two integral membrane proteins of Man-PTS are involved in this process.
Collapse
Affiliation(s)
- S Benthin
- Department of Biotechnology, The Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
3
|
Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek 2008; 96:115-39. [DOI: 10.1007/s10482-008-9284-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
4
|
Gutknecht R, Manni M, Mao Q, Erni B. The glucose transporter of Escherichia coli with circularly permuted domains is active in vivo and in vitro. J Biol Chem 1998; 273:25745-50. [PMID: 9748244 DOI: 10.1074/jbc.273.40.25745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial phosphotransferase system (PTS) consists of two energy-coupling soluble proteins (enzyme I and HPr) and a large number of inner membrane transporters (enzymes II) that mediate concomitant phosphorylation and translocation of sugars and hexitols. The transporters consist of three functional units (IIA, IIB, IIC), which occur either as protein subunits or domains of a multidomain polypeptide. The membrane-spanning IIC domain contains the substrate binding site; IIA and IIB are phosphorylation domains that transfer phosphate from HPr to the transported sugar. The transporter complexes of the PTS are good examples for variation of design by modular assembly of domains and subunits. The domain order is IIC-IIB in the membrane subunit of the Escherichia coli glucose transporter (IICBGlc) and IIB-IIC in Salmonella typhimurium sucrose transporter (IIBCScr). The phosphorylation domain of IICBGlc was translocated from the carboxyl-terminal to the amino-terminal end of the IIC domain, and the activity of the circularly permuted form was optimized by variation of the length and the composition of the interdomain linker. IIBapCGlc with an alanine-proline-rich interdomain linker has 70% of the control specific activity after purification and reconstitution into proteoliposomes. These results indicate that the amino-terminal end of IICBGlc must be on the cytoplasmic side of the inner membrane, that membrane insertion of the IIC domain is insensitive to the modification of its amino-terminal end, and that a domain swap as it could occur by a single DNA translocation event can rapidly lead to a functional protein. However, IIB could not be substituted for by glucokinase. Fusion proteins between the IIC domain and glucokinase do not transport and phosphorylate glucose in an ATP-dependent mechanism, although the IIC moiety displays transport activity upon complementation with soluble subclonal IIB, and the glucokinase moiety retains ATP-dependent nonvectorial kinase activity. This indicates that IIC and IIB are two cooperative units and not only sequentially acting upon a common substrate, and that translocation of glucose must be conformationally coupled to the phosphorylation/dephosphorylation cycle of IIB.
Collapse
Affiliation(s)
- R Gutknecht
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
5
|
Lai X, Davis FC, Hespell RB, Ingram LO. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol 1997; 63:355-63. [PMID: 9023916 PMCID: PMC168328 DOI: 10.1128/aem.63.2.355-363.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-beta-glucosidase, which appear to form an operon (casRAB). Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-beta-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation.
Collapse
Affiliation(s)
- X Lai
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | | | | | |
Collapse
|
6
|
Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH. Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):231-250. [PMID: 8932697 DOI: 10.1099/13500872-142-2-231] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have analysed a gene cluster in the 67 center dot 4-76 center dot 0 min region of the Escherichia coli chromosome, revealed by recent systematic genome sequencing. The genes within this cluster include: (1) five genes encoding homologues of the E. coli mannose permease of the phosphotransferase system (IIB, IIB', IIC, IIC' and IID); (2) genes encoding a putative N-acetylgalactosamine 6-phosphate metabolic pathway including (a) a deacetylase, (b) an isomerizing deaminase, (c) a putative carbohydrate kinase, and (d) an aldolase; and (3) a transcriptional regulatory protein homologous to members of the DeoR family. Evidence is presented suggesting that the aldolase-encoding gene within this cluster is the previously designated kba gene that encodes tagatose-1,6-bisphosphate aldolase. These proteins and a novel IIAMan-like protein encoded in the 2 center dot 4-4 center dot 1 min region are characterized with respect to their sequence similarities and phylogenetic relationships with other homologous proteins. A pathway for the metabolism of N-acetylgalactosamine biochemically similar to that for the metabolism of N-acetylglucosamine is proposed.
