1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Cox KH, So NLT, Rissman EF. Foster dams rear fighters: strain-specific effects of within-strain fostering on aggressive behavior in male mice. PLoS One 2013; 8:e75037. [PMID: 24040381 PMCID: PMC3769275 DOI: 10.1371/journal.pone.0075037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
It is well known that genes and environment interact to produce behavioral phenotypes. One environmental factor with long-term effects on gene transcription and behavior is maternal care. A classic paradigm for examining maternal care and genetic interactions is to foster pups of one genetic strain to dams of a different strain ("between-strain fostering"). In addition, fostering to a dam of the same strain ("within-strain fostering") is used to reduce indirect effects, via behavioral changes in the dams, of gestation treatments on offspring. Using within-and between-strain fostering we examined the contributions of genetics/prenatal environment, maternal care, and the effects of fostering per se, on adult aggressive behavior in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (DBA). We hypothesized that males reared by dams of the more aggressive DBA strain would attack intruders faster than those reared by B6 dams. Surprisingly, we found that both methods of fostering enhanced aggressive behavior, but only in B6 mice. Since all the B6 offspring are genetically identical, we asked if maternal behavior of B6 dams was affected by the relatedness of their pups. In fact, B6 dams caring for foster B6 pups displayed significantly reduced maternal behaviors. Finally, we measured vasopressin and corticotrophin releasing hormone mRNA in the amygdalae of adult B6 males reared by foster or biological dams. Both genes correlated with aggressive behavior in within-strain fostered B6 mice, but not in mice reared by their biological dams. In sum, we have demonstrated in inbred laboratory mice, that dams behave differently when rearing their own newborn pups versus pups from another dam of the same strain. These differences in maternal care affect aggression in the male offspring and transcription of Avp and Crh in the brain. It is likely that rearing by foster dams has additional effects and implications for other species.
Collapse
Affiliation(s)
- Kimberly H. Cox
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Nina L. T. So
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Dureje L, Bímová BV, Piálek J. No postnatal maternal effect on male aggressiveness in wild-derived strains of house mice. Aggress Behav 2011; 37:48-55. [PMID: 20954263 DOI: 10.1002/ab.20371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/19/2010] [Indexed: 11/07/2022]
Abstract
Male aggressiveness is a complex behavior influenced by a number of genetic and non-genetic factors. Traditionally, the contribution of each of these factors has been established from experiments using artificially selected strains for high/low aggressive phenotypes. However, little is known about the factors underlying aggressive behavior in natural populations. In this study, we assess the influence of genetic background vs. postnatal maternal environment using a set of cross-fostering experiments between two wild-derived inbred strains, displaying high (STRA, derived from Mus musculus domesticus) and low (BUSNA, derived from Mus musculus musculus) levels of aggressiveness. The role of maternal environment was tested in males with the same genetic background (i.e. strain origin) reared under three different conditions: unfostered (weaned by mother), infostered (weaned by an unfamiliar dam from the same strain), and cross-fostered (weaned by a dam from a different strain). All males were tested against non-aggressive opponents from the A/J inbred strain. Resource-holding potential was assessed through body weight gains and territory ownership. The STRA males were shown to be aggressive in both neutral cage and resident-intruder tests. On the contrary, the BUSNA males were less aggressive in all tests. We did not find a significant effect of postnatal maternal environment; however, we detected significant maternal effect on body weight with differences between the strains, fostering type and interactions between these factors. We conclude that the aggressiveness preserved in the two strains has significant genetic component whose genetic basis can be dissected by quantitative trait loci analysis.
