1
|
Weissman JD, Kotekar A, Barbash Z, Mu J, Singer DS. CCAAT Promoter element regulates transgenerational expression of the MHC class I gene. Chromosoma 2024; 133:203-216. [PMID: 38922437 PMCID: PMC11266202 DOI: 10.1007/s00412-024-00820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Transgenerational gene expression depends on both underlying DNA sequences and epigenetic modifications. The latter, which can result in transmission of variegated gene expression patterns across multiple generations without DNA alterations, has been termed epigenetic inheritance and has been documented in plants, worms, flies and mammals. Whereas transcription factors binding to cognate DNA sequence elements regulate gene expression, the molecular basis for epigenetic inheritance has been linked to histone and DNA modifications and non-coding RNA. Here we report that mutation of the CCAAT box promoter element abrogates NF-Y binding and disrupts the stable transgenerational expression of an MHC class I transgene. Transgenic mice with a mutated CCAAT box in the MHC class I transgene display variegated expression of the transgene among littermates and progeny in multiple independently derived transgenic lines. After 4 generations, CCAAT mutant transgenic lines derived from a single founder stably displayed distinct patterns of expression. Histone modifications and RNA polymerase II binding correlate with expression of CCAAT mutant transgenic lines, whereas DNA methylation and nucleosome occupancy do not. Mutation of the CCAAT box also results in changes to CTCF binding and DNA looping patterns across the transgene that correlate with expression status. These studies identify the CCAAT promoter element as a regulator of stable transgenerational gene expression such that mutation of the CCAAT box results in variegated transgenerational inheritance. Considering that the CCAAT box is present in 30% of eukaryotic promoters, this study provides insights into how fidelity of gene expression patterns is maintained through multiple generations.
Collapse
Affiliation(s)
- Jocelyn D Weissman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bldg 10, Room 4B-36, Bethesda, MD, 20892, USA
| | - Aparna Kotekar
- NIH Center for Human Immunology, Inflammation, and Autoimmunity (CHI), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | | | - Jie Mu
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bldg 10, Room 4B-36, Bethesda, MD, 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bldg 10, Room 4B-36, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Weissman JD, Kotekar A, Barbash Z, Mu J, Singer DS. Transgenerational Epigenetic Inheritance of MHC Class I Gene Expression is Regulated by the CCAAT Promoter Element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536772. [PMID: 37333336 PMCID: PMC10274869 DOI: 10.1101/2023.04.13.536772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transgenerational epigenetic inheritance is defined as the transmission of traits or gene expression patterns across multiple generations that do not derive from DNA alterations. The effect of multiple stress factors or metabolic changes resulting in such inheritance have been documented in plants, worms and flies and mammals. The molecular basis for epigenetic inheritance has been linked to histone and DNA modifications and non-coding RNA. In this study, we show that mutation of a promoter element, the CCAAT box, disrupts stable expression of an MHC Class I transgene, resulting in variegated expression among progeny for at least 4 generations in multiple independently derived transgenic lines. Histone modifications and RNA polII binding correlate with expression, whereas DNA methylation and nucleosome occupancy do not. Mutation of the CCAAT box abrogates NF-Y binding and results in changes to CTCF binding and DNA looping patterns across the gene that correlate with expression status from one generation to the next. These studies identify the CCAAT promoter element as a regulator of stable transgenerational epigenetic inheritance. Considering that the CCAAT box is present in 30% of eukaryotic promoters, this study could provide important insights into how fidelity of gene expression patterns is maintained through multiple generations.
Collapse
Affiliation(s)
- Jocelyn D Weissman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna Kotekar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Zohar Barbash
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Jie Mu
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Dinah S Singer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
3
|
Hendy O, Campbell J, Weissman JD, Larson DR, Singer DS. Differential context-specific impact of individual core promoter elements on transcriptional dynamics. Mol Biol Cell 2017; 28:3360-3370. [PMID: 28931597 PMCID: PMC5687036 DOI: 10.1091/mbc.e17-06-0408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 11/11/2022] Open
Abstract
The roles of individual core promoter elements in transcriptional dynamics of MHC class I gene expression were determined by smFISH in primary B-cells. The elements individually modulated transcriptional bursting, differentially contributing to burst size or burst frequency, to enable combinatorial fine-tuning of the level of transcription. Eukaryotic transcription occurs in bursts that vary in size and frequency, but the contribution of individual core promoter elements to transcriptional bursting is not known. Here we analyze the relative contributions to bursting of the individual core promoter elements—CCAAT, TATAA-like, Sp1BS, and Inr—of an MHC class I gene in primary B-cells during both basal and activated transcription. The TATAA-like, Sp1BS, and Inr elements all function as negative regulators of transcription, and each was found to contribute differentially to the overall bursting pattern of the promoter during basal transcription. Whereas the Sp1BS element regulates burst size, the Inr element regulates burst frequency. The TATAA-like element contributes to both. Surprisingly, each element has a distinct role in bursting during transcriptional activation by γ-interferon. The CCAAT element does not contribute significantly to the constitutive transcriptional dynamics of primary B-cells, but modulates both burst size and frequency in response to γ-interferon activation. The ability of core promoter elements to modulate transcriptional bursting individually allows combinatorial fine-tuning of the level of MHC class I gene expression in response to intrinsic and extrinsic signals.
