1
|
Omezzine Gnioua M, Swift SJ, Španěl P. Selected ion flow tube studies of the reactions of H 3O +, NO +, O 2+˙ and O -˙ ions with alkanes in He and N 2 carrier gases at different temperatures. Phys Chem Chem Phys 2024; 26:26585-26593. [PMID: 39400284 DOI: 10.1039/d4cp03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The kinetics of the reactions of H3O+, NO+, O2+˙ and O-˙ with n-hexane, 3-methylpentane, 2,5-dimethylhexane and 2,3-dimethylheptane were studied experimentally under several selected ion flow tube (SIFT) conditions: in a Profile 3 instrument in He and N2 carrier gases at 300 K and in the Voice200 instrument in N2 carrier gas at 300 and 393 K - where the effect of the extraction lens voltage was also assessed. It was found that H3O+ ions react differently than expected, with reaction rates slower than collisional. Instead of transferring a proton, they associate and form fragment product ions [M-H]+. NO+ ions react via hydride ion transfer. O2+˙ ions react via charge transfer followed by fragmentation that is highly sensitive to the temperature and the ion extraction lens voltage. Negative ions did not react, except for the O-˙ ion, which reacted via an associative detachment process. Computational analysis using Density Functional Theory (DFT) provided insights into the exothermicities and exergodicities of these reactions. A notable result is that proton transfer from H3O+ does not take place despite its potential exothermicity; this is important for the interpretation of proton transfer reaction (PTR) and SIFT mass spectrometry data.
Collapse
Affiliation(s)
- Maroua Omezzine Gnioua
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2/747, Prague 8, 180 00, Czechia
| | - Stefan J Swift
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
| | - Patrik Španěl
- J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia.
| |
Collapse
|
2
|
Zhang X, Zhang X, Yang Y. Update of gut gas metabolism in ulcerative colitis. Expert Rev Gastroenterol Hepatol 2024; 18:339-349. [PMID: 39031456 DOI: 10.1080/17474124.2024.2383635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic, nonspecific inflammatory disease of the intestine. The intestinal microbiota is essential in the occurrence and development of UC. Gut gases are produced via bacterial fermentation or chemical interactions, which can reveal altered intestinal microbiota, abnormal cellular metabolism, and inflammation responses. Recent studies have demonstrated that UC patients have an altered gut gas metabolism. AREAS COVERED In this review, we integrate gut gas metabolism advances in UC and discuss intestinal gases' clinical values as new biomarkers or therapeutic targets for UC, providing the foundation for further research. Literature regarding gut gas metabolism and its significance in UC from inception to October 2023 was searched on the MEDLINE database and references from relevant articles were investigated. EXPERT OPINION Depending on their type, concentration, and volume, gut gases can induce or alleviate clinical symptoms and regulate intestinal motility, inflammatory responses, immune function, and oxidative stress, significantly impacting UC. Gut gases may function as new biomarkers and provide potential diagnostic or therapeutic targets for UC.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Medical School, Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiuli Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Wolfschluckner V, Obermüller B, Horvath A, Rodriguez-Blanco G, Fuchs P, Miekisch W, Mittl B, Flucher C, Till H, Singer G. Metabolomic Alterations of Volatile Organic Compounds and Bile Acids as Biomarkers of Microbial Shifts in a Murine Model of Short Bowel Syndrome. Nutrients 2023; 15:4949. [PMID: 38068807 PMCID: PMC10708115 DOI: 10.3390/nu15234949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pediatric short bowel syndrome (SBS) is a rare condition characterized by a massive loss of the small intestine, leading to the inability to meet nutritional requirements without the use of parenteral or enteral supplementation. SBS causes profound alterations in the intestinal microbiome and metabolome. The aim of this study was a detailed assessment of the intestinal microbiome and metabolome in a murine model of SBS. We performed a 60% proximal small bowel resection versus a sham operation in C57BL/6 mice. Four weeks postoperatively, the microbial communities of different intestinal segments (jejunum, ileum, colon) and stool were assessed by 16S rRNA gene sequencing. Bile acids in serum and stool and volatile organic compounds (VOCs) in the fecal headspace were assessed using LC-MS and GC-MS techniques. The α-diversity of the different intestinal segments did not significantly differ between the two groups. β-diversity significantly differed between sham and SBS mice. While in the jejunum, Faecalibaculum was significantly increased in SBS animals, a significant reduction in Lactobacillus and Sporosarcina was detected in the ileum of SBS mice. In the colon of SBS mice, a significant decrease in Ruminococcaceae and a significant increase in Proteobacteria such as Faecalibaculum and Escherichia-Shigella were found. Serum levels of deoxycholic, taurocholic and taurochenodeoxycholic acids were significantly higher in the SBS group. Of the 29 VOCs tested, hexane, isoflurane and pentane were significantly higher in the SBS group, and pyrrole was significantly lower. We were able to show that SBS causes shifts in the murine intestinal microbiome and metabolome including serum BAs and fecal VOCs.
Collapse
Affiliation(s)
- Vanessa Wolfschluckner
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Patricia Fuchs
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Wolfram Miekisch
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (P.F.); (W.M.)
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Christina Flucher
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (V.W.); (B.M.); (C.F.); (H.T.); (G.S.)
| |
Collapse
|
4
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
5
|
Asai A, Konno M, Ozaki M, Kawamoto K, Chijimatsu R, Kondo N, Hirotsu T, Ishii H. Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer. Oncotarget 2021; 12:1687-1696. [PMID: 34434497 PMCID: PMC8378769 DOI: 10.18632/oncotarget.28035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including Caenorhabditis elegans. While such a method may greatly improve the prognosis of pancreatic cancer, no studies have investigated the same, mainly given the difficulty of collecting suitable samples from patients with early-stage pancreatic cancer. In this study, we organized a nationwide study group comprising high-volume centers throughout Japan to collect patients with very-early-stage pancreatic cancer (stage 0 or IA). We initially performed an open-label study involving 83 cases (stage 0–IV), with subsequent results showing significant differences after surgical removal in stage 0–IA (×10 dilution: p < 0.001; ×100 dilution: p < 0.001). Thereafter, a blinded study on 28 cases (11 patients with stage 0 or IA disease and 17 healthy volunteers) was conducted by comparing very-early-stage pancreatic cancer patients with healthy volunteers to determine whether C. elegans could detect the scent of cancer for the diagnosis of early-stage pancreatic cancer. Preoperative urine samples had a significantly higher chemotaxis index compared to postoperative samples in patients with pancreatic cancer [×10 dilution: p < 0.001, area under the receiver operating characteristic curve (AUC) = 0.845; ×100 dilution: p < 0.001, AUC = 0.820] and healthy volunteers (×10 dilution: p = 0.034; ×100 dilution: p = 0.088). Moreover, using the changes in preoperative and postoperative chemotaxis index, this method had a higher sensitivity for detecting early pancreatic cancer compared to existing diagnostic markers. The clinical application C. elegans for the early diagnosis of cancer can certainly be expected in the near future.
Collapse
Affiliation(s)
- Ayumu Asai
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Artificial Intelligence Research Center, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Present address: Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyuki Ozaki
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawamoto
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Present address: Kinnki Regional Bureau of Health and Welfare, Osaka, Japan
| | - Ryota Chijimatsu
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nobuaki Kondo
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Oxidative Stress Does Not Influence Subjective Pain Sensation in Inflammatory Bowel Disease Patients. Antioxidants (Basel) 2021; 10:antiox10081237. [PMID: 34439485 PMCID: PMC8389030 DOI: 10.3390/antiox10081237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) has been proposed as a significant causative and propagating factor in inflammatory bowel diseases (IBDs). Modulation of OS is possible through antioxidants and inhibition of oxidizing enzymes. Thirty-one IBD patients and thirty-two controls were included in the study. The aim was to examine the levels of OS in colonic tissue of IBD requiring surgical intervention and control group, and their association with pain intensity. Total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH) and oxidized glutathione (GSSG) levels, and glutathione peroxidase (GPX) activity as markers of antioxidant defense were determined. Cyclooxygenases activities (Total COX, COX-1 and COX-2) were measured as prooxidant enzymes. Thiobarbituric acid reactive substances (TBARS) concentrations were measured to evaluate lipid peroxidation. Disease activity was assessed, and each subject filled out VAS and Laitinen's pain assessment scales. Correlation between the OS, pain intensity, disease activity parameters, C-reactive protein (CRP), number of stools passed daily, disease duration, and dietary habits was investigated. No TAC differences were found between the groups. A significant decrease of SOD activity and GSH and GSSG levels was seen in IBD patients vs. controls, while GPX activity was diminished significantly only in CD patients. CAT and COX-1 activity was increased, and COX-2 significantly decreased in IBD. TBARS were significantly higher in CD patients compared to control group. No correlation was found between pain scores, inflammatory status, disease activity, disease duration, or dietary habits and OS markers. In our study, OS did not influence pain sensation reported by IBD patients.
