1
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
2
|
Sherman KM, Silveira CJ, Yan M, Yu L, Leon A, Klages K, White LG, Smith HM, Wolff SM, Falck A, Muneoka K, Brunauer R, Gaddy D, Suva LJ, Dawson LA. Male Down syndrome Ts65Dn mice have impaired bone regeneration. Bone 2025; 192:117374. [PMID: 39675408 DOI: 10.1016/j.bone.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Trisomy of human chromosome 21 (Ts21) individuals present with a spectrum of low bone mineral density (BMD) that predisposes this vulnerable group to skeletal injuries. To determine the bone regenerative capacity of Down syndrome (DS) mice, male and female Dp16 and Ts65Dn DS mice underwent amputation of the digit tip (the terminal phalanx (P3)). This is a well-established mammalian model of bone regeneration that restores the amputated skeletal segment and all associated soft tissues. P3 amputation was performed in 8-week-old male and female DS mice and WT controls and followed by in vivo μCT, histology and immunofluorescence. Following P3 amputation, the bone degradation phase was attenuated in both Dp16 and Ts65Dn males. In Dp16 males, P3 regeneration was delayed but complete by 63 days post amputation (DPA); however, male Ts65Dn exhibited attenuated regeneration by 63 DPA. In both Dp16 and Ts65Dn female DS mice, P3 regenerates were indistinguishable from WT by 42 DPA. In Ts65Dn males, osteoclasts and eroded bone surface were significantly reduced, and osteoblast number significantly decreased in the regenerating digit. In Ts65Dn females, no significant differences were observed in any osteoclast or osteoblast parameter. Like Ts21 individuals and DS mice with sex differences in bone mass, these data expand the characteristic sexually dimorphism to include bone resorption and regeneration in response to skeletal injury in Ts65Dn mice. These observations suggest that sex differences contribute to the poor bone healing of DS and compound the increased risk of bone injury in the Ts21 population.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Catrina J Silveira
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Abigail Leon
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Kasey Klages
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lauren G White
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Sarah M Wolff
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America; LBG Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
3
|
Allen O, Knight MM, Verbruggen SW. Air Pollution and Osteoporosis. Curr Osteoporos Rep 2024; 22:590-598. [PMID: 39302569 PMCID: PMC11499323 DOI: 10.1007/s11914-024-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a background of osteoporosis and air pollution, discussing increasing incidence of the disease with exposure to pollutants and the role that inflammation may play in this process. RECENT FINDINGS Osteoporosis-related fractures are one of the most pressing challenges for the ageing global population, with significant increases in mortality known to occur after major osteoporotic fractures in the elderly population. Recent studies have established a firm correlative link between areas of high air pollution and increased risk of osteoporosis, particularly alarming given the increasingly urban global population. While the culprit pollutants and molecular mechanisms underlying this phenomenon have not yet been elucidated, initial studies suggest a role for inflammatory cascades in this phenomenon. While much more research is required to identify the most damaging air pollutants and to delineate the specific inflammatory molecular mechanisms, it is clear from the literature that shedding light on these pathways would unveil potential therapeutic targets to treat bone diseases, including osteoporosis. Major deficiencies of current animal models highlight the need for complex human in vitro models such as organ-on-a-chip technology to better understand the impact of air pollution.
Collapse
Affiliation(s)
- Olivia Allen
- Centre for Predictive in vitro Models, Queen Mary University of London, London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Martin M Knight
- Centre for Predictive in vitro Models, Queen Mary University of London, London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Stefaan W Verbruggen
- Centre for Predictive in vitro Models, Queen Mary University of London, London, UK.
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
- Digital Environment Research Institute, Queen Mary University of London, London, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Sims NA. Osteoclast-derived coupling factors: origins and state-of-play Louis V Avioli lecture, ASBMR 2023. J Bone Miner Res 2024; 39:1377-1385. [PMID: 38990205 PMCID: PMC11425696 DOI: 10.1093/jbmr/zjae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Coupling, the mechanism that controls the sequence of events in bone remodeling, is a fundamental theory for understanding the way the skeleton changes throughout life. This review is an adapted version of the Louis V Avioli lecture, delivered at the Annual Scientific Meeting of the American Society of Bone and Mineral Research in 2023. It outlines the history of the coupling concept, details how coupling is thought to occur within trabecular and cortical bone, and describes its multiple contexts and the many mechanisms suggested to couple bone-forming osteoblasts to the prior action of osteoclasts on the same bone surface. These mechanisms include signals produced at each stage of the remodeling sequence (resorption, reversal, and formation), such as factors released by osteoclasts through their resorptive action and through protein synthesis, molecules deposited in the cement line during the reversal phase, and potential signals from osteocytes within the local bone environment. The review highlights two examples of coupling factors (Cardiotrophin 1 and EphrinB2:EphB4) to illustrate the limited data available, the need to integrate the many functions of these factors within the basic multicellular unit (BMU), and the multiple origins of these factors, including the other cell types present during the remodeling sequence (such as osteocytes, macrophages, endothelial cells, and T-cells).
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Diease Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine at St. Vincent’s Hospital Melbourne, The University of Melbourne, Fitzroy, Victoria 3065, Australia
- The Mary McKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
5
|
Ayaz A, Zaman W, Radák Z, Gu Y. Green strength: The role of micronutrients in plant-based diets for athletic performance enhancement. Heliyon 2024; 10:e32803. [PMID: 38975163 PMCID: PMC11225853 DOI: 10.1016/j.heliyon.2024.e32803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
This review examines the correlation between plant-based diets and athletic performance, with a specific emphasis on the vital aspect of optimizing micronutrients for athletes. In light of the increasing prevalence of plant-based nutrition among athletes due to its perceived advantages in terms of health, ethics, and the environment, this study investigates the ability of these diets to satisfy the demanding nutritional requirements essential for achieving optimal performance and facilitating recovery. The article emphasizes the significance of essential micronutrients such as iron, vitamin B12, calcium, vitamin D, zinc, and omega-3 fatty acids and also addressing the challenges with their absorption and bioavailability from plant sources. The review consolidates existing scientific knowledge to propose strategies for improving micronutrient consumption, comparing the effects of supplements against whole foods, and highlighting the significance of enhancing bioavailability. The proposal supports the implementation of personalized meal planning, with the assistance of sports nutritionists or dietitians, and is substantiated by case studies showcasing the success of plant-based athletes. Future research directions examine the long-term effects of plant-based diets on micronutrient status and athletic performance, as well as developing nutritional trends and technology. The review concludes that plant-based diets can meet athletes' nutritional demands and improve peak performance while aligning with personal and ethical values with strategic planning and professional guidance. This study intends to help athletes, coaches, and nutritionists understand plant-based nutrition for enhanced athletic performance.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
6
|
Castoldi NM, Pickering E, Sansalone V, Cooper D, Pivonka P. Bone turnover and mineralisation kinetics control trabecular BMDD and apparent bone density: insights from a discrete statistical bone remodelling model. Biomech Model Mechanobiol 2024; 23:893-909. [PMID: 38280951 PMCID: PMC11101591 DOI: 10.1007/s10237-023-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