Collapse
Affiliation(s)
- Oliver Hendy
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John Campbell
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jocelyn D Weissman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo. Mol Cell Biol 2013; 33:4395-407. [PMID: 24019072 DOI: 10.1128/mcb.00553-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling.
Collapse
|
5
|
Cohen H, Parekh P, Sercan Z, Kotekar A, Weissman JD, Singer DS. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element. PLoS One 2009; 4:e6748. [PMID: 19707598 PMCID: PMC2727697 DOI: 10.1371/journal.pone.0006748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.
Collapse
Affiliation(s)
- Helit Cohen
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Palak Parekh
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zeynep Sercan
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Aparna Kotekar
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jocelyn D. Weissman
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research (CCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Kotekar AS, Weissman JD, Gegonne A, Cohen H, Singer DS. Histone modifications, but not nucleosomal positioning, correlate with major histocompatibility complex class I promoter activity in different tissues in vivo. Mol Cell Biol 2008; 28:7323-36. [PMID: 18809568 PMCID: PMC2593446 DOI: 10.1128/mcb.00889-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/08/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022] Open
Abstract
To examine the role of chromatin in transcriptional regulation of the major histocompatibility complex (MHC) class I gene, we determined nucleosome occupancy and positioning, histone modifications, and H2A.Z occupancy across its regulatory region in murine tissues that have widely different expression levels. Surprisingly, nucleosome occupancy and positioning were indistinguishable between the spleen, kidney, and brain. In all three tissues, the 200 bp upstream of the transcription start site had low nucleosome occupancy. In contrast, nuclease hypersensitivity, histone modifications, and H2A.Z occupancy showed tissue-specific differences. Thus, tissue-specific differences in MHC class I transcription correlate with histone modifications and not nucleosomal organization. Further, activation of class I transcription by gamma interferon or its inhibition by alpha-amanitin did not alter nucleosome occupancy, positioning, nuclease hypersensitivity, histone modifications, or H2A.Z occupancy in any of the tissues examined. Thus, chromatin remodeling was not required to dynamically modulate transcriptional levels. These findings suggest that the MHC class I promoter remains poised and accessible to rapidly respond to infection and environmental cues.
Collapse
Affiliation(s)
- Aparna S Kotekar
- Molecular Regulation Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
7
|
Howcroft TK, Singer DS. Expression of nonclassical MHC class Ib genes: comparison of regulatory elements. Immunol Res 2003; 27:1-30. [PMID: 12637766 DOI: 10.1385/ir:27:1:1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide binding proteins of the major histocompatibility complex consist of the "classical" class Ia and "nonclassical" class Ib genes. The gene organization and structure/function relationship of the various exons comprising class I proteins are very similar among the class Ia and class Ib genes. Although the tissue-specific patterns of expression of these two gene families are overlapping, many class Ib genes are distinguished by relative low abundance and/or limited tissue distribution. Further, many of the class Ib genes serve specialized roles in immune responses. Given that the coding sequences of the class Ia and class Ib genes are highly homologous we sought to examine the promoter regions of the various class Ib genes by comparison to the well characterized promoter elements regulating expression of the class Ia genes. This analysis revealed a surprising complexity of promoter structures among all class I genes and few instances of conservation of class Ia promoter regulatory elements among the class Ib genes.
Collapse
Affiliation(s)
- T Kevin Howcroft
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA.
| | | |
Collapse
|
8
|
Sakai K, Li Y, Shirakawa T, Kitagawa Y, Hirose G. Induction of major histocompatibility complex class I molecules on human neuroblastoma line cells by a flavoid antioxidant. Neurosci Lett 2001; 298:127-30. [PMID: 11163294 DOI: 10.1016/s0304-3940(00)01748-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human major histocompatibility complex (MHC) class I expression is usually suppressed in neuronal cells and neuroblastoma cells. In the present study, we analyzed the effect of a flavonoid antioxidant, silymarin, on the induction of MHC class I molecules in human neuroblastoma line cells. Treatment of neuroblastoma cells with silymarin resulted in the expression of MHC class I molecules. Silymarin treatment enhanced the transcriptional activity of the reporter construct containing MHC class I promoter truncated within -428 bp of transcription initiation, but not the construct containing the promoter truncated within -284 bp. Because an E-box element is located between -428 and -285 bp of the transcription initiation, results suggest that silymarin acts on the enhancer activity of the E-box in the MHC class I promoter. Our findings indicate that silymarin induces the transcriptional factors to enhance the MHC class I promoter through the class I E-box element.