Collapse
Affiliation(s)
- Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Tom M Ramseier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Aiala Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Alain Charbit
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
7
|
REIZER JONATHAN, CHARBIT ALAIN, REIZER AIALA, SAIER MILTONH. Novel Phosphotransferase System Genes Revealed by Bacterial Genome Analysis: Operons Encoding Homologues of Sugar-Specific Permease Domains of the Phosphotransferase System and Pentose Catabolic Enzymes. ACTA ACUST UNITED AC 1996. [DOI: 10.1089/gst.1996.1.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol 1995; 146:271-8. [PMID: 7569321 DOI: 10.1016/0923-2508(96)81050-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thirty-eight ATP-binding cassette (ABC) protein constituents of bacterial extracytoplasmic receptor-dependent nutrient uptake systems, including one homologous chloroplast protein were analysed for sequence conservation and phylogenetic relatedness. The proteins were generally found to cluster in accordance with the clustering patterns previously observed for the extracytoplasmic receptors and the transmembrane channel-forming constituents of these permeases. The results suggest that these transport systems evolved from a single primordial system with minimal shuffling of the three dissimilar protein constituents of the systems.
Collapse
Affiliation(s)
- G Kuan
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
9
|
Pao GM, Saier MH. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 1995; 40:136-54. [PMID: 7699720 DOI: 10.1007/bf00167109] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions. In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. coli sigma 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. coli sigma 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one sigma factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding. The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins. Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G M Pao
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
10
|
Lengeler JW, Jahreis K, Wehmeier UF. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:1-28. [PMID: 7947897 DOI: 10.1016/0005-2728(94)90017-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J W Lengeler
- Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | |
Collapse
|
11
|
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Thirty years later, we find that the PTS functions not only as a sugar-phosphorylating system, but also as a complex protein kinase system that regulates a wide variety of metabolic processes and controls the expression of numerous genes. As a result of recent operon- and genome-sequencing projects, novel PTS protein-encoding genes have been discovered, most of which have yet to be functionally defined. Some of them appear to be involved in cellular processes distinct from those recognized previously. Fundamental aspects of past and current PTS research are briefly reviewed, and recent advances are integrated into conceptual pictures that provide guides for future research.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
12
|
Reizer J, Reizer A, Saier MH. A functional superfamily of sodium/solute symporters. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:133-66. [PMID: 8031825 DOI: 10.1016/0304-4157(94)90003-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eleven families of sodium/solute symporters are defined based on their degrees of sequence similarities, and the protein members of these families are characterized in terms of their solute and cation specificities, their sizes, their topological features, their evolutionary relationships, and their relative degrees and regions of sequence conservation. In some cases, particularly where site-specific mutagenesis analyses have provided functional information about specific proteins, multiple alignments of members of the relevant families are presented, and the degrees of conservation of the mutated residues are evaluated. Signature sequences for several of the eleven families are presented to facilitate identification of new members of these families as they become sequenced. Phylogenetic tree construction reveals the evolutionary relationships between members of each family. One of these families is shown to belong to the previously defined major facilitator superfamily. The other ten families do not show sufficient sequence similarity with each other or with other identified transport protein families to establish homology between them. This study serves to clarify structural, functional and evolutionary relationships among eleven distinct families of functionally related transport proteins.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
13
|
Affiliation(s)
- G M Pao
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | |
Collapse
|
14
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
15
|