The mechanical quality of trabecular bone is influenced by its mineral content and spatial distribution, which is controlled by bone remodelling and mineralisation. Mineralisation kinetics occur in two phases: a fast primary mineralisation and a secondary mineralisation that can last from several months to years. Variations in bone turnover and mineralisation kinetics can be observed in the bone mineral density distribution (BMDD). Here, we propose a statistical spatio-temporal bone remodelling model to study the effects of bone turnover (associated with the activation frequency Ac . f ) and mineralisation kinetics (associated with secondary mineralisation T sec ) on BMDD. In this model, individual basic multicellular units (BMUs) are activated discretely on trabecular surfaces that undergo typical bone remodelling periods. Our results highlight that trabecular BMDD is strongly regulated by Ac . f and T sec in a coupled way. Ca wt% increases with lower Ac . f and short T sec . For example, aAc . f = 4 BMU/year/mm3 and T sec = 8 years result in a mean Ca wt% of 25, which is in accordance with Ca wt% values reported in quantitative backscattered electron imaging (qBEI) experiments. However, for lower Ac . f and shorter T sec (from 0.5 to 4 years) one obtains a high Ca wt% and a very narrow skew BMDD to the right. This close link between Ac . f and T sec highlights the importance of considering both characteristics to draw meaningful conclusion about bone quality. Overall, this model represents a new approach to modelling healthy and diseased bone and can aid in developing deeper insights into disease states like osteoporosis.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Vittorio Sansalone
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France
| | - David Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
7
|
Le Gars Santoni B, Niggli L, Dolder S, Loeffel O, Sblendorio GA, Maazouz Y, Alexander DTL, Heuberger R, Stähli C, Döbelin N, Bowen P, Hofstetter W, Bohner M. Influence of the sintering atmosphere on the physico-chemical properties and the osteoclastic resorption of β-tricalcium phosphate cylinders. Acta Biomater 2023; 169:566-578. [PMID: 37595772 DOI: 10.1016/j.actbio.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
One of the most widely used materials for bone graft substitution is β-Tricalcium phosphate (β-TCP; β-Ca3(PO4)2). β-TCP is typically produced by sintering in air or vacuum. During this process, evaporation of phosphorus (P) species occurs, leading to the formation of a calcium-rich alkaline layer. It was recently shown that the evaporation of P species could be prevented by co-sintering β-TCP with dicalcium phosphate (DCPA; CaHPO4; mineral name: monetite). The aim of this study was to see how a change of sintering atmosphere could affect the physico-chemical and biological properties of β-TCP. For this purpose, three experimental groups were considered: β-TCP cylinders sintered in air and subsequently polished to remove the surface layer (control group); the same polished cylinders after subsequent annealing at 500 °C in air to generate a calcium-rich alkaline layer (annealed group); and finally, β-TCP cylinders sintered in a monetite-rich atmosphere and subsequently polished (monetite group). XPS analysis confirmed that cylinders from the annealed group had a significantly higher Ca/P molar ratio at their surface than that of the control group while this ratio was significantly lower for the cylinders from the monetite group. Sintering β-TCP in the monetite-rich atmosphere significantly reduced the grain size and increased the density. Changes of surface composition affected the activity of osteoclasts seeded onto the surfaces, since annealed β-TCP cylinders were significantly less resorbed than β-TCP cylinders sintered in the monetite-rich atmosphere. This suggests that an increase of the surface Ca/P molar ratio leads to a decrease of osteoclastic resorption. STATEMENT OF SIGNIFICANCE: Minimal changes of surface and bulk (< 1%) composition have major effects on the ability of osteoclasts to resorb β-tricalcium phosphate (β-TCP), one of the most widely used ceramics for bone substitution. The results presented in this study are thus important for the calcium phosphate community because (i) β-TCP may have up to 5% impurities according to ISO and ASTM standards and still be considered to be "pure β-TCP", (ii) β-TCP surface properties are generally not considered during biocompatibility assessment and (iii) a rationale can be proposed to explain the various inconsistencies reported in the literature on the biological properties of β-TCP.
Collapse
Affiliation(s)
- Bastien Le Gars Santoni
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Luzia Niggli
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, CH-3008 Bern, Switzerland
| | - Olivier Loeffel
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Gabrielle A Sblendorio
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Laboratory of Construction Materials, Station 12, CH-1015 Lausanne, Switzerland; EPFL, Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Electron Spectrometry and Microscopy Laboratory, Station 3, CH-1015 Lausanne, Switzerland
| | - Yassine Maazouz
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Duncan T L Alexander
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Electron Spectrometry and Microscopy Laboratory, Station 3, CH-1015 Lausanne, Switzerland
| | - Roman Heuberger
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Christoph Stähli
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Nicola Döbelin
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Paul Bowen
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Laboratory of Construction Materials, Station 12, CH-1015 Lausanne, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, CH-3008 Bern, Switzerland
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland.
| |
Collapse
|
8
|
Lad SE. Absence of secondary osteons in femora of aged rats: Implications of lifespan on Haversian remodeling in mammals. J Morphol 2023; 284:e21600. [PMID: 37313764 DOI: 10.1002/jmor.21600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023]
Abstract
Bone is a dynamic tissue capable of adapting to its loading environment, allowing the skeleton to remain structurally sound throughout life. One way adaptation occurs in mammals is via Haversian remodeling: the site-specific, coupled resorption and formation of cortical bone that results in secondary osteons. Remodeling occurs at a baseline rate in most mammals, but it also occurs in relation to strain by repairing deleterious microdamage. Yet, not all animals with bony skeletons remodel. Among mammals, there is inconsistent or absent evidence for Haversian remodeling among monotremes, insectivores, chiropterans, cingulates, and rodents. Three possible explanations for this disparity are discussed: the capacity for Haversian remodeling, body size as a constraint, and age and lifespan as constraints. It is generally accepted, although not thoroughly documented, that rats (a common model used in bone research) do not typically exhibit Haversian remodeling. The present aim is to more specifically test the hypothesis that rats of advanced age do remodel intracortically because of the longer lifespan over which baseline remodeling could occur. Most published histological descriptions of rat bone only include young (3-6 months) rats. Excluding aged rats possibly overlooks a transition from modeling (i.e., bone growth) to Haversian remodeling as the primary mode of bone adaptation. Here, midshaft and distal femora (typical sites for remodeling in other mammals) of 24-month-old rats were examined for presence of secondary osteons. None were found, suggesting that Haversian remodeling does not occur in rats under normal physiological conditions at any age. A likely explanation is that modeling of cortical bone continues throughout most of the short rat lifespan, negating the stimulus for Haversian remodeling. Thorough sampling of key rodent taxa of varying body sizes and lifespans is key to elucidating the reasons why (i.e., body size, age/lifespan, phylogenetic factors) Haversian remodeling might not occur in all mammals.
Collapse
Affiliation(s)
- Susan E Lad
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| |
Collapse
|
9
|
Marahleh A, Kitaura H, Ohori F, Noguchi T, Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol (Lausanne) 2023; 14:1121727. [PMID: 37293482 PMCID: PMC10244721 DOI: 10.3389/fendo.2023.1121727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true "orchestrators of bone remodeling" cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously.
Collapse
Affiliation(s)
- Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Vagner VD, Korshunov AS, Kuryatnikov KN, Maksimenko AE, Safronov AI. [General ideas about the stages, classifications, pathological conditions during the lower third molars eruption in humans. Literature review. Part 2]. STOMATOLOGIIA 2023; 102:76-80. [PMID: 37937928 DOI: 10.17116/stomat202310205176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The article is a review of literature data on the stages, classifications, pathological conditions during the eruption of the lower third molars in humans. The authors analyzed the established knowledge about clinical and morphological changes at various stages of eruption of the lower third molars, studied new data describing the pathogenetic, histological and biochemical features of their development, packaging, movement to the occlusal plane. The literature review helped to identify a series of current trends that define a number of key hypotheses that summarize the accumulated material and indicate different opinions on the topic under study, which confirms the prospects and relevance of continuing research.