Collapse
|
7
|
Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers (Basel) 2021; 13:cancers13102361. [PMID: 34068419 PMCID: PMC8153598 DOI: 10.3390/cancers13102361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early diagnosis is crucial for reducing colorectal cancer-related mortality in both the general population and inflammatory bowel disease. Volatile organic compound (VOC) analysis is a promising alternative to the gold standard procedure, endoscopy, for early detection and surveillance of colorectal diseases. This review aimed to provide a general overview of the most recent evidence in this area on VOC testing in breath, stool, and urine samples. Abstract Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the Western world. Early detection decreases incidence and mortality. Screening programs based on fecal occult blood testing help identify patients requiring endoscopic examination, but accuracy is far from optimal. Among the alternative strategies, volatile organic compounds (VOCs) represent novel potentially useful biomarkers of colorectal cancer. They also represent a promising tool for the screening of both intestinal inflammation and related CRC. The review is focused on the diagnostic potential of VOCs in sporadic CRC and in inflammatory bowel diseases (IBD), which increase the risk of CRC, analyzing future clinical applications. Despite limitations related to inadequate strength of evidence, differing analytical platforms identify different VOCs, and this unconventional approach for diagnosing colorectal cancer is promising. Some VOC profiles, besides identifying inflammation, seem disease-specific in inflammatory bowel diseases. Thus, breath, urine, and fecal VOCs provide a new and promising clinical approach to differential diagnosis, evaluation of the inflammatory status, and possibly the assessment of treatment efficacy in IBD. Conversely, specific VOC patterns correlating inflammatory bowel disease and cancer risk are still lacking, and studies focused on this issue are strongly encouraged. No prospective studies have assessed the risk of CRC development by using VOCs in samples collected before the onset of disease, both in the general population and in patients with IBD.
Collapse
|
8
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
9
|
Ratcliffe N, Wieczorek T, Drabińska N, Gould O, Osborne A, De Lacy Costello B. A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: an aid to understanding the origins of volatile organic compounds from the human body. J Breath Res 2020; 14:034001. [PMID: 32163929 DOI: 10.1088/1752-7163/ab7f9d] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The assessment of volatile compounds (VOCs) for disease diagnosis is a growing area of research. There is a need to provide hard evidence i.e. biochemical routes, to justify putative VOC biomarkers, as in many cases this remains uncertain, which weakens their authenticity. Recently reports of volatile hydrocarbons and or aldehydes in bodily fluids and breath have been attributed to oxidative stress, although as discussed here, fewer compounds have been reported than expected from a mechanistic examination. Oxidative stress can result from many disease states which produce inflammation, and a better understanding of the interconnection between oxidative stress and the release of VOCs from target diseased and healthy organs could greatly help diagnoses. It is generally considered that oxidation of unsaturated fatty acids are a major source of these VOCs. An investigation listing the many possible volatile oxidation products has not been undertaken. This is described here using a mechanistic analysis (based on the literature) of the compounds derived from molecular cleavage and the results compared with a recent review of all the VOCs emanating from the human body, which satisfactorily explains the presence of at least 100 VOCs. Six important unsaturated fatty acids, oleic, palmitoleic, linoleic, linolenic, arachidonic, and cervonic acids have been shown to be capable of producing up to 18 n+6 unique breakdown products (where n = the number of alkene double bonds in the fatty acid hydrocarbon chain), in total 299 compounds. In many cases these have not been reported. We suggest several reasons for this: these VOCs have not been expected, so researchers are not looking for them and importantly some are not present in the mass spectral libraries, or they are too low a concentration to have been detected, or are not present. Furthermore a theoretical explanation for the origins of branched aldehydes and other compounds arising from bacterial oxidative metabolism of unsaturated fatty acids are described.
Collapse
Affiliation(s)
- Norman Ratcliffe
- Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Van Malderen K, De Winter BY, De Man JG, De Schepper HU, Lamote K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020; 54:102725. [PMID: 32330874 PMCID: PMC7177032 DOI: 10.1016/j.ebiom.2020.102725] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are produced by the human metabolism, inflammation and gut microbiota and form the basis of innovative volatomics research. VOCs detected through breath and faecal analysis hence serve as attractive, non-invasive biomarkers for diagnosing and monitoring irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). This review describes the clinical applicability of volatomics in discriminating between IBS, IBD and healthy volunteers with acceptable accuracy in breath (70%-100%) and faecal (58%-85%) samples. Promising compounds are propan-1-ol for diagnosing and monitoring of IBD patients, and 1-methyl-4-propan-2-ylcyclohexa-1,4-diene as biomarker for IBS diagnosis. However, these VOCs often seem to be related to inflammation and probably will need to be used in conjunction with other clinical evidence. Furthermore, three interventional studies underlined the potential of VOCs in predicting treatment outcome and patient follow-up. This shows great promise for future use of VOCs as non-invasive breath and faecal biomarkers in personalised medicine. However, properly designed studies that correlate VOCs to IBD/IBS pathogenesis, while taking microbial influences into account, are still key before clinical implementation can be expected.
Collapse
Affiliation(s)
- Kathleen Van Malderen
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann Surg 2020; 269:903-910. [PMID: 29194085 DOI: 10.1097/sla.0000000000002539] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE BACKGROUND:: Breath VOCs have the potential to noninvasively diagnose cancer. METHODS Exhaled breath samples were collected using 2-L double-layered Nalophan bags, and were analyzed using selected-ion-flow-tube mass-spectrometry. Gold-standard test for comparison was endoscopy for luminal inspection and computed tomography (CT) to confirm cancer recurrence. Three studies were conducted: RESULTS:: CONCLUSION:: This study suggests the association of a single breath biomarker with the primary presence and recurrence of CRCa. Further multicenter validation studies are required to validate these findings.
Collapse
|
12
|
Bannaga AS, Farrugia A, Arasaradnam RP. Diagnosing Inflammatory bowel disease using noninvasive applications of volatile organic compounds: a systematic review. Expert Rev Gastroenterol Hepatol 2019; 13:1113-1122. [PMID: 31657950 DOI: 10.1080/17474124.2019.1685873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a common disease with significant morbidity. Noninvasive diagnostic techniques are lacking in IBD. Currently, fecal calprotectin is a sensitive marker of gut inflammation however is not specific to Crohn's disease (CD) or ulcerative colitis (UC) alone. Volatile organic compounds (VOCs) were shown to have potential in IBD diagnosis.Areas covered: This systematic review aimed to examine the next-generation diagnosis of IBD in adults and children using VOCs. An in-depth literature-based search of current clinical studies of VOCs in the diagnosis of IBD was undertaken. Accuracy of IBD detection varied according to the technologies applied. Breath VOCs studies were pooled giving an overall sensitivity of 85% (95%CI: 79-89%) and specificity of 79% (95%CI 73-84%) whilst pooled fecal VOCs studies revealed a sensitivity of 87% (95%CI 77-93%) and specificity of 91% (95%CI 82-96%). Studies were limited by the variance of techniques applied in VOCs detection and the absence of well-designed longitudinal studies.Expert opinion: VOCs can be consistently and effectively detected in urine, breath, and stool in IBD patients. The sensitivity of breath VOCs in detecting IBD was comparable to feces. However, optimal VOCs detection methodology and biological sampling still need to be standardized..