Reizer J, Michotey V, Reizer A, Saier MH. Novel phosphotransferase system genes revealed by bacterial genome analysis: unique, putative fructose- and glucoside-specific systems. Protein Sci 1994; 3:440-50. [PMID: 8019415 PMCID: PMC2142697 DOI: 10.1002/pro.5560030309] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Analyses of sequences made available through the Escherichia coli genome project in the 87.2-89.2-min and 81.5-84.5-min regions have revealed 2 putative operons encoding proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The first putative operon, designated frv, includes 4 open reading frames (ORFs), ORFf147, ORFf485, ORFf356, and ORFf582, ORFf147 and ORFf485 comprise an Enzyme IIA-Enzyme IIBC pair of the PTS. The sequence similarity of ORFf485 to previously characterized fructose-specific Enzymes IIBC suggests that ORFf485 may be specific for fructose. ORFf147 encodes a protein with comparable degrees of sequence similarity to fructose and mannitol-specific Enzymes IIA as well as homologous proteins implicated in sigma 54-dependent transcriptional regulation. Unique features of this system include a detached IIA protein and the absence of a IIB domain duplication. ORFf356 and ORFf582 are functionally unidentified and nonhomologous to other ORFs in the current protein databases, but ORFf582 contains 2 N-terminal helix-turn-helix motifs, suggestive of a role in frv operon transcriptional regulation. The second putative operon, designated glv, includes 3 ORFs, ORFf455, ORFf161, and ORFf212. We suggest that ORFf455 was incorrectly assigned and should be designated ORFf368. ORFf368 and ORFf161 encode an Enzyme IIC and IIB pair of the PTS showing greatest sequence similarity to Enzymes II specific for sugars of the gluco configuration. ORFf212 encodes a protein with sequence similarity to a phospho-beta-glucosidase and an alpha-galactosidase. No putative transcriptional regulator of the glv operon was found. This operon is the first one encoding a putative PTS permease with detached Enzymes IIB and IIC and lacking an Enzyme IIA. It is suggested that both the frv and glv operons are cryptic in E. coli and that additional genes encoding novel PTS-related proteins will be revealed by bacterial genome sequence analyses.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | |
Collapse
|
16
|
Saier MH. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 1994; 58:71-93. [PMID: 8177172 PMCID: PMC372954 DOI: 10.1128/mr.58.1.71-93.1994] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
17
|
Fagan MJ, Saier MH. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 1994; 38:57-99. [PMID: 8151716 DOI: 10.1007/bf00175496] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca(2+)-transporting ATPases; cluster 2: Na(+)- and gastric H(+)-ATPases; cluster 3: plasma membrane H(+)-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg(2+)-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques.
Collapse
Affiliation(s)
- M J Fagan
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
18
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 865] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Tam R, Saier MH. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993; 57:320-46. [PMID: 8336670 PMCID: PMC372912 DOI: 10.1128/mr.57.2.320-346.1993] [Citation(s) in RCA: 392] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular solute-binding proteins of bacteria serve as chemoreceptors, recognition constituents of transport systems, and initiators of signal transduction pathways. Over 50 sequenced periplasmic solute-binding proteins of gram-negative bacteria and homologous extracytoplasmic lipoproteins of gram-positive bacteria have been analyzed for sequence similarities, and their degrees of relatedness have been determined. Some of these proteins are homologous to cytoplasmic transcriptional regulatory proteins of bacteria; however, with the sole exception of the vitamin B12-binding protein of Escherichia coli, which is homologous to human glutathione peroxidase, they are not demonstrably homologous to any of the several thousand sequenced eukaryotic proteins. Most of these proteins fall into eight distinct clusters as follows. Cluster 1 solute-binding proteins are specific for malto-oligosaccharides, multiple oligosaccharides, glycerol 3-phosphate, and iron. Cluster 2 proteins are specific for galactose, ribose, arabinose, and multiple monosaccharides, and they are homologous to a number of transcriptional regulatory proteins including the lactose, galactose, and fructose repressors of E. coli. Cluster 3 proteins are specific for histidine, lysine-arginine-ornithine, glutamine, octopine, nopaline, and basic amino acids. Cluster 4 proteins are specific for leucine and leucine-isoleucine-valine, and they are homologous to the aliphatic amidase transcriptional repressor, AmiC, of Pseudomonas aeruginosa. Cluster 5 proteins are specific for dipeptides and oligopeptides as well as nickel. Cluster 6 proteins are specific for sulfate, thiosulfate, and possibly phosphate. Cluster 7 proteins are specific for dicarboxylates and tricarboxylates, but these two proteins exhibit insufficient sequence similarity to establish homology. Finally, cluster 8 proteins are specific for iron complexes and possibly vitamin B12. Members of each cluster of binding proteins exhibit greater sequence conservation in their N-terminal domains than in their C-terminal domains. Signature sequences for these eight protein families are presented. The results reveal that binding proteins specific for the same solute from different bacteria are generally more closely related to each other than are binding proteins specific for different solutes from the same organism, although exceptions exist. They also suggest that a requirement for high-affinity solute binding imposes severe structural constraints on a protein. The occurrence of two distinct classes of bacterial cytoplasmic repressor proteins which are homologous to two different clusters of periplasmic binding proteins suggests that the gene-splicing events which allowed functional conversion of these proteins with retention of domain structure have occurred repeatedly during evolutionary history.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Tam