Collapse
Affiliation(s)
- Ludovít Dureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
4
|
Veenema AH, Neumann ID. Neurobiological Mechanisms of Aggression and Stress Coping: A Comparative Study in Mouse and Rat Selection Lines. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:274-85. [PMID: 17914259 DOI: 10.1159/000105491] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggression causes major health and social problems and constitutes a central problem in several psychiatric disorders. There is a close relationship between the display of aggression and stress coping strategies. In order to gain more insight into biochemical pathways associated with aggression and stress coping, we assessed behavioral and neurobiological responses in two genetically selected rodent models, namely wild house mice selectively bred for a short (SAL) and long (LAL) attack latency and Wistar rats bred for high (HAB) or low (LAB) anxiety-related behavior. Compared to their line counterparts, the SAL mice and the LAB rats display a high level of intermale aggression associated with a proactive coping style. Both the SAL mice and the LAB rats show a reduced hypothalamic-pituitary-adrenal (HPA) axis response to non-social stressors. However, when exposed to social stressors (resident-intruder, sensory contact), SAL mice show an attenuated HPA response, whereas LAB rats show an elevated HPA response. In both rodent lines, the display of aggression is associated with high neuronal activation in the central amygdala, but reduced neuronal activation in the lateral septum. Furthermore, in the lateral septum, SAL mice have a reduced vasopressinergic fiber network, and LAB rats show a decreased vasopressin release during the display of aggression. Moreover, the two lines show several indications of an increased serotonergic neurotransmission. The relevance of these findings in relation to high aggression and stress coping is discussed. In conclusion, exploring neurobiological systems in animals sharing relevant behavioral characteristics might be a useful approach to identify general mechanisms of action, which in turn can improve our understanding of specific behavioral symptoms in human psychiatric disorders.
Collapse
Affiliation(s)
- Alexa H Veenema
- Department of Behavioral Neuroendocrinology, Institute of Zoology, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
5
|
Abstract
Aggressive behavior can serve important adaptive functions in social species. However, if it exceeds the species-typical pattern, it may become maladaptive. Very high or escalated levels of aggressive behavior can be induced in laboratory rodents by pharmacological (alcohol-heightened aggression), environmental (social instigation), or behavioral (frustration-induced aggression) means. These various forms of escalated aggressive behavior may be useful in further elucidating the neurochemical control over aggression and violence. One neurochemical system most consistently linked with escalated aggression is the GABAergic system, in conjunction with other amines and peptides. Although direct stimulation of GABA receptors generally suppresses aggression, a number of studies have found that positive allosteric modulators of GABAA receptors can cause increases in aggressive behavior. For example, alcohol, benzodiazepines, and many neurosteroids are all positive modulators of the GABAA receptor and all can cause increased levels of aggressive behavior. These effects are dose-dependent and higher doses of these compounds generally shift from heightening aggressive behavior to being sedative and anti-aggressive. In addition, these modulators interact with each other and can have additive effects on the GABAA receptor and on behavior, including aggression. The GABAA receptor is a heteropentameric protein that can be constituted from various subunits. It has been shown that subunit composition can affect sensitivity of the receptor to some modulators and that subunit composition differentially affects the sedative vs anxiolytic actions of benzodiazepines. Initial studies targeting alpha subunits of the GABAA receptor point to their significant role in the aggression-heightening effects of alcohol, benzodiazepines, and neurosteroids.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, Medford and Boston, MA 02155, USA.
| | | | | |
Collapse
|
6
|
Sluyter F, Korte SM, Van Baal GC, De Ruiter AJ, Van Oortmerssen GA. Y chromosomal and sex effects on the behavioral stress response in the defensive burying test in wild house mice. Physiol Behav 1999; 67:579-85. [PMID: 10549897 DOI: 10.1016/s0031-9384(99)00101-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetically selected short attack latency (SAL) and long attack latency (LAL) male wild house mice behave differently in the defensive burying test. When challenged, SAL males respond actively with more time spent on defensive burying, whereas LAL males are more passive with more time remaining immobile. The first aim of this study was to find out whether the nonpairing part of the Y chromosome (Y(NPAR)) affects the behavioral stress response in this paradigm. Second, to determine if the differential behavioral profile found in males is also present in females, SAL and LAL females were tested. Third, nonattacking and attacking LAL males were compared. Five behavioral elements were recorded: defensive burying, immobility, rearing, grooming, and exploration. Males were first tested for attack latency. The results show that the Y(NPAR) influences defensive burying. However, the size of this effect is overshadowed by the background of the mice. Furthermore, although females differed from males, they tended to demonstrate the same behavioral profile as males. Nongenetic factors may also play a role, as attacking LAL males showed more defensive burying than nonattacking LAL males.