Collapse
Affiliation(s)
- Ayman S Bannaga
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Alexia Farrugia
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Ramesh P Arasaradnam
- University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Faculty of Health Science, University of Coventry, Coventry, UK.,Division of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Li H, Xu M, Zhu J. Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 91:854-863. [DOI: 10.1021/acs.analchem.8b03517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haorong Li
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
14
|
Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ahmed I, Niaz Z, Ewbank F, Akarca D, Felwick R, Furnari M. Sniffing out causes of gastrointestinal disorders: a review of volatile metabolomic biomarkers. Biomark Med 2018; 12:1139-1148. [PMID: 30191735 DOI: 10.2217/bmm-2018-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct changes can be observed in the odor of human excretions during health and disease. Identifying underlying volatile metabolites responsible for these odorous changes can be correlated with the pathological process within the body. Advances in the technology have enabled us to interpret the volatile signature of these changes in the odor. This has opened a promising area to lay the foundations of a rapid, noninvasive and point of care diagnostic tool. This review explores the diagnostic potential of volatile organic metabolites as novel biomarkers and extends the discussion on the clinical applications of these biomarkers in gastrointestinal disorders.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- Department of Gastroenterology, Aldara Hospital & Medical Centre, Riyadh, Kingdom of Saudi Arabia
| | - Zafar Niaz
- Department of Medicine, Mayo Hospital Lahore, Pakistan
| | | | - Danyal Akarca
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Richard Felwick
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | | |
Collapse
|
16
|
Küppers L, Holz O, Schuchardt S, Gottlieb J, Fuge J, Greer M, Hohlfeld JM. Breath volatile organic compounds of lung transplant recipients with and without chronic lung allograft dysfunction. J Breath Res 2018; 12:036023. [PMID: 29771243 DOI: 10.1088/1752-7163/aac5af] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Chronic lung allograft dysfunction with its clinical correlative of bronchiolitis obliterans syndrome (BOS) remains the major limiting factor for long-term graft survival. Currently there are no established methods for the early diagnosis or prediction of BOS. To assess the feasibility of breath collection as a non-invasive tool and the potential of breath volatile organic compounds (VOC) for the early detection of BOS, we compared the breath VOC composition between transplant patients without and different stages of BOS. METHODS 75 outpatients (25 BOS stage 0, 25 BOS stage 1 + 2, 25 BOS stage 3) after bilateral lung transplantation were included. Exclusion criteria were active smoking, oxygen therapy and acute infection. Patients inhaled room air through a VOC and sterile filter and exhaled into an aluminum reservoir tube. Breath was loaded directly onto Tenax® TA adsorption tubes and was subsequently analyzed by gas-chromatography/mass-spectrometry. RESULTS The three groups were age and gender matched, but differed with respect to time since transplantation, the spectrum of underlying disease, and treatment regimes. Relative to patients without BOS, BOS stage 3 patients showed a larger number of different VOCs, and more pronounced differences in the level of VOCs as compared to BOS stage 1 + 2 patients. Logistic regression analysis found no differences between controls and BOS 1 + 2, but four VOCs (heptane, isopropyl-myristate, ethyl-acetate, ionone) with a significant contribution to the discrimination between controls and BOS stage 3. A combination of these four VOCs separated these groups with an area under the curve of 0.87. CONCLUSION Breath sample collection using our reservoir sampler in the clinical environment was feasible. Our results suggest that breath VOCs can discriminate severe BOS. However, convincing evidence for VOCs with a potential to detect early onset BOS is lacking.
Collapse
Affiliation(s)
- L Küppers
- Fraunhofer ITEM, Clinical Airway Research-Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Marlicz W, Skonieczna-Żydecka K, Dabos KJ, Łoniewski I, Koulaouzidis A. Emerging concepts in non-invasive monitoring of Crohn's disease. Therap Adv Gastroenterol 2018; 11:1756284818769076. [PMID: 29707039 PMCID: PMC5912292 DOI: 10.1177/1756284818769076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for Crohn's disease (CD) and ulcerative colitis (UC). In light of evolving epidemiology of CD, its clinical management is still complex and remains a challenge for contemporary physicians. With the advent of new diagnostic and treatment paradigms, there is a growing need for new biomarkers to guide decision-making, differential diagnosis, disease activity monitoring, as well as prognosis. However, both clinical and endoscopic scoring systems, widely utilized for disease monitoring and prognosis, have drawbacks and limitations. In recent years, biochemical peptides have become available for IBD monitoring and more frequently used as surrogate markers of gut inflammation. Emerging concepts that revolve around molecular, stem cell, epigenetic, microbial or metabolomic pathways associated with vascular and epithelial gut barrier could lead to development of new CD biomarkers. Measurement of cell-derived microvesicles (MVs) in the blood of IBD patients is another emerging concept helpful in future disease management. In this review, we discuss novel concepts of non-invasive biomarkers, which may become useful in monitoring of CD activity and prognosis. We discuss metabolomics as a new powerful tool for clinicians to guide differential IBD diagnosis. In the coming years, new developments of prognostic tools are expected, aiming for breakthroughs in the management of patients with CD.
Collapse
Affiliation(s)
- Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | | | | | - Igor Łoniewski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. K., Szczecin, Poland
| | | |
Collapse
|
18
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
19
|
Smolinska A, Bodelier AGL, Dallinga JW, Masclee AAM, Jonkers DM, van Schooten FJ, Pierik MJ. The potential of volatile organic compounds for the detection of active disease in patients with ulcerative colitis. Aliment Pharmacol Ther 2017; 45:1244-1254. [PMID: 28239876 DOI: 10.1111/apt.14004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/26/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND To optimise treatment of ulcerative colitis (UC), patients need repeated assessment of mucosal inflammation. Current non-invasive biomarkers and clinical activity indices do not accurately reflect disease activity in all patients and cannot discriminate UC from non-UC colitis. Volatile organic compounds (VOCs) in exhaled air could be predictive of active disease or remission in Crohn's disease. AIM To investigate whether VOCs are able to differentiate between active UC, UC in remission and non-UC colitis. METHODS UC patients participated in a 1-year study. Clinical activity index, blood, faecal and breath samples were collected at each out-patient visit. Patients with clear defined active faecal calprotectin >250 μg/g and inactive disease (Simple Clinical Colitis Activity Index <3, C-reactive protein <5 mg/L and faecal calprotectin <100 μg/g) were included for cross-sectional analysis. Non-UC colitis was confirmed by stool culture or radiological evaluation. Breath samples were analysed by gas chromatography time-of-flight mass spectrometry and kernel-based method to identify discriminating VOCs. RESULTS In total, 72 UC (132 breath samples; 62 active; 70 remission) and 22 non-UC-colitis patients (22 samples) were included. Eleven VOCs predicted active vs. inactive UC in an independent internal validation set with 92% sensitivity and 77% specificity (AUC 0.94). Non-UC colitis patients could be clearly separated from active and inactive UC patients with principal component analysis. CONCLUSIONS Volatile organic compounds can accurately distinguish active disease from remission in UC and profiles in UC are clearly different from profiles in non-UC colitis patients. VOCs have demonstrated potential as new non-invasive biomarker to monitor inflammation in UC.