Collapse
Affiliation(s)
- V D Vagner
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Oguchi S, Sakamoto T, Hoshi K, Hikita A. Quantitative analyses of matrices, osteoblasts, and osteoclasts during bone remodeling using an in vitro system. J Bone Miner Metab 2023; 41:3-16. [PMID: 36344637 DOI: 10.1007/s00774-022-01381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Bone remodeling plays a central role in the maintenance of bone homeostasis. Our group has established an in vitro system by which the cellular events during bone remodeling can be observed longitudinally. This study used this system to quantitatively analyze osteoblasts, osteoclasts, and matrices to elucidate their temporal changes and correlations. MATERIALS AND METHODS Osteoblasts from EGFP mice were cultured to form calcified nodules, followed by co-culture with bone marrow macrophages from Tnfrsf11aCre/+ x Ai14 mice for 3 weeks (resorption phase). Then cells were cultured with osteoblast differentiation medium for 3 weeks (formation phase). The same sites were observed weekly using 2-photon microscopy. Matrices were detected using second harmonic generation. Parameters related to matrices, osteoblasts, and osteoclasts were quantified and statistically analyzed. RESULTS Resorption and replenishment of the matrix were observed at the same sites by 2 photon microscopy. Gross quantification revealed that matrix and osteoblast parameters decreased in the resorption phase and increased in the formation phase, while osteoclast parameters showed the opposite pattern. When one field of view was divided into 16 regions of interest (ROIs) and correlations between parameters were analyzed in each ROI, decreased and increased matrix volumes were moderately correlated. Parameters of matrices and osteoblasts, and those of matrices and osteoclasts exhibited moderate correlations, while those of osteoblasts and osteoclasts were only weakly correlated. CONCLUSION Several correlations between cells and matrix during remodeling were demonstrated quantitatively. This system may be a powerful tool for the research of bone remodeling.
Collapse
Affiliation(s)
- Shuya Oguchi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113‑8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
- Department of Oral‑Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113‑8655, Japan.
| |
Collapse
|
12
|
Ghosh R, Chanda S, Chakraborty D. Application of finite element analysis to tissue differentiation and bone remodelling approaches and their use in design optimization of orthopaedic implants: A review. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3637. [PMID: 35875869 DOI: 10.1002/cnm.3637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Post-operative bone growth and long-term bone adaptation around the orthopaedic implants are simulated using the mechanoregulation based tissue-differentiation and adaptive bone remodelling algorithms, respectively. The primary objective of these algorithms was to assess biomechanical feasibility and reliability of orthopaedic implants. This article aims to offer a comprehensive review of the developments in mathematical models of tissue-differentiation and bone adaptation and their applications in studies involving design optimization of orthopaedic implants over three decades. Despite the different mechanoregulatory models developed, existing literature confirm that none of the models can be highly regarded or completely disregarded over each other. Not much development in mathematical formulations has been observed from the current state of knowledge due to the lack of in vivo studies involving clinically relevant animal models, which further retarded the development of such models to use in translational research at a fast pace. Future investigations involving artificial intelligence (AI), soft-computing techniques and combined tissue-differentiation and bone-adaptation studies involving animal subjects for model verification are needed to formulate more sophisticated mathematical models to enhance the accuracy of pre-clinical testing of orthopaedic implants.
Collapse
Affiliation(s)
- Rajdeep Ghosh
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Souptick Chanda
- Biomechanics and Simulations Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Mehta Family School of Data Science and Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debabrata Chakraborty
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Bønløkke SE, Rand MS, Haddock B, Arup S, Smith CD, Jensen JEB, Schwarz P, Hovind P, Oturai PS, Jensen LT, Møller S, Eiken P, Rubin KH, Hitz MF, Abrahamsen B, Jørgensen NR. Baseline bone turnover marker levels can predict change in bone mineral density during antiresorptive treatment in osteoporotic patients: the Copenhagen bone turnover marker study. Osteoporos Int 2022; 33:2155-2164. [PMID: 35729342 DOI: 10.1007/s00198-022-06457-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
UNLABELLED Anti-resorptive osteoporosis treatment might be more effective in patients with high bone turnover. In this registry study including clinical data, high pre-treatment bone turnover measured with biochemical markers was correlated with higher bone mineral density increases. Bone turnover markers may be useful tools to identify patients benefitting most from anti-resorptive treatment. INTRODUCTION In randomized, controlled trials of bisphosphonates, high pre-treatment levels of bone turnover markers (BTM) were associated with a larger increase in bone mineral density (BMD). The purpose of this study was to examine this correlation in a real-world setting. METHODS In this registry-based cohort study of osteoporosis patients (n = 158) receiving antiresorptive therapy, the association between pre-treatment levels of plasma C-telopeptide of type I Collagen (CTX) and/or N-terminal propeptide of type I procollagen (PINP) and change in bone mineral density (BMD) at lumbar spine, total hip, and femoral neck upon treatment was examined. Patients were grouped according to their pre-treatment BTM levels, defined as values above and below the geometric mean for premenopausal women. RESULTS Pre-treatment CTX correlated with annual increase in total hip BMD, where patients with CTX above the geometric mean experienced a larger annual increase in BMD (p = 0.008) than patients with CTX below the geometric mean. The numerical pre-treatment level of CTX showed a similar correlation at all three skeletal sites (total hip (p = 0.03), femoral neck (p = 0.04), and lumbar spine (p = 0.0003)). A similar association was found for PINP where pre-treatment levels of PINP above the geometric mean correlated with a larger annual increase in BMD for total hip (p = 0.02) and lumbar spine (p = 0.006). CONCLUSION Measurement of pre-treatment BTM levels predicts osteoporosis patients' response to antiresorptive treatment. Patients with high pre-treatment levels of CTX and/or PINP benefit more from antiresorptive treatment with larger increases in BMD than patients with lower pre-treatment levels.
Collapse
Affiliation(s)
- S E Bønløkke
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - M S Rand
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B Haddock
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - S Arup
- Medical Department, National Research Center for Bone Health, Zealand University Hospital Køge, Køge, Denmark
| | - C D Smith
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - J E B Jensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - P Schwarz
- Department of Endocrinology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Hovind
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - P S Oturai
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - L T Jensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - S Møller
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - P Eiken
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - K H Rubin
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN - Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - M F Hitz
- Medical Department, National Research Center for Bone Health, Zealand University Hospital Køge, Køge, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Abrahamsen
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medicine, Holbæk Hospital, Holbæk, Denmark
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - N R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
15
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
16
|
Golshah A, Moradi P, Nikkerdar N. Efficacy of micro-osteoperforation of the alveolar bone by using mini-screw for acceleration of maxillary canine retraction in young adult orthodontic patients: A split-mouth randomized clinical trial. Int Orthod 2021; 19:601-611. [PMID: 34696998 DOI: 10.1016/j.ortho.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
AIM Acceleration of orthodontic tooth movement (OTM) can decrease the rate of complications. This study aimed to assess the efficacy of micro-osteoperforation (MOP) of the alveolar bone for acceleration of OTM by using mini-screws. MATERIALS AND METHODS This split-mouth randomized clinical trial evaluated 25 patients (11 females, 14 males, 16-25 years) with class II division I malocclusion who required canine retraction following the extraction of maxillary first premolar. The patients received similar orthodontic treatment at both sides with MOP on one side (MOP group) and no MOP on the other side (control side). Allocation of MOP to the side of jaw was random using Random Allocation Software in 1:1 distribution and equal numbers. Blinding was not applicable. The rate of canine movement was measured monthly for 5 months and considered as the main outcome. The degree of canine tipping was measured at the end of the intervention as the secondary outcome. All measurements were repeated for 12 patients by the two observers and the intra- and inter-examiner correlation coefficients were found to be 0.946 and 0.925, respectively. Data were analysed by paired t-test and repeated measures ANOVA. RESULTS Twenty-five patients (11 females, 14 males, 16-25 years) were evaluated. No significant difference was found between the two groups at different time points in the rate of canine movement (P>0.05). The degree of canine tipping in the MOP group was significantly lower than that in the control group (5.34±3.11° versus 7.08±3.70°; P=0.040). Gender had no significant effect on OTM in any group (P>0.05). CONCLUSIONS MOP could not accelerate canine retraction but decreased the degree of canine tipping.