Collapse
Affiliation(s)
- K Sakai
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku-gun, 920-0293 Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
9
|
Abstract
In swine, the major histocompatibility complex (Mhc) or swine leukocyte antigen (SLA) is located on chromosome 7 and divided by the centromere. Thus, the telomeric class I and more centromeric class III regions are located on the p arm and the class II region is located on the q arm. The SLA region spans about 2 Mb, in which more than 70 genes have so far been characterized. Despite its division by the centromere, the spatial relationships between the genes in the class II and class III regions, and between the well-conserved non-class I genes of the class I region, are similar to those found in the human HLA complex. On the other hand, no orthologous relationships have been found between the Mhc class I genes in man and swine. In swine, the 12 SLA class I sequences constitute two distinct clusters. One cluster comprises six classical class I-related sequences, while the other comprises five class I-distantly related sequences including two swine homologous genes of the HLA Mhc class I chain-related gene (MIC) sequence family. The number of functional SLA classical class I genes, as defined by serology, probably varies from one to four, depending on the haplotype. Some of the SLA class I-distantly related sequences are clearly transcribed. As regards the SLA class II genes, some of them clearly code for at least one functional SLA-DR and one SLA-DQ heterodimer product, but none code for any DP product. The amino acid alignment of the variable domains of 33 SLA classical class I chains, and 62 DR beta and 20 DQ beta chains confirmed the exceptionally polymorphic pattern of these polypeptides. Among the class II genes, the genes are either monomorphic, like the DRA gene, or oligomorphic, like the DQA genes. In contrast, the DRB and DQB genes display considerable polymorphism, which seems more marked in DRB than DQB genes.
Collapse
Affiliation(s)
- P Chardon
- Laboratoire mixte INRA-CEA de Radiobiologie Appliquée, Département de Génétique Animale, Jouy-en-Josas, France.
| | | | | |
Collapse
|
10
|
Fromm SV, Mey-Tal SW, Coligan JE, Schechter C, Ehrlich R. MHC class I heavy chain mRNA must exceed a threshold level for the reconstitution of cell surface expression of class I MHC complexes in cells transformed by the highly oncogenic adenovirus 12. J Biol Chem 1998; 273:15209-16. [PMID: 9614135 DOI: 10.1074/jbc.273.24.15209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In primary embryonal fibroblasts from transgenic mice expressing H-2(b) genes and a miniature swine class I transgene (PD1), transformation with adenovirus 12 results in suppression of assembly and cell surface expression of all class I complexes. Cell surface expression of PD1 can be recovered by transfecting the cells with peptide transporter genes. However, reconstitution of the H-2Kb gene expression requires, in addition, a 2-fold increase in the steady state level of the H-2Kb mRNA that can be attained by treatment of the cells with interferons or by transfecting them with the H-2Kb gene. A detailed analyses of the biogenesis of class I molecules has revealed the steady state expression of free class I heavy chains that are not converted into conformed complexes even when peptide transporter genes are overexpressed. The fact that class I complex assembly seems to be highly inefficient in certain cell lines might be a major in vivo obstacle for the elimination of transformed or virus-infected cells by cytotoxic T lymphocytes, especially in view of the fact that the level of class I gene transcription is often down-regulated in cancer cells and/or that assembly of class I major histocompatibility complexes can be subverted by virus-encoded proteins.