Collapse
Affiliation(s)
- A Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - A G L Bodelier
- Department of Gastroenterology and Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Gastroenterology, Amphia Hospital, Breda, The Netherlands
| | - J W Dallinga
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - A A M Masclee
- Department of Gastroenterology and Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D M Jonkers
- Department of Gastroenterology and Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F-J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - M J Pierik
- Department of Gastroenterology and Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
20
|
Blanchet L, Smolinska A, Baranska A, Tigchelaar E, Swertz M, Zhernakova A, Dallinga JW, Wijmenga C, van Schooten FJ. Factors that influence the volatile organic compound content in human breath. J Breath Res 2017; 11:016013. [PMID: 28140379 DOI: 10.1088/1752-7163/aa5cc5] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues that still need to be tackled are related to potential confounding factors like gender and age and endogenous and exogenous factors, like f.i. smoking. METHODS The aim of this study was to systematically access the effect of endogenous and exogenous factors on VOC composition of exhaled breath. In the current study breath samples from 1417 adult participants from the LifeLines cohort, a general population cohort in the Netherlands, were collected and the total content of VOCs was measured using gas chromatography-time-of-flight-mass spectrometry. Breath samples were collected in Groningen and transferred to carbon tubes immediately. These samples were then shipped to Maastricht and measured in batches. VOCs profiles were correlated to 14 relevant characteristics of all participants including age, BMI, smoking and blood cell counts and metabolic parameters as well as to 16 classes of medications. RESULTS VOCs profiles were shown to be significantly influenced by smoking behavior and to a lesser extent by age, BMI and gender. These factors need to be controlled for in breath analysis studies. We found no evidence whatsoever in this 1417 subjects' cohort that white blood cell counts, cholesterol or triglycerides levels have an influence on the VOC profile. Thus they may not have to be controlled for in exhaled breath studies. CONCLUSION The large cohort of volunteers used here represents a unique opportunity to gauge the factors influencing VOCs profiles in a general population i.e. the most clinically relevant population. Classical clinical parameters and smoking habits clearly influence breath content and should therefore be accounted for in future clinical studies involving breath analysis.
Collapse
Affiliation(s)
- L Blanchet
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands. Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, The Netherlands. Thayer school of engineering, Dartmouth College, Hanover, NH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
22
|
A Distinct Colon-Derived Breath Metabolome is Associated with Inflammatory Bowel Disease, but not its Complications. Clin Transl Gastroenterol 2016; 7:e201. [PMID: 27831543 PMCID: PMC5288568 DOI: 10.1038/ctg.2016.57] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES: The accuracy of available noninvasive biomarkers for diagnosis, stratification, and prediction of inflammatory bowel disease (IBD) courses is limited. We analyzed volatile organic compounds (VOCs) in the breath of IBD patients and controls for diagnosis and differentiation of IBD as well as their link with disease location, activity, and phenotype. METHODS: A prospective study of diagnostic testing was conducted, recruiting Crohn's disease (CD), ulcerative colitis (UC), other inflammatory gastrointestinal diseases (OGDs), and healthy controls (HCs), as well as subjects with ileal pouch anal anastomosis (IPAA). The breath VOC profile was analyzed using selective ion flow tube-mass spectrometry. RESULTS: One hundred and twenty-four subjects (n=24 CD, n=11 UC, n=6 OGD, n=53 HC, n=30 IPAA) were included. The breath metabolome was significantly different in patients with IBD, CD, or UC compared with OGD and HC (7 out of 22 VOCs), but not between CD and UC. No link between the level of VOCs with complications, disease location, and clinical or radiologic disease activity, as well as lab parameters or type of medication was found. Breath VOCs were markedly different in patients with IPAA compared with any other group (17 out of 22 VOCs) and the presence of pouch inflammation did not alter the VOC levels. CONCLUSIONS: A specific breath metabolome is associated with IBD and markedly changes in patients with IPAA. Analysis of a broader spectrum of VOCs can potentially aid in the development of breath prints to diagnose or differentiate inflammatory bowel disorders.
Collapse
|
23
|
Ahmed I, Fayyaz F, Nasir M, Niaz Z, Furnari M, Perry L. Extending landscape of volatile metabolites as novel diagnostic biomarkers of inflammatory bowel disease - a review. Scand J Gastroenterol 2016; 51:385-92. [PMID: 26541790 DOI: 10.3109/00365521.2015.1105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diagnosis of inflammatory bowel disease (IBD) remains a challenging task despite significant increase in the understanding of the disease aetiology and pathogenesis. Recent decade has seen a massive interest in the non-invasive diagnostic biomarkers of IBD, consequently a number of studies have explored a variety of potential biomarkers to diagnose the disease and monitor the disease activity. Volatile metabolites are the chemicals, which emanate from biological fluids and can reflect the status of health and disease of an individual. Recent advances in the analytical techniques have enabled the detection and interpretation of the changes in volatile metabolites in breath, urine, faeces and blood of an individual in correlation with various gastrointestinal (GI) disorders including IBD. This can provide a simple, fast and reproducible diagnosis at the point of care. This review focuses on the current and future novel approaches for detecting and the monitoring gut inflammation in IBD by using volatile organic metabolites.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- a Department of Gastroenterology , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Faisal Fayyaz
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| | - Moneeb Nasir
- c Department of Medicine , Basingstoke General Hospital , Basingstoke, Hampshire , UK
| | - Zafar Niaz
- d Department of Medicine , Mayo Hospital Lahore , Lahore , Pakistan
| | - Manuele Furnari
- e Department of Gastroenterology & Internal Medicine , University of Genova , Genova , Italy
| | - Lorna Perry
- b Department of Gastroenterology , Taunton and Somerset Hospital NHS Trust , Parkfield Drive , Taunton, Somerset , UK
| |
Collapse
|
24
|
Karban A, Nakhleh MK, Cancilla JC, Vishinkin R, Rainis T, Koifman E, Jeries R, Ivgi H, Torrecilla JS, Haick H. Programmed Nanoparticles for Tailoring the Detection of Inflammatory Bowel Diseases and Irritable Bowel Syndrome Disease via Breathprint. Adv Healthc Mater 2016; 5:2339-44. [PMID: 27390291 DOI: 10.1002/adhm.201600588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/14/2016] [Indexed: 12/17/2022]
Abstract
Chemical sensors based on programmable molecularly modified gold nanoparticles are tailored for the detection and discrimination between the breathprint of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD). The sensors are examined in both lab- and real-world clinical conditions. The results reveal a discriminative power accuracy of 81% between IBD and IBS and 75% between Crohn's and Colitis states.
Collapse
Affiliation(s)
- Amir Karban
- Internal Medicine C and Gastroenterology Departments at Rambam Medical Center, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 3109610, Israel
| | - Morad K Nakhleh
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - John C Cancilla
- Department of Chemical Engineering, Complutense University of Madrid, Madrid, 28040, Spain
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tova Rainis
- Department of Gastroenterology at Bnai Zion Hospital, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 31048, Israel
| | - Eduard Koifman
- Internal Medicine C and Gastroenterology Departments at Rambam Medical Center, Rappaport School of Medicine at Technion-Israel Institute of Technology, Haifa, 3109610, Israel
| | - Raneen Jeries
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hodaya Ivgi
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jose S Torrecilla
- Department of Chemical Engineering, Complutense University of Madrid, Madrid, 28040, Spain
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
25
|
Abstract
There is currently no single test available to confidently diagnose cases of inflammatory bowel disease (IBD). Physicians rely on a number of diagnostic tools, including clinical evaluation, serum testing, and imaging, which are used on conjunction with endoscopic evaluation. It is often difficult to determine whether patients with abdominal pain and change in bowel habit have functional bowel symptoms or whether they have a true diagnosis of IBD. Even once a diagnosis of IBD has been made, a significant proportion of patients are labeled with the term "indeterminate colitis" where histological sampling cannot confidently subclassify patients as either Crohn's or ulcerative colitis. Colonoscopy is an inconvenient and uncomfortable test for most patients. In addition, it is not without serious risks of perforation, as well as risks which can be associated with sedation and analgesia given during the procedure. The use of biomarkers to aid in the diagnosis, subclassification, and monitoring of IBD is an ever expanding area. In this review, we have concentrated on noninvasive biomarkers of IBD, because these are more acceptable to patients and easier to perform in everyday clinical practice. We will first touch on those biomarkers currently well established and in wide clinical use, such as C-reactive protein, erythrocyte sedimentation rate. Faecal calprotectin and their use in the diagnosis of IBD. Following on, we will review more novel biomarkers and their use in subclassification and monitoring of IBD, including a variety of antibodies, genetics, and microRNAs, as well as touching on metabolomics.