Collapse
Affiliation(s)
- Amin Golshah
- Kermanshah University of Medical Sciences, School of Dentistry, Department of Orthodontic, Kermanshah, Iran
| | - Parzhin Moradi
- Kermanshah University of Medical Sciences, School of Dentistry, Kermanshah, Iran
| | - Nafiseh Nikkerdar
- Kermanshah University of Medical Sciences, School of Dentistry, Department of Maxillofacial Radiology, Shariati Street, 67139546581, Kermanshah, Iran.
| |
Collapse
|
17
|
Onishi S, Tebayashi S, Hikichi Y, Sawada H, Ishii Y, Kim CS. Inhibitory effects of luteolin and its derivatives on osteoclast differentiation and differences in luteolin production by Capsicum annuum varieties. Biosci Biotechnol Biochem 2021; 85:2224-2231. [PMID: 34435616 DOI: 10.1093/bbb/zbab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Luteolin, an abundant flavonoid in the leaves of Capsicum annuum, has antioxidant activity and is, thus, a key chemical for promoting plant residue utilization, especially for the development of healthcare products. We assessed the inhibitory effect of luteolin and its glycosides on osteoclastic differentiation in human cells and found that the differentiation was effectively inhibited at noncytotoxic concentrations. We also screened 47 varieties of C. annuum for the accumulation of luteolin and apigenin to determine the prevalence of luteolin in diverse cultivars and identify varieties with high and/or selective luteolin production. The glycosides of luteolin and apigenin were found in all the tested varieties, with luteolin predominant over apigenin in most varieties. The identification and characterization of highly productive varieties of C. annuum is expected to be beneficial for the effective development of useful luteolin-based products from plant residues.
Collapse
Affiliation(s)
- Shintaro Onishi
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan
- Otsuka Pharmaceutical Co., Ltd., Minato-ku, Tokyo, Japan
| | - Shinichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | | | - Yukiko Ishii
- Kochi Agricultural Research Center, Nankoku, Kochi, Japan
| | - Chul-Sa Kim
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
18
|
Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH, Lee J. Trabecular bone organoid model for studying the regulation of localized bone remodeling. SCIENCE ADVANCES 2021; 7:eabd6495. [PMID: 33523925 PMCID: PMC7817107 DOI: 10.1126/sciadv.abd6495] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 05/08/2023]
Abstract
Trabecular bone maintains physiological homeostasis and consistent structure and mass through repeated cycles of bone remodeling by means of tightly localized regulation. The molecular and cellular processes that regulate localized bone remodeling are poorly understood because of a lack of relevant experimental models. A tissue-engineered model is described here that reproduces bone tissue complexity and bone remodeling processes with high fidelity and control. An osteoid-inspired biomaterial-demineralized bone paper-directs osteoblasts to deposit structural mineralized bone tissue and subsequently acquire the resting-state bone lining cell phenotype. These cells activate and shift their secretory profile to induce osteoclastogenesis in response to chemical stimulation. Quantitative spatial mapping of cellular activities in resting and activated bone surface coculture showed that the resting-state bone lining cell network actively directs localized bone remodeling by means of paracrine signaling and cell-to-cell contact. This model may facilitate further investigation of trabecular bone niche biology.
Collapse
Affiliation(s)
- Yongkuk Park
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Eugene Cheong
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Ryan Carpenter
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jungwoo Lee
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Kuriya K, Nishio M, Matsuda T, Umekawa H. Tea extract increases cell fusion via regulation of cell surface DC-STAMP. Biochem Biophys Rep 2020; 22:100759. [PMID: 32420461 PMCID: PMC7218152 DOI: 10.1016/j.bbrep.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Mononuclear osteoclast precursor cells fuse with each other to become mature multinucleated osteoclasts, which is regulated by dendritic cell-specific transmembrane protein (DC-STAMP). We evaluated the effects of tea extract and catechins on cell-cell fusion and DC-STAMP expression to elucidate their relationship with osteoclast development. When tea extract or epigallocatechin gallate (EGCg) was applied to RAW264.7 cells, multinucleated cells were increased significantly, while tartrate-resistant acid phosphatase (TRAP) activity was hardly upregulated. Flow cytometric analysis revealed that EGCg suppressed DC-STAMP expression on the cell surface, which is similar to osteoclast development. These observations suggest that TRAP activity is not activated even when suppression of both surface DC-STAMP expression and multinucleation occurs, which might be mediated by another pathway. We revealed tea extract (TEx) and catechin effects on cell fusion under non-RANKL conditions. TEx or catechin increased cell fusion without upregulation of TRAP enzyme activity. Cell fusion occurred via DC-STAMP downregulation on the cell surface.
Collapse
Affiliation(s)
- Kenji Kuriya
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Masahiro Nishio
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Tomoko Matsuda
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Hayato Umekawa
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
20
|
Parle E, Tio S, Behre A, Carey JJ, Murphy CG, O'Brien TF, Curtin WA, Kearns SR, McCabe JP, Coleman CM, Vaughan TJ, McNamara LM. Bone Mineral Is More Heterogeneously Distributed in the Femoral Heads of Osteoporotic and Diabetic Patients: A Pilot Study. JBMR Plus 2020; 4:e10253. [PMID: 32149268 PMCID: PMC7017882 DOI: 10.1002/jbm4.10253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is associated with systemic bone loss, leading to a significant deterioration of bone microarchitecture and an increased fracture risk. Although recent studies have shown that the distribution of bone mineral becomes more heterogeneous because of estrogen deficiency in animal models of osteoporosis, it is not known whether osteoporosis alters mineral distribution in human bone. Type 2 diabetes mellitus (T2DM) can also increase bone fracture risk and is associated with impaired bone cell function, compromised collagen structure, and reduced mechanical properties. However, it is not known whether alterations in mineral distribution arise in diabetic (DB) patients’ bone. In this study, we quantify mineral content distribution and tissue microarchitecture (by μCT) and mechanical properties (by compression testing) of cancellous bone from femoral heads of osteoporotic (OP; n = 10), DB (n = 7), and osteoarthritic (OA; n = 7) patients. We report that though OP cancellous bone has significantly deteriorated compressive mechanical properties and significantly compromised microarchitecture compared with OA controls, there is also a significant increase in the mean mineral content. Moreover, the heterogeneity of the mineral content in OP bone is significantly higher than controls (+25%) and is explained by a significant increase in bone volume at high mineral levels. We propose that these mineral alterations act to exacerbate the already reduced bone quality caused by reduced cancellous bone volume during osteoporosis. We show for the first time that cancellous bone mineralization is significantly more heterogeneous (+26%) in patients presenting with T2DM compared with OA (non‐DB) controls, and that this heterogeneity is characterized by a significant increase in bone volume at low mineral levels. Despite these mineralization changes, bone microarchitecture and mechanical properties are not significantly different between OA groups with and without T2DM. Nonetheless, the observed alterations in mineral heterogeneity may play an important tissue‐level role in bone fragility associated with OP and DB bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eoin Parle
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Sherdya Tio
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Annie Behre
- Department of Bioengineering Lehigh University Bethlehem PA USA
| | - John J Carey
- Department of Rheumatology Galway University Hospitals Galway Ireland
| | - Colin G Murphy
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Timothy F O'Brien
- Department of Endocrinology Galway University Hospitals Galway Ireland
| | - William A Curtin
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Stephen R Kearns
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - John P McCabe
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Cynthia M Coleman
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Ted J Vaughan
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Laoise M McNamara
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| |
Collapse
|
21
|
Suva LJ, Westhusin ME, Long CR, Gaddy D. Engineering bone phenotypes in domestic animals: Unique resources for enhancing musculoskeletal research. Bone 2020; 130:115119. [PMID: 31712131 PMCID: PMC8805042 DOI: 10.1016/j.bone.2019.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States.
