1
|
Reh WA, Nairn RS, Lowery MP, Vasquez KM. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res 2017; 45:1835-1847. [PMID: 27924006 PMCID: PMC5389663 DOI: 10.1093/nar/gkw1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) is a DNA double-strand break (DSB) repair pathway that protects the genome from chromosomal instability. RAD51 mediator proteins (i.e. paralogs) are critical for efficient HR in mammalian cells. However, how HR-deficient cells process DSBs is not clear. Here, we utilized a loss-of-function HR-reporter substrate to simultaneously monitor HR-mediated gene conversion and non-conservative mutation events. The assay is designed around a heteroallelic duplication of the Aprt gene at its endogenous locus in isogenic Chinese hamster ovary cell lines. We found that RAD51D-deficient cells had a reduced capacity for HR-mediated gene conversion both spontaneously and in response to I-SceI-induced DSBs. Further, RAD51D-deficiency shifted DSB repair toward highly deleterious single-strand annealing (SSA) and end-joining processes that led to the loss of large chromosomal segments surrounding site-specific DSBs at an exceptionally high frequency. Deletions in the proximity of the break were due to a non-homologous end-joining pathway, while larger deletions were processed via a SSA pathway. Overall, our data revealed that, in addition to leading to chromosomal abnormalities, RAD51D-deficiency resulted in a high frequency of deletions advancing our understanding of how a RAD51 paralog is involved in maintaining genomic stability and how its deficiency may predispose cells to tumorigenesis.
Collapse
Affiliation(s)
- Wade A Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Rodney S Nairn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Megan P Lowery
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
2
|
Rahn JJ, Adair GM, Nairn RS. Use of gene targeting to study recombination in mammalian cell DNA repair mutants. Methods Mol Biol 2012; 920:445-470. [PMID: 22941622 DOI: 10.1007/978-1-61779-998-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Molecular Carcinogenesis, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
3
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville, TX 78597, United States
| | | | | | | | | |
Collapse
|
4
|
TAT-phiC31 integrase mediates DNA recombination in mammalian cells. J Biotechnol 2009; 142:107-13. [PMID: 19439387 DOI: 10.1016/j.jbiotec.2009.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 03/20/2009] [Accepted: 03/30/2009] [Indexed: 11/22/2022]
Abstract
Streptomyces phage integrase phiC31 is capable of mediating site-specific insertions in mammalian genomes. To avoid potential toxicity of long-term expression of phiC31 in host cells, we developed a method employing a cell-permeable TAT-phiC31 integrase. His6-tagged phiC31 proteins with or without an HIV TAT intercellular transducing peptide were generated and purified. Both of them retained integrase activity in vitro. However, TAT-phiC31 but not phiC31 was able to mediate a specific integration between two att sites in the genome of 293-PB [EGFP] report cell line. Transduced TAT-phiC31 was mainly localized in the cytoplasm that is similar to the localization of phiC31 when expressed through cDNA transfection. Adding a nuclear localization signal (NLS) peptide to the C-terminus of TAT-phiC31 facilitated nuclear localization of the integrase with an increased efficiency of recombination in the reporter cell line. These results demonstrated that TAT can mediate a cell membrane entry of phiC31 protein to perform a site-specific integration in mammalian cells. This is a simple and possibly safer method of site-specific recombination for gene delivery.
Collapse
|
5
|
Talbert LL, Coletta LD, Lowery MG, Bolt A, Trono D, Adair GM, Nairn RS. Characterization of CHO XPF mutant UV41: influence of XPF heterozygosity on double-strand break-induced intrachromosomal recombination. DNA Repair (Amst) 2008; 7:1319-29. [PMID: 18547876 DOI: 10.1016/j.dnarep.2008.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 11/16/2022]
Abstract
The UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity. XPF expression was found to be several-fold lower in UV41 compared to its parental cell line, AA8. Using approaches we previously developed to study intrachromosomal recombination in CHO cells, we modified UV41 and its parental cell line AA8 to allow site-specific gene targeting at a Flp recombination target (FRT) in intron 3 of the endogenous adenine phosphoribosyltransferase (APRT) locus. Using FLP/FRT targeting, we integrated a plasmid containing an I-SceI endonuclease sequence into this site in the paired cell lines to generate a heteroallelic APRT duplication. Frequencies of intrachromosomal recombination between APRT heteroalleles and the structures of resulting recombinants were analyzed after I-SceI induction of site-specific double-strand breaks (DSBs) in a non-homologous insertion contained within APRT homology. Our results show that I-SceI induced a small proportion of aberrant recombinants reflecting DSB-induced deletions/rearrangements in parental, repair-proficient AA8 cells. However, in XPF mutant UV41, XPF heterozygosity is responsible for a similar, but much more pronounced genomic instability phenotype, manifested independently of DSB induction. In addition, gene conversions were suppressed in UV41 cells compared to wild-type cells. These observations suggest that UV41 exhibits a genomic instability phenotype of aberrant recombinational repair, confirming a critical role for XPF in mammalian cell recombination.