Collapse
|
26
|
Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS. Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:596-611. [PMID: 26806034 DOI: 10.1111/apt.13522] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/08/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aetiology of inflammatory bowel disease (IBD) remains poorly understood. Recent evidence suggests an important role of gut microbial dysbiosis in IBD, and this may be associated with changes in faecal volatile organic metabolites (VOMs). AIM To describe the changes in the faecal VOMs of patients with IBD and establish their diagnostic potential as non-invasive biomarkers. METHODS Faecal samples were obtained from 117 people with Crohn's disease (CD), 100 with ulcerative colitis (UC), and 109 healthy controls. Faecal VOMs were extracted using solid-phase micro-extraction and analysed by gas chromatography mass spectrometry. Data analysis was carried out using partial least squares-discriminate analysis (PLS-DA) to determine class membership based on distinct metabolomic profiles. RESULTS The PLS-DA model showed clear separation of active CD from inactive disease and healthy controls (P < 0.001). Heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-2-heptanone were up-regulated in the active CD group [variable important in projection (VIP) score 2.8, 2.7, 2.6 and 2.4, respectively], while methanethiol, 3-methyl-phenol, short-chain fatty acids and ester derivatives were found to be less abundant (VIP score of 3.5, 2.6, 1.5 and 1.2, respectively). The PLS-DA model also separated patients with small bowel CD from healthy controls and those with colonic CD from UC (P < 0.001). In contrast, less distinct separation was observed between active UC, inactive UC and healthy controls. CONCLUSIONS Analysis of faecal volatile organic metabolites can provide an understanding of gut metabolomic changes in IBD. It has the potential to provide a non-invasive means of diagnosing IBD, and can differentiate between UC and CD.
Collapse
Affiliation(s)
- I Ahmed
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | - R Greenwood
- Department of Research and Development, Bristol Royal Infirmary, Bristol, UK
| | - B Costello
- Institute of Biosensing Technology, University of the West of England, Bristol, UK
| | - N Ratcliffe
- Institute of Biosensing Technology, University of the West of England, Bristol, UK
| | - C S Probert
- Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Balmus IM, Ciobica A, Trifan A, Stanciu C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J Gastroenterol 2016; 22:3-17. [PMID: 26831601 PMCID: PMC4763525 DOI: 10.4103/1319-3767.173753] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient's immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS), oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients.
Collapse
Affiliation(s)
- Ioana Miruna Balmus
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
| | - Alin Ciobica
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Carol Stanciu
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
| |
Collapse
|
28
|
Baranska A, Smolinska A, Boots AW, Dallinga JW, van Schooten FJ. Dynamic collection and analysis of volatile organic compounds from the headspace of cell cultures. J Breath Res 2015; 9:047102. [PMID: 26469548 DOI: 10.1088/1752-7155/9/4/047102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exhaled breath has proven to be a valuable source of information about human bodies. Subtle differences between volatile organic compounds (VOCs) formed endogenously can be detected and become a base for a potential monitoring tool for health and disease. Until now, there has been a lack of biological and mechanistic knowledge of the processes involved in the production of relevant VOCs. Among the possible sources of health-related and disease-related VOCs are microorganisms found in the respiratory tract and in the gut. Other VOCs in the body are produced by cells that are influenced by the disease, for instance, due to metabolic disorders and/or inflammation. To gain insight into the in vivo production of VOCs by human cells and thus the exhaled breath composition, in vitro experiments involving relevant cells should be studied because they may provide valuable information on the production of VOCs by the affected cells. To this aim we developed and validated a system for dynamically (continuously) collecting headspace air in vitro using a Caco-2 cell line. The system allows the application of different cell lines as well as different experimental setups, including varying exposure times and treatment options while preserving cell viability. Significant correlation (p ⩽ 0.0001) between collection outputs within each studied group confirmed high reproducibility of the collection system. An example of such an application is presented here. We studied the influence of oxidative stress on the VOC composition of the headspace air of Caco-2 cells. By comparing the VOC composition of air flushed through empty culture flasks (n = 35), flasks with culture medium (n = 35), flasks with medium and cells (n = 20), flasks with medium and an oxidative stressor (H2O2) (n = 20), and flasks with medium, stressor, and cells (n = 20), we were able to separate the effects from the stressor on the cells from all other interactions. Measurements were performed with gas chromatography time-of-flight mass spectrometry. Multivariate data analysis allowed detection of significant altered compounds in the compared groups. We found a significant change (p ⩽ 0.001) of the composition of VOCs due to the stressing of the Caco-2 cells by H2O2. A total of ten VOCs showed either increased or decreased abundance in the headspace of the cell cultures due to the presence of the H2O2 stressor.
Collapse
Affiliation(s)
- A Baranska
- Top Institute Food and Nutrition, Wageningen, The Netherlands. Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center (MUMC+), PO Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Hicks LC, Huang J, Kumar S, Powles ST, Orchard TR, Hanna GB, Williams HRT. Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study. J Crohns Colitis 2015; 9:731-7. [PMID: 26071410 DOI: 10.1093/ecco-jcc/jjv102] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Distinguishing between the inflammatory bowel diseases [IBD], Crohn's disease [CD] and ulcerative colitis [UC], is important for determining management and prognosis. Selected ion flow tube mass spectrometry [SIFT-MS] may be used to analyse volatile organic compounds [VOCs] in exhaled breath: these may be altered in disease states, and distinguishing breath VOC profiles can be identified. The aim of this pilot study was to identify, quantify, and analyse VOCs present in the breath of IBD patients and controls, potentially providing insights into disease pathogenesis and complementing current diagnostic algorithms. METHODS SIFT-MS breath profiling of 56 individuals [20 UC, 18 CD, and 18 healthy controls] was undertaken. Multivariate analysis included principal components analysis and partial least squares discriminant analysis with orthogonal signal correction [OSC-PLS-DA]. Receiver operating characteristic [ROC] analysis was performed for each comparative analysis using statistically significant VOCs. RESULTS OSC-PLS-DA modelling was able to distinguish both CD and UC from healthy controls and from one other with good sensitivity and specificity. ROC analysis using combinations of statistically significant VOCs [dimethyl sulphide, hydrogen sulphide, hydrogen cyanide, ammonia, butanal, and nonanal] gave integrated areas under the curve of 0.86 [CD vs healthy controls], 0.74 [UC vs healthy controls], and 0.83 [CD vs UC]. CONCLUSIONS Exhaled breath VOC profiling was able to distinguish IBD patients from controls, as well as to separate UC from CD, using both multivariate and univariate statistical techniques.
Collapse
Affiliation(s)
- Lucy C Hicks
- Gastroenterology & Hepatology Section, Department of Medicine, Imperial College London, London UK
| | - Juzheng Huang
- Department of Surgery and Cancer, Imperial College London, London UK
| | - Sacheen Kumar
- Department of Surgery and Cancer, Imperial College London, London UK
| | - Sam T Powles
- Gastroenterology & Hepatology Section, Department of Medicine, Imperial College London, London UK
| | - Timothy R Orchard
- Gastroenterology & Hepatology Section, Department of Medicine, Imperial College London, London UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London UK
| | - Horace R T Williams
- Gastroenterology & Hepatology Section, Department of Medicine, Imperial College London, London UK
| |
Collapse
|
30
|
Volatile Organic Compounds in Exhaled Air as Novel Marker for Disease Activity in Crohn's Disease: A Metabolomic Approach. Inflamm Bowel Dis 2015. [PMID: 26199990 DOI: 10.1097/mib.0000000000000436] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disappearance of macroscopic mucosal inflammation predicts long-term outcome in Crohn's disease (CD). It can be assessed by ileocolonoscopy, which is, however, an invasive and expensive procedure. Disease activity indices do not correlate well with endoscopic activity and noninvasive markers have a low sensitivity in subgroups of patients. Volatile organic compounds (VOCs) in breath are of increasing interest as noninvasive markers. The aim of this study was to investigate whether VOCs can accurately differentiate between active CD and remission. METHODS Patients participated in a 1-year follow-up study and Harvey-Bradshaw index, blood, fecal, and breath samples were collected at regular intervals. Patients were stratified into 2 groups: active (fecal calprotectin >250 µg/g) or inactive (Harvey-Bradshaw index <4, C-reactive protein <5 mg/L, and fecal calprotectin <100 µg/g) disease. Breath samples were analyzed by gas chromatography-time-of-flight mass spectrometry. Random forest analyses were used to find the most discriminatory VOCs. RESULTS Eight hundred thirty-five breath-o-grams were measured, 140 samples were assigned as active, 135 as inactive disease, and 110 samples of healthy controls. A set of 10 discriminatory VOCs correctly predicted active CD in 81.5% and remission in 86.4% (sensitivity 0.81, specificity 0.80, AUC 0.80). These VOCs were combined into a single disease activity score that classified disease activity in more than 60% of the previously undetermined individuals. CONCLUSIONS We showed that VOCs can separate healthy controls and patients with active CD and CD in remission in a real-life cohort. Analysis of exhaled air is an interesting new noninvasive application for monitoring mucosal inflammation in inflammatory bowel disease.