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
22
|
Barak MM. Bone modeling or bone remodeling: That is the question. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 172:153-155. [PMID: 31710704 DOI: 10.1002/ajpa.23966] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/26/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York
| |
Collapse
|
23
|
Kuriya K, Nishio M, Wada S, Katsuzaki H, Nishise M, Okamoto H, Umekawa H. Antiosteoporotic Effects ofAcer palmatumExtract on Osteoclastogenesis and Osteoblastogenesis. J Med Food 2019; 22:365-373. [DOI: 10.1089/jmf.2018.4243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kenji Kuriya
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masahiro Nishio
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Shohei Wada
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hirotaka Katsuzaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | - Hayato Umekawa
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
24
|
Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME, Suva LJ, Long CR, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep 2018; 8:16945. [PMID: 30446691 PMCID: PMC6240114 DOI: 10.1038/s41598-018-35079-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/02/2022] Open
Abstract
The availability of tools to accurately replicate the clinical phenotype of rare human diseases is a key step toward improved understanding of disease progression and the development of more effective therapeutics. We successfully generated the first large animal model of a rare human bone disease, hypophosphatasia (HPP) using CRISPR/Cas9 to introduce a single point mutation in the tissue nonspecific alkaline phosphatase (TNSALP) gene (ALPL) (1077 C > G) in sheep. HPP is a rare inherited disorder of mineral metabolism that affects bone and tooth development, and is associated with muscle weakness. Compared to wild-type (WT) controls, HPP sheep have reduced serum alkaline phosphatase activity, decreased tail vertebral bone size, and metaphyseal flaring, consistent with the mineralization deficits observed in human HPP patients. Computed tomography revealed short roots and thin dentin in incisors, and reduced mandibular bone in HPP vs. WT sheep, accurately replicating odonto-HPP. Skeletal muscle biopsies revealed aberrant fiber size and disorganized mitochondrial cristae structure in HPP vs. WT sheep. These genetically engineered sheep accurately phenocopy human HPP and provide a novel large animal platform for the longitudinal study of HPP progression, as well as other rare human bone diseases.
Collapse
Affiliation(s)
- Diarra K Williams
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos Pinzón
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Shannon Huggins
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jane H Pryor
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Forrest Herman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - James Oldeschulte
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sarah H White
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dana Gaddy
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Kawai M, Kataoka Y, Sonobe J, Yamamoto H, Maruyama H, Yamamoto T, Bessho K, Ohura K. Analysis of mineral apposition rates during alveolar bone regeneration over three weeks following transfer of BMP-2/7 gene via in vivo electroporation. Eur J Histochem 2018; 62. [PMID: 30089353 PMCID: PMC6119816 DOI: 10.4081/ejh.2018.2947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 02/01/2023] Open
Abstract
Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bonestaining revealed that MAR of alveolar bone was at similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining nonviral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks.
Collapse
Affiliation(s)
- Mariko Kawai
- Osaka Dental University, Department of Pharmacology, Japan
| | - Yohei Kataoka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Junya Sonobe
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | | | - Hiroki Maruyama
- Niigata University Graduate School of Medicine and Dental Sciences, Department of Clinical Nephroscience, Japan
| | - Toshio Yamamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | - Kiyoshi Ohura
- Osaka Dental University, Department of Pharmacology, Japan
| |
Collapse
|
26
|
Parfitt A. The Localization of Aluminum in Bone: Implications for the Mechanism of Fixation and for the Pathogenesis of Aluminum-Related Bone Disease. Int J Artif Organs 2018. [DOI: 10.1177/039139888801100205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- A.M. Parfitt
- Bone and Mineral Research Laboratory Henry Ford Hospital Detroit, Michigan, USA
| |
Collapse
|
27
|
Suniaga S, Rolvien T, Vom Scheidt A, Fiedler IAK, Bale HA, Huysseune A, Witten PE, Amling M, Busse B. Increased mechanical loading through controlled swimming exercise induces bone formation and mineralization in adult zebrafish. Sci Rep 2018; 8:3646. [PMID: 29483529 PMCID: PMC5826918 DOI: 10.1038/s41598-018-21776-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
Exercise promotes gain in bone mass through adaptive responses of the vertebrate skeleton. This mechanism counteracts age- and disease-related skeletal degradation, but remains to be fully understood. In life sciences, zebrafish emerged as a vertebrate model that can provide new insights into the complex mechanisms governing bone quality. To test the hypothesis that musculoskeletal exercise induces bone adaptation in adult zebrafish and to characterize bone reorganization, animals were subjected to increased physical exercise for four weeks in a swim tunnel experiment. Cellular, structural and compositional changes of loaded vertebrae were quantified using integrated high-resolution analyses. Exercise triggered rapid bone adaptation with substantial increases in bone-forming osteoblasts, bone volume and mineralization. Clearly, modeling processes in zebrafish bone resemble processes in human bone. This study highlights how exercise experiments in adult zebrafish foster in-depth insight into aging-related bone diseases and can thus catalyze the search for appropriate prevention and new treatment options.
Collapse
Affiliation(s)
- Santiago Suniaga
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | | | - Ann Huysseune
- Department of Biology, Ghent University, 9000, Gent, Belgium
| | | | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
28
|
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, University of Melbourne Department of Medicine, Fitzroy, Australia
| |
Collapse
|
29
|
Streicher C, Heyny A, Andrukhova O, Haigl B, Slavic S, Schüler C, Kollmann K, Kantner I, Sexl V, Kleiter M, Hofbauer LC, Kostenuik PJ, Erben RG. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci Rep 2017; 7:6460. [PMID: 28744019 PMCID: PMC5527119 DOI: 10.1038/s41598-017-06614-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
Collapse
Affiliation(s)
- Carmen Streicher
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Heyny
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Haigl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Svetlana Slavic
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Kantner
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
- UCB Pharma GmbH, Vienna, Austria
| | - Veronika Sexl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Miriam Kleiter
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Paul J Kostenuik
- Amgen Inc., Thousand Oaks, CA, USA
- Phylon Pharma Services, Newbury Park, CA, USA
| | - Reinhold G Erben
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
30
|
York SL, Sethu P, Saunders MM. In vitro osteocytic microdamage and viability quantification using a microloading platform. Med Eng Phys 2016; 38:1115-22. [PMID: 27387904 PMCID: PMC5035581 DOI: 10.1016/j.medengphy.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Bone remodeling is a process in which bone is resorbed by osteoclasts and formed by osteoblasts. This is normally a paired process, although it can be disrupted by changes in mechanical load. One theory is that osteocytes play a key role in the cellular regulation of this process. Mechanotransduction studies, which investigate how cells convert mechanical stimuli into biophysical effects and cellular activity, offer one way to investigate this theory. Mechanotransduction work is commonly done by applying an isolated mechanical load to cells grown in vitro, and quantifying the response. While in vitro work does not fully replicate the natural environment, it does allow the study of isolated factors. In this study, a mechanical loading platform was designed, fabricated, and characterized for bone mechanotransduction studies. This platform was designed to tent cell-seeded substrates from below, loading using out of plane distension. This introduced a nonuniform strain profile, enabling the study of cells cultured under identical conditions and variable strains as a function of substrate location. An alphanumerically gridded polydimethylsiloxane well substrate was designed and fabricated for cellular loading experiments. Following initial characterization, a study was run to quantify the cellular activity of osteocyte-like MLO-Y4 cells as a function of strain field. The results indicated that regions with lower strains led to an increase in cellular activity while higher strains led to a reduction in cellular activity. This demonstrated that cells could be exposed to mechanically-induced microdamage using the microloading platform.