Collapse
Affiliation(s)
- Leisa L Talbert
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Gorbunova V, Seluanov A, Mittelman D, Wilson JH. Genome-wide demethylation destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 2004; 13:2979-89. [PMID: 15459182 DOI: 10.1093/hmg/ddh317] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many neurological diseases, including myotonic dystrophy, Huntington's disease and several spinocerebellar ataxias, result from intergenerational increases in the length of a CTG.CAG repeat tract. Although the basis for intergenerational repeat expansion is unclear, repeat tracts are especially unstable during germline development and production of gametes. Mammalian development is characterized by waves of genome-wide demethylation and remethylation. To test whether changes in methylation status might contribute to trinucleotide repeat instability, we examined the effects of DNA methyltransferase inhibitors on trinucleotide repeat stability in mammalian cells. Using a selectable genetic system for detection of repeat contractions in CHO cells, we showed that the rate of contractions increased >1000-fold upon treatment with the DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-CdR). The link between DNA demethylation and repeat instability was strengthened by similar results obtained with hydralazine treatment, which inhibits expression of DNA methyltransferase. In human cells from myotonic dystrophy patients, treatment with 5-aza-CdR strongly destabilized repeat tracts in the DMPK gene, with a clear bias toward expansion. The bias toward expansion events and changes in repeat length that occur in jumps, rather than by accumulation of small changes, are reminiscent of the intergenerational repeat instability observed in human patients. The dramatic destabilizing effect of DNA methyltransferase inhibitors supports the hypothesis that changes in methylation patterns during epigenetic reprogramming may trigger the intergenerational repeat expansions that lead to disease.
Collapse
Affiliation(s)
- Vera Gorbunova
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
7
|
Gorbunova V, Seluanov A, Dion V, Sandor Z, Meservy JL, Wilson JH. Selectable system for monitoring the instability of CTG/CAG triplet repeats in mammalian cells. Mol Cell Biol 2003; 23:4485-93. [PMID: 12808091 PMCID: PMC164839 DOI: 10.1128/mcb.23.13.4485-4493.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite substantial progress in understanding the mechanism by which expanded CTG/CAG trinucleotide repeats cause neurodegenerative diseases, little is known about the basis for repeat instability itself. By taking advantage of a novel phenomenon, we have developed a selectable assay to detect contractions of CTG/CAG triplets. When inserted into an intron in the APRT gene or the HPRT minigene, long tracts of CTG/CAG repeats (more than about 33 repeat units) are efficiently incorporated into mRNA as a new exon, thereby rendering the encoded protein nonfunctional, whereas short repeat tracts do not affect the phenotype. Therefore, contractions of long repeats can be monitored in large cell populations, by selecting for HPRT(+) or APRT(+) clones. Using this selectable system, we determined the frequency of spontaneous contractions and showed that treatments with DNA-damaging agents stimulate repeat contractions. The selectable system that we have developed provides a versatile tool for the analysis of CTG/CAG repeat instability in mammalian cells. We also discuss how the effect of long CTG/CAG repeat tracts on splicing may contribute to the progression of polyglutamine diseases.
Collapse
Affiliation(s)
- Vera Gorbunova
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
8
|
Meservy JL, Sargent RG, Iyer RR, Chan F, McKenzie GJ, Wells RD, Wilson JH. Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol Cell Biol 2003; 23:3152-62. [PMID: 12697816 PMCID: PMC153196 DOI: 10.1128/mcb.23.9.3152-3162.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of CTG triplet repeats in the 3' untranslated region of the DMPK gene causes the autosomal dominant disorder myotonic dystrophy. Instability of CTG repeats is thought to arise from their capacity to form hairpin DNA structures. How these structures interact with various aspects of DNA metabolism has been studied intensely for Escherichia coli and Saccharomyces cerevisiae but is relatively uncharacterized in mammalian cells. To examine the stability of (CTG)(17), (CTG)(98), and (CTG)(183) repeats during homologous recombination, we placed them in the second intron of one copy of a tandemly duplicated pair of APRT genes. Cells selected for homologous recombination between the two copies of the APRT gene displayed distinctive patterns of change. Among recombinants from cells with (CTG)(98) and (CTG)(183), 5% had lost large numbers of repeats and 10% had suffered rearrangements, a frequency more than 50-fold above normal levels. Analysis of individual rearrangements confirmed the involvement of the CTG repeats. Similar changes were not observed in proliferating (CTG)(98) and (CTG)(183) cells that were not recombinant at APRT. Instead, they displayed high frequencies of small changes in repeat number. The (CTG)(17) repeats were stable in all assays. These studies indicate that homologous recombination strongly destabilizes long tracts of CTG repeats.