Collapse
|
31
|
Navaneethan U, Parsi MA, Lourdusamy V, Bhatt A, Gutierrez NG, Grove D, Sanaka MR, Hammel JP, Stevens T, Vargo JJ, Dweik RA. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: a pilot study. Gastrointest Endosc 2015; 81:943-9.e1. [PMID: 25500329 PMCID: PMC4375033 DOI: 10.1016/j.gie.2014.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND The diagnosis of cholangiocarcinoma (CCA) in patients with primary sclerosing cholangitis (PSC) is particularly difficult. The role of volatile organic compounds (VOCs) for diagnosis of CCA in patients with PSC is not known. OBJECTIVE Our aim was to identify potential VOCs in the headspaces (gas above the sample) in bile that may predict CCA in patients with PSC. DESIGN Prospective cross-sectional study. SETTING Referral center. PATIENTS A total of 32 patients undergoing ERCP for PSC and for CCA complicating PSC. INTERVENTIONS ERCP, bile aspiration. MAIN OUTCOME MEASUREMENTS Selected ion flow tube mass spectrometry was used to analyze the concentration of 22 prevalent VOCs in bile samples. Logistic regression analysis was performed to build a predictive model for diagnosis of CCA. RESULTS Levels of several compounds (ethanol, acrylonitrile, acetonitrile, acetaldehyde, benzene, carbon disulfide, dimethyl sulfide, 2-propranolol) were significantly different in patients with CCA complicating PSC compared with those having PSC (P < .05). By using receiver operating characteristic curve analysis, we developed a model for the diagnosis of CCA adjusted for age and sex based on VOC levels of acrylonitrile, 3-methyl hexane, and benzene. The model (2.3239*log [acrylonitrile] + 0.9871*log [3-methyl hexane] + 0.8448*log [benzene]) < -0.12 identified the patients with CCA (area under the curve [AUC] = 0.89), with 90.5% sensitivity and 72.7% specificity (P = .02). LIMITATIONS Sample size. CONCLUSION The measurement of VOCs in biliary fluid may be useful to diagnose CCA in patients with PSC. A larger study with a longitudinal study design is required to confirm our pilot observations to diagnose CCA early in patients with PSC. ( CLINICAL TRIAL REGISTRATION NUMBER NCT01565460.).
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Mansour A Parsi
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Vennisvasanth Lourdusamy
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Amit Bhatt
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Norma G Gutierrez
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - David Grove
- Department of Pathobiology, Lerners Research Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Madhusudhan R. Sanaka
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey P Hammel
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Tyler Stevens
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - John J Vargo
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| | - Raed A Dweik
- Department of Pathobiology, Lerners Research Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
32
|
Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015; 5:140-63. [PMID: 25738426 PMCID: PMC4381294 DOI: 10.3390/metabo5010140] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs) and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.
Collapse
|
33
|
De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut 2015; 64:447-58. [PMID: 24811995 DOI: 10.1136/gutjnl-2013-306423] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bacteria play a role in the onset and perpetuation of intestinal inflammation in IBD. Compositional alterations may also change the metabolic capacities of the gut bacteria. OBJECTIVE To examine the metabolic activity of the microbiota of patients with Crohn's disease (CD), UC or pouchitis compared with healthy controls (HC) and determine whether eventual differences might be related to the pathogenesis of the disease. METHODS Faecal samples were obtained from 40 HC, 83 patients with CD, 68 with UC and 13 with pouchitis. Disease activity was assessed in CD using the Harvey-Bradshaw Index, in UC using the UC Disease Activity Index and in pouchitis using the Pouchitis Disease Activity Index. Metabolite profiles were analysed using gas chromatography-mass spectrometry. RESULTS The number of metabolites identified in HC (54) was significantly higher than in patients with CD (44, p<0.001), UC (47, p=0.042) and pouchitis (43, p=0.036). Multivariate discriminant analysis predicted HC, CD, UC and pouchitis group membership with high sensitivity and specificity. The levels of medium-chain fatty acids (MCFAs: pentanoate, hexanoate, heptanoate, octanoate and nonanoate), and of some protein fermentation metabolites, were significantly decreased in patients with CD, UC and pouchitis. Hexanoate levels were inversely correlated to disease activity in CD (correlation coefficient=-0.157, p=0.046), whereas a significant positive correlation was found between styrene levels and disease activity in UC (correlation coefficient=0.338, p=0.001). CONCLUSIONS Faecal metabolic profiling in patients with IBD relative to healthy controls identified MCFAs as important metabolic biomarkers of disease-related changes. TRIAL REGISTRATION NO NCT 01666717.
Collapse
Affiliation(s)
- Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Marie Joossens
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium Department of Structural Biology, Research group of Bioinformatics and (Eco-)Systems Biology, VIB, Brussels, Belgium Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Christophe Matthys
- Department of Clinical and Experimental Endocrinology, Subdivision Clinical Nutrition, University Hospital Gasthuisberg, KULeuven, Leuven, Belgium
| | - Severine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Kurada S, Alkhouri N, Fiocchi C, Dweik R, Rieder F. Review article: breath analysis in inflammatory bowel diseases. Aliment Pharmacol Ther 2015; 41:329-41. [PMID: 25523187 DOI: 10.1111/apt.13050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is an urgent need for cheap, reproducible, easy to perform and specific biomarkers for diagnosis, differentiation and stratification of inflammatory bowel disease (IBD) patients. Technical advances allow for the determination of volatile organic compounds in the human breath to differentiate between health and disease. AIM Review and discuss medical literature on volatile organic compounds in exhaled human breath in GI disorders, focusing on diagnosis and differentiation of IBD. METHODS A systematic search in PubMed, Ovid Medline and Scopus was completed using appropriate keywords. In addition, a bibliography search of each article was performed. RESULTS Mean breath pentane, ethane, propane, 1-octene, 3-methylhexane, 1-decene and NO levels were elevated (P < 0.05 to P < 10(-7)) and mean breath 1-nonene, (E)-2-nonene, hydrogen sulphide and methane were decreased in IBD compared to healthy controls (P = 0.003 to P < 0.001). A combined panel of 3 volatile organic compounds (octene, (E)-2-nonene and decene) showed the best discrimination between paediatric IBD and controls (AUC 0.96). Breath condensate cytokines were higher in IBD compared to healthy individuals (P < 0.008). Breath pentane, ethane, propane, isoprene and NO levels correlated with disease activity in IBD patients. Breath condensate interleukin-1β showed an inverse relation with clinical disease activity. CONCLUSIONS Breath analysis in IBD is a promising approach that is not yet ready for routine clinical use, but data from other gastrointestinal diseases suggest the feasibility for use of this technology in clinical practice. Well-designed future trials, incorporating the latest breath detection techniques, need to determine the exact breath metabolome pattern linked to diagnosis and phenotype of IBD.