Collapse
Affiliation(s)
- F Sluyter
- University of Nijmegen, Department of Psychoneuropharmacology, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Sluyter F, van der Vlugt JJ, van Oortmerssen GA, Koolhaas JM, van der Hoeven F, de Boer P. Studies on wild house mice. VII. Prenatal maternal environment and aggression. Behav Genet 1996; 26:513-8. [PMID: 8917950 DOI: 10.1007/bf02359756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of the maternal environment on intermale aggression was studied by means of embryo transfer of genetically selected aggressive (SAL) and nonaggressive wild house mice (LAL), and their reciprocal F1's, to standard (NMR1) females. No effect was found on the attack latency scores (ALS), i.e., aggression: all genotypes born and raised under natural conditions showed an ALS similar that of genotypes born and raised by NMR1 females. Since previous studies on wild house mice failed to demonstrate postnatal effects on aggression, and the present results indicate the absence of prenatal maternal environmental effects on aggression, the primacy of genetic over maternal variance in the development of adult intermale aggression in wild house mice is indicated.
Collapse
Affiliation(s)
- F Sluyter
- University of Groningen, Department of Animal Physiology, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Sluyter F, van Oortmerssen GA, de Ruiter AJ, Koolhaas JM. Aggression in wild house mice: current state of affairs. Behav Genet 1996; 26:489-96. [PMID: 8917947 DOI: 10.1007/bf02359753] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper reviews our present state of knowledge of genetic variation in (offensive) aggression in wild house mice. The basic tools in this research were lines bidirectionally selected for attack latency (fast attacking SAL and slow attacking LAL males), descended from a feral population. Using congenic lines for the nonpseudoautosomal region of the Y chromosome (YNPAR), reciprocal crosses between (parental) SAL and LAL, and crosses between parentals and congenics, an autosomally dependent Y chromosomal effect on aggression has been found. Both the pseudoautosomal (YPAK) region and the YNPAR play a role. As for environmental sources of variation, prenatal and postnatal maternal effects are of minor importance for the development of aggression differences. One of the physiological factors by which genetic effects may be mediated is testosterone (T). Besides quantitative aspects, the timing of T release seems crucial. Two important time frames are discussed: the perinatal and pubertal time periods. Finally, neurochemical and neuroanatomical correlates are considered. Differences in neostriatal dopaminergic activity, and sizes of the intra- and infrapyramidal mossy fiber terminal fields, as well as Y chromosomal effects on the latter two, are discussed.
Collapse
Affiliation(s)
- F Sluyter
- URA 1294 CNRS, Université Paris V, UFR Biomédicale, France.
| | | | | | | |
Collapse
|
9
|
Sluyter F, Korte SM, Bohus B, Van Oortmerssen GA. Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test. Pharmacol Biochem Behav 1996; 54:113-6. [PMID: 8728547 DOI: 10.1016/0091-3057(95)02164-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetically selected aggressive and nonaggressive male wild house mice were tested in the shock-probe/defensive burying test: Five distinct behaviors (burying, immobility, rearing, grooming, and exploration) were recorded in two environmental situations: fresh and home cage sawdust. Nonaggressive animals, characterized by a Long Attack Latency (LAL), showed more immobility in both test situations than animals having Short Attack Latencies (SAL), whereas SAL males displayed more defensive burying than LAL ones when tested with fresh sawdust. Testing with home cage sawdust, however, resulted in the same duration of defensive burying in SAL and LAL. These results support earlier findings about the existence of two heritable, fundamentally different strategies to cope with aversive situations. Aggressive (SAL) animal react actively to environmental challenges, whereas nonaggressive animals react actively or passively, depending on the characteristics of the stressful environment. These mouse lines, selected for attack latency, i.e., aggression, may, therefore, be important tools to unravel the genetic architecture underlying the physiological and neuronal mechanisms of behavioral strategies towards stressful events.
Collapse
Affiliation(s)
- F Sluyter
- URA 1294 CNRS, Université Paris V René Descartes, France
| | | | | | | |
Collapse
|