Collapse
Affiliation(s)
- S L York
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA.
| | - P Sethu
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - M M Saunders
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
31
|
Hayashida-Abe C. Interferon-β produced by osteocytes may negatively regulate osteoclastogenesis. J Oral Biosci 2016. [DOI: 10.1016/j.job.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Pazzaglia UE, Congiu T, Basso P, Alessandri I, Cucca L, Raspanti M. The application of heat-deproteinization to the morphological study of cortical bone: A contribution to the knowledge of the osteonal structure. Microsc Res Tech 2016; 79:691-9. [DOI: 10.1002/jemt.22686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Medical and Surgical Specialities; Radiological Sciences and Public Health, University of Brescia; Brescia Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| | - Petra Basso
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| | - Ivano Alessandri
- Department of Mechanical and Industrial Engineering; Chemistry for Technologies Lab, University of Brescia; Brescia Italy
| | - Lucia Cucca
- Department of Chemistry; University of Pavia; Pavia Italy
| | - Mario Raspanti
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| |
Collapse
|
33
|
Bongio M, Lopa S, Gilardi M, Bersini S, Moretti M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine (Lond) 2016; 11:1073-91. [PMID: 27078586 DOI: 10.2217/nnm-2015-0021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM We aimed to establish a 3D vascularized in vitro bone remodeling model. MATERIALS & METHODS Human umbilical endothelial cells (HUVECs), bone marrow mesenchymal stem cells (BMSCs), and osteoblast (OBs) and osteoclast (OCs) precursors were embedded in collagen/fibrin hydrogels enriched with calcium phosphate nanoparticles (CaPn). We assessed vasculogenesis in HUVEC-BMSC coculture, osteogenesis with OBs, osteoclastogenesis with OCs, and, ultimately, cell interplay in tetraculture. RESULTS HUVECs developed a robust microvascular network and BMSCs differentiated into mural cells. Noteworthy, OB and OC differentiation was increased by their reciprocal coculture and by CaPn, and even more by the combination of the tetraculture and CaPn. CONCLUSION We successfully developed a vascularized 3D bone remodeling model, whereby cells interacted and exerted their specific function.
Collapse
Affiliation(s)
- Matilde Bongio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Mara Gilardi
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy.,PhD School in Life Sciences, Department of Biotechnology & Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Simone Bersini
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland.,Swiss Institute of Regenerative Medicine (SIRM), 6900 Lugano, Switzerland.,Fondazione Cardiocentro Ticino, 6900 Lugano, Switzerland
| |
Collapse
|
34
|
Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, Miller PD, Rao SD, Kendler DL, Lindsay R, Krege JH, Alam J, Taylor KA, Janos B, Ruff VA. Differential Effects of Teriparatide and Denosumab on Intact PTH and Bone Formation Indices: AVA Osteoporosis Study. J Clin Endocrinol Metab 2016; 101:1353-63. [PMID: 26859106 PMCID: PMC4880160 DOI: 10.1210/jc.2015-4181] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We compared effects of teriparatide and denosumab on PTH, bone turnover markers, and bone histomorphometry in osteoporotic postmenopausal women. The findings were inconsistent with an early indirect anabolic effect of denosumab.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Hua Zhou
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Robert R Recker
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Jacques P Brown
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Christopher P Recknor
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - E Michael Lewiecki
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Paul D Miller
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Sudhaker D Rao
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - David L Kendler
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Robert Lindsay
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - John H Krege
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Jahangir Alam
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Kathleen A Taylor
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Boris Janos
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| | - Valerie A Ruff
- Regional Bone Center (D.W.D., H.Z., R.L.), Helen Hayes Hospital, West Haverstraw, New York; Department of Pathology and Cell Biology (D.W.D.), College of Physicians and Surgeons of Columbia University, New York; Department of Medicine (R.R.R.), Division of Endocrinology, School of Medicine, Creighton University, Omaha, Nebraska; Rheumatology and Bone Diseases Research Group (J.P.B.), CHU de Quebec (CHUL) Research Centre and Department of Medicine, Laval University, Quebec City, Quebec, Canada; United Osteoporosis Centers (C.P.R.), Gainesville, Georgia; New Mexico Clinical Research & Osteoporosis Center (E.M.L.), Albuquerque, New Mexico; Department of Medicine (P.D.M.), Colorado Center for Bone Research, Lakewood, Colorado; Bone & Mineral Research Laboratory (S.D.R.), Henry Ford Hospital, Detroit, Michigan; Department of Medicine (Endocrinology) (D.L.K.), University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine (R.L.), College of Physicians and Surgeons of Columbia University, New York; Lilly Research Laboratories (J.H.K., J.A.), Eli Lilly and Company, Indianapolis, Indiana; Musculoskeletal and Men's Health (K.A.T., V.A.R.), Lilly USA, LLC, Indianapolis, Indiana; Research and Development - Bio-Medicines (B.J.), Eli Lilly Canada Inc., Toronto, Ontario, Canada
| |
Collapse
|
35
|
Katsuyama H, Fushimi S, Yamane K, Watanabe Y, Shimoya K, Okuyama T, Katsuyama M, Saijoh K, Tomita M. Effect of vitamin K2 on the development of stress-induced osteopenia in a growing senescence-accelerated mouse prone 6 strain. Exp Ther Med 2015; 10:843-850. [PMID: 26622403 DOI: 10.3892/etm.2015.2621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/01/2015] [Indexed: 12/23/2022] Open
Abstract
Vitamin K2 (VK2) has been used as a therapeutic agent for osteoporosis, since it has been suggested to be able to reduce the frequency of fractures by improving bone quality; however, bone turnover is strictly regulated by various cytokines and hormones. In the present study, the effect of menaquinone-4 (MK-4) on bone turnover was investigated using the senescence-accelerated mouse prone 6 (SAMP6) strain. Since water-immersion restraint stress (WRS) causes a significant decrease in bone mineral density (BMD), WRS was used as the bone resorption model in the SAMP6 strain. Six-week-old SAMP6 male mice were divided into the following three groups: Control, WRS and WRS + MK-4. WRS was performed for 6 h per day, 5 times a week, for 4 weeks. Following WRS, MK-4 (30 mg/kg) was injected subcutaneously 3 times a week for 4 weeks. No growth retardation was observed in the WRS groups as compared with the control group. In the WRS groups, the BMD was significantly lower than that in the control group. The levels of bone formation and resorption markers were increased in the WRS groups, indicating that WRS reduced the BMD by promoting high bone turnover. A bone histomorphometrical examination showed that the trabecular (Tb) bone mass in the secondary spongiosa at the distal femur was significantly reduced in the WRS mice, and this reduction was abrogated by MK-4 treatment. Specifically, the Tb bone reduction was caused by the activation of osteoclasts (Ocs), and Oc activity was suppressed by MK-4. The number of osteoblasts and the mineral apposition rate were significantly increased in the WRS and WRS + MK-4 mice, suggesting that WRS triggered a significantly higher mineral apposition rate. These results indicate that MK-4 can induce recovery from the bone mineral loss caused by WRS treatment. Further studies are required to clarify the association between bone quality and MK-4.