Collapse
Affiliation(s)
- S Kurada
- Department of Hospital Medicine, Medicine Institute, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
35
|
Oxidative stress and volatile organic compounds: interplay in pulmonary, cardio-vascular, digestive tract systems and cancer. OPEN CHEM 2015. [DOI: 10.1515/chem-2015-0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractOxidative stress (OS) can be defined as an imbalance between antioxidant systems and various pro-oxidants. This loss of balance is closely associated with initiation and development of a wide range of systemic or organ specific diseases.Exhaled breath of healthy humans contains a large number of volatile organic compounds (VOCs) derived from cellular metabolism, released by microorganisms or taken up from the environment. Qualitative or quantitative changes in their composition are associated with diseases and various pathological conditions, also characterized by increased production of reactive oxygen species (ROS), such as superoxide radical, hydrogen peroxide, hydroxyl anion, peroxinitrite, etc. Several volatile organic compounds such as ethane and pentane are direct end-products of the reaction of ROS with various biological compounds (e.g., lipid peroxidation, DNA or protein damage). Being able to accurately identify ROS-generated VOCs could be of particular importance in devising sensitive tests that can diagnose and follow-up oxidative stress-related diseases.This review describes current knowledge on the associations between oxidative stress and free radicals and the release of several marker volatile organic compounds in a number of diseases. A special focus will be placed on such VOCs in the cardiovascular pathologies, pulmonary diseases and gastro-intestinal tract affections.
Collapse
|
36
|
de Meij TGJ, de Boer NKH, Benninga MA, Lentferink YE, de Groot EFJ, van de Velde ME, van Bodegraven AA, van der Schee MP. Faecal gas analysis by electronic nose as novel, non-invasive method for assessment of active and quiescent paediatric inflammatory bowel disease: Proof of principle study. J Crohns Colitis 2014:S1873-9946(14)00285-2. [PMID: 25248313 DOI: 10.1016/j.crohns.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) and its two phenotypes ulcerative colitis (UC) and Crohn's disease (CD) are essentially assessed by endoscopy, both in initial diagnostic work-up and during follow-up. This carries a high burden, especially on paediatric patients. Faecal volatile organic compounds (VOCs) are considered potential non-invasive biomarkers for intestinal diseases linked to gut microbiota alterations. We hypothesized that faecal VOC analysis by electronic nose allows discrimination of children with CD, UC and controls during active disease and remission. METHODS Faecal VOC patterns of children with newly diagnosed IBD and controls were studied by an electronic nose (Cyranose 320®), at baseline and upon achieving remission at 6-weeks of follow-up. Disease activity was assessed by global physician's assessment, substantiated by serum C-reactive protein and faecal calprotectin. Internally cross-validated receiver-operator-characteristic curves and corresponding sensitivity and specificity for detection of IBD were calculated RESULTS: Faecal VOC profiles of patients with UC (26) and CD (29) differed from controls (28); in active disease (AUC±95% CI, p-value, sensitivity, specificity: 1.00±0.00; p<0.001, 100%, 100%) and (0.85±0.05, p<0.001, 86%, 67%) and in clinical remission (0.94±0.06, p<0.001, 94%, 94%) and (0.94±0.06, p<0.001, 94%, 94%), respectively. Furthermore, CD-patients differed from UC-patients during active disease (0.96±0.03; p<0.001, 97%, 92%), and upon achieving clinical remission (0.81±0.08, p=0.002, 88%, 72%). CONCLUSION Faecal VOC analysis allowed discrimination of paediatric patients with IBD from controls, both during active disease and remission. It therefore has potential as non-invasive test, in both diagnostic work-up and assessment of disease activity in IBD.
Collapse
Affiliation(s)
- Tim G J de Meij
- Department of Pediatric Gastroenterology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Yvette E Lentferink
- Department of Pediatric Gastroenterology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Evelien F J de Groot
- Department of Pediatric Gastroenterology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Mirjam E van de Velde
- Department of Pediatric Gastroenterology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Adriaan A van Bodegraven
- Department of Gastroenterology and Hepatology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marc P van der Schee
- Department of Pulmonology, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
Arasaradnam RP, Covington J, Nwokolo CU. Editorial: Metabolomic analysis of breath volatile organic compounds--a new scent for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 40:732-3. [PMID: 25123389 DOI: 10.1111/apt.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/08/2022]
Affiliation(s)
- R P Arasaradnam
- Clinical Sciences Research Institute, University of Warwick, Coventry, UK; School of Engineering, University of Warwick, Coventry, UK.
| | | | | |
Collapse
|
38
|
|
39
|
Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: next generation diagnostic modalities in gastroenterology--gas phase volatile compound biomarker detection. Aliment Pharmacol Ther 2014; 39:780-9. [PMID: 24612215 DOI: 10.1111/apt.12657] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. AIM To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. METHODS A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. RESULTS E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. CONCLUSIONS The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians.
Collapse
Affiliation(s)
- R P Arasaradnam
- Clinical Sciences Research Institute, University of Warwick, Coventry, UK; Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | | | | |
Collapse
|
40
|
Vaks V, Domracheva E, Sobakinskaya E, Chernyaeva M. High-precision terahertz spectroscopy for noninvasive medicine diagnostics. ACTA ACUST UNITED AC 2014. [DOI: 10.1515/plm-2014-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn recent years methods for exhaled breath analysis have been developing all around the world. The exhaled breath analysis could result in a powerful tool for noninvasive medicine. The work presented in this paper is concerned with gas analyzers for exhaled breath diagnostics. The analyzers are based on high-precision spectrometers of the THz frequency range, which provide high resolution, high sensitivity and detect a wide range of detectable substances. The spectrometers work on non-stationary effects (phase-switching and fast sweep of frequency). The analyzers have been successfully applied for the detection of various biomarkers (nitric oxide, acetone, ammonia, methanol, ethanol) in the breath of conditionally healthy volunteers and patients with various cancerous and noncancerous diseases.
Collapse
|
41
|
Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond) 2013; 8:785-806. [PMID: 23656265 DOI: 10.2217/nnm.13.64] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of developing new diagnostic and detection technologies for the growing number of clinical challenges is rising each year. Here, we present a concise, yet didactic review on a new diagnostics frontier based on the detection of disease-related volatile organic compounds (VOCs) by means of nanomaterial-based sensors. Nanomaterials are ideal for such sensor arrays because they are easily fabricated, chemically versatile and can be integrated into currently available sensing platforms. Following a general introduction, we provide a brief description of the VOC-related diseases concept. Then, we focus on detection of VOC-related diseases by selective and crossreactive sensing approaches, through chemical, optical and mechanical transducers incorporating the most important classes of nanomaterials. Selected examples of the integration of nanomaterials into selective sensors and crossreactive sensor arrays are given. We conclude with a brief discussion on the integration possibilities of different types of nanomaterials into sensor arrays, and the expected outcomes and limitations.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200002, Israel
| | | |
Collapse
|
42
|
Modak AS. Regulatory issues on breath tests and updates of recent advances on [
13
C]-breath tests. J Breath Res 2013; 7:037103. [DOI: 10.1088/1752-7155/7/3/037103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Ahmed I, Greenwood R, Costello BDL, Ratcliffe NM, Probert CS. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One 2013; 8:e58204. [PMID: 23516449 PMCID: PMC3596408 DOI: 10.1371/journal.pone.0058204] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/31/2013] [Indexed: 12/13/2022] Open
Abstract
Diagnosing irritable bowel syndrome (IBS) can be a challenge; many clinicians resort to invasive investigations in order to rule out other diseases and reassure their patients. Volatile organic metabolites (VOMs) are emitted from feces; understanding changes in the patterns of these VOMs could aid our understanding of the etiology of the disease and the development of biomarkers, which can assist in the diagnosis of IBS. We report the first comprehensive study of the fecal VOMs patterns in patients with diarrhea-predominant IBS (IBS-D), active Crohn's disease (CD), ulcerative colitis (UC) and healthy controls. 30 patients with IBS-D, 62 with CD, 48 with UC and 109 healthy controls were studied. Diagnosis of IBS-D was made using the Manning criteria and all patients with CD and UC met endoscopic, histologic and/or radiologic criteria. Fecal VOMs were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). 240 VOMs were identified. Univariate analysis showed that esters of short chain fatty acids, cyclohexanecarboxylic acid and its ester derivatives were associated with IBS-D (p<0.05), while aldehydes were more abundant in IBD (p<0.05). A predictive model, developed by multivariate analysis, separated IBS-D from active CD, UC and healthy controls with a sensitivity of 94%, 96% and 90%; and a specificity of 82%, 80% and 80% respectively (p<0.05). The understanding of the derivation of these VOMs may cast light on the etiology of IBS-D and IBD. These data show that fecal VOMs analyses could contribute to the diagnosis of IBS-D, for which there is no laboratory test, as well as IBD.