Collapse
Affiliation(s)
- James L Meservy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The R4 integrase is a site-specific, unidirectional recombinase derived from the genome of phage R4 of Streptomyces parvulus. Here we define compact attB and attP recognition sites for the R4 integrase and express the enzyme in mammalian cells. We demonstrate that R4 integrase functions in human cells, performing efficient and precise recombination between R4 attB and attP sites cloned on an extrachromosomal vector. We also provide evidence that the enzyme can mediate integration of an incoming plasmid bearing an attB or attP site into endogenous sequences in the human genome. Furthermore, when R4 attB and attP sites are placed into the human genome, either by random integration or at a specific sequence by using the phi C31 integrase, they act as targets for integration of incoming plasmids bearing R4 att sites. The R4 integrase has immediate utility as a site-specific integration tool for genome engineering, as well as potential for further development.
Collapse
Affiliation(s)
- E C Olivares
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
10
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
11
|
Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001; 21:3926-34. [PMID: 11359900 PMCID: PMC87055 DOI: 10.1128/mcb.21.12.3926-3934.2001] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We previously established that the phage phiC31 integrase, a site-specific recombinase, mediates efficient integration in the human cell environment at attB and attP phage attachment sites on extrachromosomal vectors. We show here that phage attP sites inserted at various locations in human and mouse chromosomes serve as efficient targets for precise site-specific integration. Moreover, we characterize native "pseudo" attP sites in the human and mouse genomes that also mediate efficient integrase-mediated integration. These sites have partial sequence identity to attP. Such sites form naturally occurring targets for integration. This phage integrase-mediated reaction represents an effective site-specific integration system for higher cells and may be of value in gene therapy and other chromosome engineering strategies.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120
| | | | | | | | | |
Collapse
|
12
|
Purugganan MM, Shah S, Kearney JF, Roth DB. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res 2001; 29:1638-46. [PMID: 11266568 PMCID: PMC31272 DOI: 10.1093/nar/29.7.1638] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.
Collapse
Affiliation(s)
- M M Purugganan
- Department of Immunology, M929, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Kilburn AE, Shea MJ, Sargent RG, Wilson JH. Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol Cell Biol 2001; 21:126-35. [PMID: 11113187 PMCID: PMC88786 DOI: 10.1128/mcb.21.1.126-135.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomere repeat sequences cap the ends of eucaryotic chromosomes and help stabilize them. At interstitial sites, however, they may destabilize chromosomes, as suggested by cytogenetic studies in mammalian cells that correlate interstitial telomere sequence with sites of spontaneous and radiation-induced chromosome rearrangements. In no instance is the length, purity, or orientation of the telomere repeats at these potentially destabilizing interstitial sites known. To determine the effects of a defined interstitial telomere sequence on chromosome instability, as well as other aspects of DNA metabolism, we deposited 800 bp of the functional vertebrate telomere repeat, TTAGGG, in two orientations in the second intron of the adenosine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. In one orientation, the deposited telomere sequence did not interfere with expression of the APRT gene, whereas in the other it reduced mRNA levels slightly. The telomere sequence did not induce chromosome truncation and the seeding of a new telomere at a frequency above the limits of detection. Similarly, the telomere sequence did not alter the rate or distribution of homologous recombination events. The interstitial telomere repeat sequence in both orientations, however, dramatically increased gene rearrangements some 30-fold. Analysis of individual rearrangements confirmed the involvement of the telomere sequence. These studies define the telomere repeat sequence as a destabilizing element in the interior of chromosomes in mammalian cells.