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
20
|
Abstract
The complete nucleotide sequences of Streptococcus sobrinus 6715 scrA and scrB, which encode sucrose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system and sucrose-6-phosphate hydrolase, respectively, have been determined. These two genes were transcribed divergently, and the initiation codons of the two open reading frames were 192 bp apart. The transcriptional initiation sites were determined by primer extension analysis, and the putative promoter regions of these two genes overlapped partially. The gene encoding enzyme IIScr, scrA, contained 1,896 nucleotides, and the molecular mass of the predicted protein was 66,529 Da. The hydropathy plot of the predicted amino acid sequence indicated that enzyme IIScr was a relatively hydrophobic protein. The gene encoding sucrose-6-phosphate hydrolase, scrB, contained 1,437 nucleotides. The molecular mass of the predicted protein was 54,501 Da, and the encoded enzyme was hydrophilic. The predicted amino acid sequences of the two open reading frames exhibited approximately 45 and 70% identity with those encoded by scrA and scrB, respectively, from Streptococcus mutans GS5. Homology also was observed between the N-terminal region of the S. sobrinus 6715 enzyme IIScr and other enzyme IIs specific for the glucopyranoside molecule, all of which generate glucopyranoside-6-phosphate during translocation and phosphorylation of the respective substrates. The sequence of the C-terminal domain of the S. sobrinus 6715 enzyme IIScr shared significant homology with enzyme IIIGlc from Escherichia coli and Salmonella typhimurium and with the C-terminal domain of enzyme IIBgl from E. coli, indicating that the two functional domains, enzyme IIScr and enzyme IIIScr, were covalently linked as a single polypeptide in S. sobrinus 6715. The deduced amino acid sequence of the gene product of S. sobrinus scrB shared strong homology with sucrase from Bacillus subtilis, Klebsiella pneumoniae, and Vibrio alginolyticus, suggesting conservation based on the physiological roles of these proteins.
Collapse
Affiliation(s)
- Y Y Chen
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758
| | | | | |
Collapse
|
21
|
Kuan J, Saier MH. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 1993; 28:209-33. [PMID: 8325039 DOI: 10.3109/10409239309086795] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Energy transduction in mitochondria requires the transport of many specific metabolites across the inner membrane of this eukaryotic organelle. We have screened the protein sequence database for proteins homologous to the mitochondrial ATP/ADP exchange carrier, and the homologous proteins found were similarly screened to ensure that all currently sequenced members of the mitochondrial carrier family (MCF) had been identified. Thirty-seven proteins were identified, 28 of which were less than 90% identical to any other sequenced member of the MCF, and the latter proteins fell into 10 clusters or subfamilies as follows: (1) ATP/ADP exchangers of mammals, plants, algae, yeast, and fungi (11 members); (2) a bovine oxoglutarate/malate exchanger (one member); (3) mammalian uncoupling carriers (five members); (4) yeast and mammalian phosphate carriers (three members); (5) MRS proteins that suppress mitochondrial splicing defects in Saccharomyces cerevisiae (two members); (6) a putative peroxysomal carrier of Candida boidinii; (7) a putative solute carrier from the protozoan, Oxytricha fallax; (8) a putative solute carrier from S. cerevisiae; (9) a putative solute carrier from Zea mays, and (10) two putative solute carriers from the mammalian thyroid gland. The specificities of proteins in clusters 5 to 10 are not known. A multiple alignment and an evolutionary tree of the 28 selected members of the MCF were constructed, thus defining the conserved residues and the phylogenetic relationships of the proteins. Hydropathy plots of the homologous regions were determined and averaged, and the average hydropathy plots were evaluated for sequence similarity. These analyses revealed that the six transmembrane spanners exhibited varying degrees of sequence conservation and hydrophilicity. These spanners, and immediately adjacent hydrophilic loop regions, were more highly conserved than other regions of these proteins. All members of the MCF appear to consist of a tripartite structure with each of the three repeated segments being about 100 residues in length. Each repeat contains two transmembrane spanners, the first being more hydrophobic with conserved glycyl and prolyl residues, the second, preceded by a highly conserved glycyl residue, being more hydrophilic with largely conserved hydrophilic residues in certain positions. Five of the six spanners are followed by the largely conserved sequence (D/E)-Hy (K/R)[- = any residue; Hy = a hydrophobic residue]. Based on both intracluster and intercluster statistical comparisons, repeats 1, 2, and 3 are homologous, but repeats 1 are more similar to each other than they are to repeats 2 or 3 or repeats 2 or 3 are to each other.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Kuan
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
22
|