Collapse
Affiliation(s)
- Hironobu Katsuyama
- Department of Public Health, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Shigeko Fushimi
- Department of Public Health, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan ; Department of Oral Pathology and Medicine, Okayama University School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Kunikazu Yamane
- Department of Public Health, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yoko Watanabe
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Koichiro Shimoya
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Toshiko Okuyama
- Department of Medical Toxicology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Midori Katsuyama
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyofumi Saijoh
- Department of Hygiene, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Masafumi Tomita
- Department of Medical Toxicology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
36
|
Hu Y, Li J, Zhu X, Li Y, Zhang S, Chen X, Gao Y, Li F. 17β-Estradiol-Loaded PEGlyated Upconversion Nanoparticles as a Bone-Targeted Drug Nanocarrier. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15803-15811. [PMID: 26133323 DOI: 10.1021/acsami.5b02831] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hormone replacement therapy (HRT) plays an important role in the treatment and prevention of osteoporosis. Here, 17β-estradiol (E2)-loaded PEGlyated upconversion nanoparticles (E2-UCNP@pPEG) were synthesized that retained E2 bioactivity and improved delivery efficiency over a relatively long time-period. E2-UCNP@pPEG was synthesized and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), among other methods. The loading efficiency of E2 was determined to be 14.5 wt %, and the nanocarrier effectively facilitated sustained release. Confocal upconversion luminescence (UCL) imaging using the CW 980 nm laser as excitation resource revealed significant interactions of E2-UCNP@pPEG with preosteoblasts. E2-UCNP@pPEG treatment of preosteoblasts induced positive effects on differentiation, matrix maturation, and mineralization. Moreover, in situ and ex vivo UCL imaging studies disclosed that E2 encapsulated in the nanocomposite was passively delivered to bone. Our results collectively suggest that this nanoreservoir provides an effective drug-loading system for hormonelike drug delivery and support its considerable potential as a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Yan Hu
- †Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai 200092, PR China
| | | | | | | | - Shuang Zhang
- †Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai 200092, PR China
| | - Xiaojing Chen
- †Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai 200092, PR China
| | - Yanhong Gao
- †Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai 200092, PR China
| | | |
Collapse
|
37
|
Hinge M, Delaisse JM, Plesner T, Clasen-Linde E, Salomo M, Andersen TL. High-dose therapy improves the bone remodelling compartment canopy coverage and bone formation in multiple myeloma. Br J Haematol 2015. [PMID: 26212720 DOI: 10.1111/bjh.13584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling. Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed that a good response to anti-myeloma treatment increased the extent of formative bone surfaces with canopy, and reduced the extent of eroded surfaces without canopy, reverting the uncoupled bone remodelling, while improving canopy coverage. The association between improved coupling and the canopy coverage supports the notion that canopies are critical for the coupling of bone formation to resorption. Furthermore, this study supports the observation that systemic bone disease in MM can be reversed in MM patients responding to anti-myeloma treatment.
Collapse
Affiliation(s)
- Maja Hinge
- Department of Clinical Cell Biology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark.,Department of Internal Medicine, Section of Haematology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Jean-Marie Delaisse
- Department of Clinical Cell Biology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Torben Plesner
- Department of Internal Medicine, Section of Haematology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | | | - Morten Salomo
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Levin Andersen
- Department of Clinical Cell Biology, Vejle/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| |
Collapse
|
38
|
Sharma C, Dixit M, Singh R, Agrawal M, Mansoori MN, Kureel J, Singh D, Narender T, Arya KR. Potential osteogenic activity of ethanolic extract and oxoflavidin isolated from Pholidota articulata Lindley. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:57-65. [PMID: 25959442 DOI: 10.1016/j.jep.2015.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pholidota articulata Lindley (PA) locally known as Hadjojen (bone jointer) belongs to family Orchidaceae is used for healing fractures in folklore tradition of Kumaon region of Uttarakhand, Himalaya, India. Bone is a dynamic organ and is constantly being remodeled in order to facilitate growth and repair. This process requires the involvement of bone forming osteoblast and bone resorbing osteoclast cells, which function in generating and mineralizing bone, giving strength and rigidity to the skeletal system. Present study was aimed to determine the therapeutic potential of ethanolic extract of PA and its isolated compound oxoflavidin, by characterizing their fracture healing properties. MATERIALS AND METHODS Ovariectomized (Ovx) estrogen deficient adult female Balb/c mice were used for in vivo evaluation of osteogenic or bone healing potential of ethanolic extract of PA. Further, its isolated compounds were tested for their osteogenic efficacy using alkaline phosphatase assay and mineralization assay in vitro in mice calvarial osteoblasts. RESULTS The ethanolic extract of PA exhibited significant restoration of trabecular micro-architecture in both femoral and tibial bones. Additionally, treatment with PA extract led to better bone quality and devoid of any uterine estrogenicity in ovariectomized estrogen deficient mice. One of the isolated compound, oxoflavidin enhanced ALP activity (a marker of osteoblast differentiation), mineral nodule formation and mRNA levels of osteogenic markers like BMP-2, Type 1 Collagen, RUNX-2 and osteocalcin. CONCLUSION These results warrant that ethanolic extract of PA and it's pure compound oxoflavidin have fracture healing properties. The extract and oxoflavidin exhibit a strong threapeutical potential for the treatment and management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chetan Sharma
- Botany Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Manisha Dixit
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Rohit Singh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Manali Agrawal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Mohd Nizam Mansoori
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Jyoti Kureel
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Tadigoppula Narender
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Kamal Ram Arya
- Botany Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
39
|
York SL, Sethu P, Saunders MM. Impact of Gap Junctional Intercellular Communication on MLO-Y4 Sclerostin and Soluble Factor Expression. Ann Biomed Eng 2015; 44:1170-80. [PMID: 26154422 DOI: 10.1007/s10439-015-1376-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023]
Abstract
Bone remodeling is a continual process in which old bone is resorbed by osteoclasts and new bone is formed by osteoblasts, providing a mechanism for bones' ability to adapt to changes in its mechanical environment. While the role of osteoblasts and osteoclasts in bone remodeling is well understood, the cellular regulation of bone remodeling is unclear. One theory is that osteocytes, found within bone, play an important role in controlling the bone remodeling response. Osteocytes possess gap junctions, narrow channels that extend between nearby cells and allow communication between cells via the transfer of small molecules and ions. This work investigated the potential role of gap junctional intercellular communication in bone remodeling by exposing osteocyte-like MLO-Y4 cells to mechanical strains and quantifying the expression of soluble factors, including sclerostin, a protein closely associated with bone remodeling. The soluble factors and sclerostin expression were further examined after inhibiting gap junctional intercellular communication to study the impact of the communication. At supraphysiologic strains, the inhibition of gap junctional intercellular communication led to increases in sclerostin expression relative to cells in which communication was present, indicating that the communication may play a significant role in regulating bone remodeling.