Collapse
Affiliation(s)
- A E Kilburn
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
14
|
Kale SB, Landree MA, Roth DB. Conditional RAG-1 mutants block the hairpin formation step of V(D)J recombination. Mol Cell Biol 2001; 21:459-66. [PMID: 11134334 PMCID: PMC86598 DOI: 10.1128/mcb.21.2.459-466.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hairpin formation serves an important regulatory role in V(D)J recombination because it requires synapsis of an appropriate pair of recombination sites. How hairpin formation is regulated and which regions of the RAG proteins perform this step remain unknown. We analyzed two conditional RAG-1 mutants that affect residues quite close in the primary sequence to an active site amino acid (D600), and we found that they exhibit severely impaired recombination in the presence of certain cleavage site sequences. These mutants are specifically defective for the formation of hairpins, providing the first identification of a region of the V(D)J recombinase necessary for this reaction. Substrates containing mismatched bases at the cleavage site rescued hairpin formation by both mutants, which suggests that the mutations affect the generation of a distorted or unwound DNA intermediate that has been implicated in hairpin formation. Our results also indicate that this region of RAG-1 may be important for coupling hairpin formation to synapsis.
Collapse
Affiliation(s)
- S B Kale
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
15
|
Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000; 28:3771-8. [PMID: 11000269 PMCID: PMC110761 DOI: 10.1093/nar/28.19.3771] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Revised: 08/11/2000] [Accepted: 08/11/2000] [Indexed: 11/12/2022] Open
Abstract
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1(-) cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3' tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3' tails after treatment with the rare-cutting endonuclease I-SCE:I. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3' tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3' tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SCE:I-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SCE:I-induced double-strand breaks.
Collapse
Affiliation(s)
- R G Sargent
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Han JO, Erskine LA, Purugganan MM, Stamato TD, Roth DB. V(D)J recombination intermediates and non-standard products in XRCC4-deficient cells. Nucleic Acids Res 1998; 26:3769-75. [PMID: 9685494 PMCID: PMC147771 DOI: 10.1093/nar/26.16.3769] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
V(D)J recombination assembles immunoglobulin (Ig) and T cell receptor (TCR) gene segments during lymphocyte development. Recombination is initiated by the RAG-1 and RAG-2 proteins, which introduce double-stranded DNA breaks (DSB) adjacent to the Ig and TCR gene segments. The broken ends are joined by the DSB repair machinery, which includes the XRCC4 protein. While XRCC4 is essential for both DSB repair and V(D)J recombination, the functions of this protein remain enigmatic. Because the rare V(D)J recombination products isolated from XRCC4-deficient cells generally show evidence of excessive nucleotide loss, it was hypothesized that XRCC4 may function to protect broken DNA ends. Here we report the first examination of V(D)J recombination intermediates in XRCC4-deficient cells. We found that both types of intermediates, signal ends and coding ends, are abundant in the absence of XRCC4. Furthermore, the signal ends are full length. We also showed that alternative V(D)J recombination products, hybrid joints, form with normal efficiency and without excessive deletion in XRCC4-deficient cells. These data indicate that impaired formation of V(D)J recombination products in XRCC4-deficient cells does not result from excessive degradation of recombination intermediates. Potential roles of XRCC4 in the joining reaction are discussed.
Collapse
Affiliation(s)
- J O Han
- The Department of Microbiology and Immunology, Baylor College of Medicine and The Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Sargent RG, Rolig RL, Kilburn AE, Adair GM, Wilson JH, Nairn RS. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci U S A 1997; 94:13122-7. [PMID: 9371810 PMCID: PMC24273 DOI: 10.1073/pnas.94.24.13122] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.
Collapse
Affiliation(s)
- R G Sargent
- The Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sargent RG, Brenneman MA, Wilson JH. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol 1997; 17:267-77. [PMID: 8972207 PMCID: PMC231751 DOI: 10.1128/mcb.17.1.267] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In mammalian cells, chromosomal double-strand breaks are efficiently repaired, yet little is known about the relative contributions of homologous recombination and illegitimate recombination in the repair process. In this study, we used a loss-of-function assay to assess the repair of double-strand breaks by homologous and illegitimate recombination. We have used a hamster cell line engineered by gene targeting to contain a tandem duplication of the native adenine phosphoribosyltransferase (APRT) gene with an I-SceI recognition site in the otherwise wild-type APRT+ copy of the gene. Site-specific double-strand breaks were induced by intracellular expression of I-SceI, a rare-cutting endonuclease from the yeast Saccharomyces cerevisiae. I-SceI cleavage stimulated homologous recombination about 100-fold; however, illegitimate recombination was stimulated more than 1,000-fold. These results suggest that illegitimate recombination is an important competing pathway with homologous recombination for chromosomal double-strand break repair in mammalian cells.
Collapse
Affiliation(s)
- R G Sargent
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|