Reizer J, Finley K, Kakuda D, MacLeod CL, Reizer A, Saier MH. Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Protein Sci 1993; 2:20-30. [PMID: 8382989 PMCID: PMC2142299 DOI: 10.1002/pro.5560020103] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We demonstrate that three integral membrane receptors of mammals--the ecotropic retroviral leukemia receptor (ERR), the human retroviral receptor (HRR), and the T-cell early activator (Tea)--are homologous to a family of transporters specific for amino acids, polyamines, and choline (APC), which catalyze solute uniport, solute:cation symport, or solute:solute antiport in yeast, fungi, and eubacteria. Interestingly, the ERR membrane protein was recently shown to function as a cation:amino acid cotransporter. A binary sequence similarity matrix and an evolutionary tree of the 14 members of this family, illustrating their sequence similarities and divergences, were constructed. Other proteins, including the developmentally controlled GerAII spore germination protein of Bacillus subtilis and the acetylcholine receptor of Drosophila melanogaster gave sequence comparison scores of a sufficiently large magnitude to suggest (but not to establish) a common evolutionary origin with members of the APC family. We report an extended and corrected Tea cDNA sequence and show that the mammalian Tea and ERR encoding genes are differentially expressed in tissues and cell lines. Furthermore, the two mammalian cDNA sequences hybridize with other vertebrate and yeast genomic DNAs under stringent conditions. These observations support the notion that cell surface receptor proteins in mammals are transport proteins that share a common origin with transport proteins of single-celled organisms. Thus, permeases of essential metabolites may function pathologically as viral receptors.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|
23
|
Marger MD, Saier MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 1993; 18:13-20. [PMID: 8438231 DOI: 10.1016/0968-0004(93)90081-w] [Citation(s) in RCA: 644] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many transport proteins of bacteria and eukaryotes are thought to possess a common structural motif of 12 transmembrane-spanning alpha-helical segments. In this report we use statistical methods to establish that five families or clusters of these facilitators comprise a single superfamily. The five clusters include: (1) drug-resistance proteins, (2) sugar facilitators, (3) facilitators for Krebs cycle intermediates, (4) phosphate ester-phosphate antiporters and (5) a distinct group of oligosaccharide-H+ symporters. Over 50 transporters of bacteria, lower eukaryotes, plants and animals, and one putative bacterial transcriptional regulatory protein are members of this superfamily, which we term the 'major facilitator superfamily' (MFS).
Collapse
Affiliation(s)
- M D Marger
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
24
|
Abstract
Bacterial transport proteins mediate passive and active transport of small solutes across membranes. Comparison of amino acid sequences shows strong conservation not only among bacterial transporters, but also between them and many transporters of animal cells; thus the study of bacterial transporters is expected to contribute to our understanding of transporters in more complex cells. During the last few years, structures of three bacterial outer membrane transporters were solved by x-ray crystallography. Much progress has also occurred in the biochemical and molecular genetic studies of transporters in the cytoplasmic membranes of bacteria, and a unifying design among membrane transporters is gradually emerging. Common structural motives and evolutionary origins among transporters with diverse energy-coupling mechanisms suggest that many transporters contain a central module forming a transmembrane channel through which the solute may pass. Energy-coupling mechanisms can be viewed as secondary features added on to these fundamental translocation units.
Collapse
Affiliation(s)
- H Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
25
|
Parr TR, Saier MH. The bacterial phosphotransferase system as a potential vehicle for the entry of novel antibiotics. Res Microbiol 1992; 143:443-7. [PMID: 1448620 DOI: 10.1016/0923-2508(92)90089-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the past twenty-nine years, not a single class of antimicrobial agents has been discovered that has led to new approved human drugs. Despite a dramatic increase in the potency of existing classes, the need for new effective antimicrobial agents continues. The bacterial phosphotransferase system (PTS) offers the possibility of providing new opportunities for the discovery of important agents. This system offers a vehicle for entry into infecting bacteria and pathways for the initiation of metabolism of such agents. Antimicrobial agents which would use the PTS may be found which are active on both growing and sessile bacterial forms, and due to the lack of a eukaryotic PTS counterpart, such analogues may be expected to be non-toxic to the animal host.
Collapse
Affiliation(s)
- T R Parr
- Infectious Disease Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 45285-0428
| | | |
Collapse
|
26
|
Saier MH, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 1992; 174:1433-8. [PMID: 1537788 PMCID: PMC206537 DOI: 10.1128/jb.174.5.1433-1438.1992] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
27
|
Saier MH, Reizer J. Families and superfamilies of transport proteins common to prokaryotes and eukaryotes. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90034-q] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|