Collapse
Affiliation(s)
- Iftikhar Ahmed
- Department of Gastroenterology, University of Bristol/Bristol Royal Infirmary, Bristol, United Kingdom
| | - Rosemary Greenwood
- Department of Research and Development, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Ben de Lacy Costello
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Norman M. Ratcliffe
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Chris S. Probert
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
44
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
45
|
de Lacy Costello BPJ, Ewen RJ, Ratcliffe NM, Richards M. The characteristics of novel low-cost sensors for volatile biomarker detection. J Breath Res 2008; 2:037017. [DOI: 10.1088/1752-7155/2/3/037017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 2007; 52:2015-21. [PMID: 17404859 DOI: 10.1007/s10620-006-9622-2] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), known as inflammatory bowel disease (IBD), are fairly common chronic inflammatory conditions of the gastrointestinal tract. Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species are produced in abnormally high levels in IBD. Their destructive effects may contribute to the initiation and/or propagation of the disease. We provided an extensive overview on the evidences from animal and human literature linking oxidative stress to IBD and its activity. Moreover, the effects of antioxidant therapy on IBD patients in randomized, controlled trials were reviewed and the need for further studies elaborated. We also summarized the evidence in support for causality of oxidative stress in IBD.
Collapse
Affiliation(s)
- Ali Rezaie
- Department of Community Health Medicine, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
47
|
Jahanshahi G, Motavasel V, Rezaie A, Hashtroudi AA, Daryani NE, Abdollahi M. Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig Dis Sci 2004; 49:1752-7. [PMID: 15628697 DOI: 10.1007/s10620-004-9564-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive investigation, the pathophysiology of human inflammatory bowel disease (IBD) remains incompletely understood. We examined the existence of oxidative and nitrosative stress and also alterations in epidermal growth factor (EGF) secretion in saliva of IBD patients. Saliva samples were obtained from 30 nonsmoking IBD patients including 16 Crohn's disease (CD) patients and 16 ulcerative colitis (UC) patients and 16 age- and sex-matched controls. Samples were analyzed for thiobarbituric reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (antioxidant power), and EGF and nitric oxide (NO) levels. Saliva TBARS levels increased significantly (P < 0.01) in CD patients but not in UC patients. Analysis of antioxidant power revealed that saliva of CD patients has lower antioxidant power (P < 0.01) than saliva of the healthy control population. The concentration of EGF was found to be increased (P < 0.01) in saliva of CD patients in comparison to that of healthy subjects. NO levels increased in saliva of both CD and UC patients in comparison to that of healthy subjects. It is concluded that excessive NO production is present in saliva of both CD and UC patients but only saliva of CD patients is oxidatively stressed. EGF secretion is normal in UC patients, although CD patients show a significant increase in salivary EGF levels.
Collapse
Affiliation(s)
- Golshid Jahanshahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Wyse CA, Love S, Christley RM, Yam PS, Cooper JM, Cumming DRS, Preston T. Validation of a method for collection and assay of pentane in the exhaled breath of the horse. Res Vet Sci 2004; 76:109-12. [PMID: 14672852 DOI: 10.1016/j.rvsc.2003.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress refers to an imbalance between the production of oxidising free radicals and the antioxidant defenses of the cell, and is associated with many pathogenic processes. Oxidative damage to cellular lipids results in the evolution of pentane and ethane gas, and detection of these hydrocarbons in the exhaled breath can be used to monitor in vivo oxidative stress. The aim of this study was to validate a gas chromatography (GC) method for measurement of breath pentane in the horse. The GC-system developed showed good specificity for discrimination of pentane from other breath hydrocarbons, and was sensitive to 0.5 ppb pentane. Pentane was detected in the exhaled breath of five horses investigated on two occasions. The results of this preliminary study demonstrate that breath pentane can be measured in the horse, and further work is now justified to investigate the feasibility of applying this method for monitoring in vivo oxidative stress in the horse.
Collapse
Affiliation(s)
- C A Wyse
- Department of Veterinary Clinical Studies, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Road, Bearsden, G61 1QH, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wyse CA, Preston T, Yam PS, Sutton DGM, Christley RM, Hotchkiss JW, Mills CA, Glidle A, Cumming DRS, Cooper JM, Love S. Current and future uses of breath analysis as a diagnostic tool. Vet Rec 2004; 154:353-60. [PMID: 15074325 DOI: 10.1136/vr.154.12.353] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The analysis of exhaled breath is a potentially useful method for application in veterinary diagnostics. Breath samples can be easily collected from animals by means of a face mask or collection chamber with minimal disturbance to the animal. After the administration of a 13C-labelled compound the recovery of 13C in breath can be used to investigate gastrointestinal and digestive functions. Exhaled hydrogen can be used to assess orocaecal transit time and malabsorption, and exhaled nitric oxide, carbon monoxide and pentane can be used to assess oxidative stress and inflammation. The analysis of compounds dissolved in the aqueous phase of breath (the exhaled breath condensate) can be used to assess airway inflammation. This review summarises the current status of breath analysis in veterinary medicine, and analyses its potential for assessing animal health and disease.
Collapse
Affiliation(s)
- C A Wyse
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden, Glasgow G61 1QH
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kruidenier L, Kuiper I, Lamers CBHW, Verspaget HW. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol 2003; 201:28-36. [PMID: 12950014 DOI: 10.1002/path.1409] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal inflammation is accompanied by excessive production of reactive oxygen and nitrogen metabolites. In order to counteract their harmful effects, the intestinal mucosa contains an extensive system of antioxidants. It has previously been shown that the levels of and the balance between the most important antioxidants are seriously impaired within the intestinal mucosa from inflammatory bowel disease (IBD) patients compared with normal mucosa. The present study investigated the consequences of this antioxidative imbalance by evaluating parameters of oxidative stress-related mucosal damage in the same tissue samples. The extent of apoptosis, peroxynitrite-mediated protein nitration (3-NT), and lipid peroxidation were assessed in relation to the expression of nitric oxide synthase (NOS) and the superoxide-producing enzyme xanthine oxidase (XO). In addition, bi- and multi-variate regression analyses were performed to associate these parameters with the levels of the antioxidants assessed previously. Apoptotic cell death was visualized by TUNEL staining in luminal epithelium of normal controls, and in IBD additionally in the inflammatory infiltrate and in deeper parts of the crypts, but its frequency was unrelated to the severity of inflammation. In Crohn's disease (CD), epithelial apoptosis levels were strongly associated with the expression of XO, implying a role for this enzyme in the regulation of epithelial cell homeostasis, although its levels were unaffected by intestinal inflammation and were comparable to those in normal control mucosa. 3-NT immunoreactivity was substantially increased in luminal crypt cells, neutrophils, and mononuclear cells in the inflamed mucosa of ulcerative colitis (UC) patients. The inflamed IBD luminal epithelium, but not the inflammatory cells, also contained increased amounts of NOS. The immunoreactivity of both 3-NT and NOS was significantly higher in UC than in CD. Unexpectedly, the increased 3-NT expression in UC was associated with neutrophilic myeloperoxidase and not with NOS, which suggests that 3-NT is formed in areas with a dense neutrophilic infiltrate via a peroxynitrite-independent oxidation pathway. Lipid peroxidation, as estimated by the malondialdehyde (MDA) concentration, was elevated in both the inflamed CD and the inflamed UC mucosa, and was identified in the luminal epithelium using a histochemical technique. In CD, lipid peroxidation was independently associated with the concentration of metallothionein and with Mn-superoxide dismutase activity, suggesting the involvement of hydroxyl radicals and superoxide anions. In UC, however, the amount of MDA was associated with epithelial catalase expression and neutrophilic myeloperoxidase activity, suggesting a hydrogen peroxide- and/or hypochlorous acid-mediated mechanism. The present study underlines the importance of oxidative stress in the pathogenesis of IBD and provides clues regarding the (anti)oxidants involved which indicate that this process evolves through diverging pathways in CD and UC.
Collapse
Affiliation(s)
- Laurens Kruidenier
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|