Collapse
Affiliation(s)
- S L York
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center 275, West Tower, Akron, OH, 44325-0302, USA.
| | - P Sethu
- Department of Cardiovascular Disease, The University of Alabama at Birmingham, McCallum Basic Health Sciences Building 290 A, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - M M Saunders
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center 275, West Tower, Akron, OH, 44325-0302, USA
| |
Collapse
|
40
|
Hikita A, Iimura T, Oshima Y, Saitou T, Yamamoto S, Imamura T. Analyses of bone modeling and remodeling using in vitro reconstitution system with two-photon microscopy. Bone 2015; 76:5-17. [PMID: 25771421 DOI: 10.1016/j.bone.2015.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Bone modeling and remodeling are cellular events during which osteoblast lineage cells and osteoclasts interact. During these events, cells undergo drastic changes with time as they become differentiated. Their morphology, topology, and activity are affected by other cells and the extracellular matrices. Since the mechanisms underlying the cellular events of bone metabolism have not been elucidated, there is a need for systems to analyze these cellular networks and their microenvironments spatiotemporally at the cellular level. Here we report a novel in vitro system for reconstituting the bone cell network of osteoclasts, osteoblasts, and osteocytes in the mineralized nodule, allowing for observation of bone modeling and remodeling phenomena by 2-photon microscopy. Using this system, the change in morphology of osteoblasts from cuboidal to flat cells was observed and measured during the formation of mineralized nodules. Furthermore, the recruitment of osteoblasts to resorption pits and their replenishment by newly formed matrices were successfully observed, providing strong evidence for the coupling of bone resorption and bone formation at cellular level. During such remodeling cycle, flat osteoblasts that survived more than 7 weeks were recruited to resorption pits, where they became cuboidal osteoblasts that express osteocalcin. This novel system permitted the elucidation of cellular behavior during bone modeling and remodeling, and can be used to analyze cellular events involved in bone metabolism.
Collapse
Affiliation(s)
- Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Department of Cartilage & Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tadahiro Iimura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Takashi Saitou
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Gastroenterology and Metabiology, Ehime University, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Ehime, Japan; Division of Bio-imaging, Proteo-Science Center, Ehime University, Ehime, Japan; Translational Research Center, Ehime University Hospital, Ehime, Japan.
| |
Collapse
|
41
|
A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study. Math Biosci 2015; 262:46-55. [DOI: 10.1016/j.mbs.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
|
42
|
Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 2014; 561:22-8. [DOI: 10.1016/j.abb.2014.05.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
43
|
Effect of ovariectomy on stimulating intracortical remodeling in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:421431. [PMID: 25309912 PMCID: PMC4189761 DOI: 10.1155/2014/421431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Technically primates and dogs represent ideal models to investigate diseases characterized by abnormal intracortical remodeling. High expenses and ethical issues, however, restrict the use of those animals in research. Rodent models have been used as alternatives instead, but their value is limited, if none, because these animals lack intracortical bone remodeling. This study aimed at investigating the effect of ovariectomy onto the stimulation of intracortical remodeling in rat mandibles. MATERIALS AND METHODS Sixteen 12-week-old Spraque-Dawly (SD) female rats were randomly assigned into two groups, receiving either ovariectomy or sham operation. All the rats were sacrificed 18 weeks postoperatively. The entire mandibles were harvested for microcomputed tomography (micro-CT) and histomorphometric assessments. RESULTS Micro-CT examination showed significantly decreased bone mineral density (0.95 ± 0.01 versus 1.01 ± 0.02 g/cm(3), P < 0.001) and bone volume (65.78 ± 5.45 versus 87.41 ± 4.12%, P < 0.001) in ovariectomy group. Histomorphometric assessment detected a sixfold increased intracortical bone remodeling as well as an increased bone modeling in mandibles of ovariectomized rats. CONCLUSION For the first time, to the authors' knowledge, it was detected that ovariectomy stimulates intracortical remodeling in rat mandibles. This animal model might be of use to study various bone diseases associated with an abnormal intracortical remodeling process.
Collapse
|
44
|
Fumoto T, Ito M, Ikeda K. Lanthanum carbonate stimulates bone formation in a rat model of renal insufficiency with low bone turnover. J Bone Miner Metab 2014; 32:484-93. [PMID: 24126694 DOI: 10.1007/s00774-013-0521-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Control of phosphate is important in the management of chronic kidney disease with mineral and bone disorder (CKD-MBD), for which lanthanum carbonate, a non-calcium phosphate-binding agent, has recently been introduced; however, it remains to be determined whether it has any beneficial or deleterious effect on bone remodeling. In the present study, the effects of lanthanum carbonate were examined in an animal model that mimics low turnover bone disease in CKD, i.e., thyroparathyroidectomized (TPTX) and 5/6 nephrectomized (NX) rats undergoing a constant infusion of parathyroid hormone (PTH) and thyroxine injections (TPTX-PTH-5/6NX). Bone histomorphometry at the second lumbar vertebra and tibial metaphysis revealed that both bone formation and resorption were markedly suppressed in the TPTX-PTH-5/6NX model compared with the sham-operated control group, and treatment with lanthanum carbonate was associated with the stimulation of bone formation but not an acceleration of bone resorption. Lanthanum treatment caused a robust stimulation of bone formation with an activation of osteoblasts on the endosteal surface of femoral diaphysis, leading to an increase in cortical bone volume. Thus, lanthanum carbonate has the potential to stimulate bone formation in cases of CKD-MBD with suppressed bone turnover.
Collapse
Affiliation(s)
- Toshio Fumoto
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu, Aichi, 474-8511, Japan
| | | | | |
Collapse
|
45
|
The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BONEKEY REPORTS 2014; 3:561. [PMID: 25120911 PMCID: PMC4130129 DOI: 10.1038/bonekey.2014.56] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling sites. The coupling mechanism remains poorly understood, despite the identification of a number of ‘coupling' osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal phase. This review aims at creating awareness of these cells and their activities in adult cancellous bone. It relates cell events (i) on the bone surface, (ii) in the mesenchymal envelope surrounding the bone marrow and appearing as a canopy above remodeling surfaces and (iii) in the bone marrow itself within a 50-μm distance of this canopy. When bone remodeling is initiated, osteoprogenitors at these three different levels are activated, likely as a result of a rearrangement of cell–cell and cell–matrix interactions. Notably, canopies are brought under the osteogenic influence of capillaries and osteoclasts, whereas bone surface cells become exposed to the eroded matrix and other osteoclast products. In several diverse pathophysiological situations, including osteoporosis, a decreased availability of osteoprogenitors from these local reservoirs coincides with decreased osteoblast recruitment and impaired initiation of bone formation, that is, uncoupling. Overall, this review stresses that coupling does not only depend on molecules able to activate osteogenesis, but that it also demands the presence of osteoprogenitors and ordered cell rearrangements at the remodeling site. It points to protection of local osteoprogenitors as a critical strategy to prevent bone loss.
Collapse
|
46
|
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, and University of Melbourne Department of Medicine, Melbourne, Australia
| |
Collapse
|
47
|
Tomita M, Katsuyama H, Watanabe Y, Okuyama T, Fushimi S, Ishikawa T, Nata M, Miyamoto O. Does methamphetamine affect bone metabolism? Toxicology 2014; 319:63-8. [DOI: 10.1016/j.tox.2014.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/26/2013] [Accepted: 01/26/2014] [Indexed: 01/27/2023]
|
48
|
Martig S, Chen W, Lee PVS, Whitton RC. Bone fatigue and its implications for injuries in racehorses. Equine Vet J 2014; 46:408-15. [DOI: 10.1111/evj.12241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- S. Martig
- Faculty of Veterinary Science; The University of Melbourne; Werribee Victoria Australia
| | - W. Chen
- Department of Mechanical Engineering, Melbourne School of Engineering; The University of Melbourne; Parkville Victoria Australia
| | - P. V. S. Lee
- Department of Mechanical Engineering, Melbourne School of Engineering; The University of Melbourne; Parkville Victoria Australia
| | - R. C. Whitton
- Faculty of Veterinary Science; The University of Melbourne; Werribee Victoria Australia
| |
Collapse
|
49
|
The effects of adjunctive parathyroid hormone injection on bisphosphonate-related osteonecrosis of the jaws: an animal study. Int J Oral Maxillofac Surg 2013; 42:1475-80. [DOI: 10.1016/j.ijom.2013.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 11/23/2022]
|
50
|
|