Collapse
Affiliation(s)
- S V Fromm
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
11
|
Montani V, Shong M, Taniguchi SI, Suzuki K, Giuliani C, Napolitano G, Saito J, Saji M, Fiorentino B, Reimold AM, Singer DS, Kohn LD. Regulation of major histocompatibility class II gene expression in FRTL-5 thyrocytes: opposite effects of interferon and methimazole. Endocrinology 1998; 139:290-302. [PMID: 9421427 DOI: 10.1210/endo.139.1.5658] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant expression of major histocompatibility complex (MHC) class II antigens is associated with autoimmune thyroid disease; aberrant expression duplicating the autoimmune state can be induced by interferon-gamma (IFNgamma). We have studied IFNgamma-induced human leukocyte antigen (HLA)-DR alpha gene expression in rat FRTL-5 thyroid cells to identify the elements and factors important for aberrant expression. Using an HLA-DR alpha 5'-flanking region construct from -176 to +45 bp coupled to the chloramphenicol acetyltransferase reporter gene, we show that there is no basal class II gene expression in FRTL-5 thyroid cells, that IFNgamma can induce expression, and, as is the case for antigen-presenting cells from the immune system, that IFNgamma-induced expression requires several highly conserved elements on the 5'-flanking region, which, from 5' to 3', are the S, X1, X2, and Y boxes. Methimazole (MMI), a drug used to treat patients with Graves' disease and experimental thyroiditis in rats or mice, can suppress the IFNgamma-induced increase in HLA-DR alpha gene expression as a function of time and concentration; MMI simultaneously decreases IFNgamma-induced endogenous antigen presentation by the cell. Using gel shift assays and the HLA-DR alpha 5'-flanking region from -176 or -137 to +45 bp as radiolabeled probes, we observed the formation of a major protein-DNA complex with extracts from FRTL-5 cells untreated with IFNgamma, termed the basal or constitutive complex, and formation of an additional complex with a slightly faster mobility in extracts from cells treated with IFNgamma. MMI treatment of cells prevents IFNgamma from increasing the formation of this faster migrating complex. Formation of both complexes is specific, as evidenced in competition studies with unlabeled fragments between -137 and -38 bp from the start of transcription; nevertheless, they can be distinguished in such studies. Thus, high concentrations of double stranded oligonucleotides containing the sequence of the Y box, but not S, X1, or X2 box sequences, can prevent formation of the IFNgamma-increased faster migrating complex, but not the basal complex. Both complexes involve multiple proteins and can be distinguished by differences in their protein composition. Thus, using specific antisera, we show that two cAMP response element-binding proteins, activating transcription factor-1 and/or -2, are dominant proteins in the upper or basal complex. The upper or basal complex also includes c-Fos, Fra-2, Ets-2, and Oct-1. A dominant protein that distinguishes the IFNgamma-increased lower complex is CREB-binding protein (CBP), a coactivator of cAMP response element-binding proteins. We, therefore, show that aberrant expression of MHC class II in thyrocytes, induced by IFNgamma, is associated with the induction or increased formation of a novel protein-DNA complex and that its formation as well as aberrant class II expression are suppressed by MMI, a drug used to treat human and experimental autoimmune thyroid disease. Its component proteins differ from those in a major, basal, or constitutive protein-DNA complex formed with the class II 5'-flanking region in cells that are not treated with IFNgamma and that do not express the class II gene.
Collapse
Affiliation(s)
- V Montani
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Murphy C, Nikodem D, Howcroft K, Weissman JD, Singer DS. Active repression of major histocompatibility complex class I genes in a human neuroblastoma cell line. J Biol Chem 1996; 271:30992-9. [PMID: 8940088 DOI: 10.1074/jbc.271.48.30992] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human neuronal cells express neither major histocompatibility complex (MHC) class I RNA nor cell surface molecules but can be induced to do so by various cytokines. In the present studies, we report that expression of MHC class I in a neuroblastoma cell line, CHP-126, is actively repressed. This repression is mediated by the combined effects of a series of upstream silencer elements. Removal of the silencers reveals not only an active promoter element but also the presence of an active enhancer. Four silencers have been identified and shown to have distinct sequences, binding factors, and patterns of function. One element is located between -724 and -697 base pairs (bp) and corresponds to a silencer involved in tissue-specific regulation of class I gene expression. Three additional elements occur between -503 and -402 bp. One of these corresponds to a c-jun responsive element. Neither of the remaining elements corresponds to DNA sequences known to regulate expression of other genes. These data demonstrate that MHC class I expression normally is actively repressed in neuronal cells and suggest a model of rapid and specific triggering of class I in neuronal cells in response to infection.
Collapse
Affiliation(s)
- C Murphy
- Experimental Immunology Branch, DBS, NCI, National Institutes of Health, Bethesda, Maryland 20892-1360, USA
| | | | | | | | | |
Collapse
|
13
|
Cereb N, Lee S, Maye P, Kong Y, Yang SY. Nonrandom allelic variation in the regulatory complex of HLA class I genes. Hum Immunol 1994; 41:46-51. [PMID: 7836064 DOI: 10.1016/0198-8859(94)90083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, we have demonstrated that the HLA class I regulatory complex (CRC) is conserved in a locus-specific manner with limited allelic variation. In this study, we have analyzed the CRC sequences of the alleles that showed variation from a total of 22 well-characterized, HLA-homozygous B-LCLs, using PCR amplification of genomic DNA and direct sequencing. We compared the sequences of these alleles with their respective locus consensus sequence at kappa B1, kappa B2, the IRS, the putative NRE, and the HLA counterpart of the H-2RII region, the R x R beta-binding site. The palindromic kappa B1 sequence, an active enhancer, was found to be conserved in all HLA-A and -B alleles and in one HLA-C allele. The sequences of the kappa B2 site showed locus-specific divergence with almost no allelic variation. The IRS is strictly locus specific and HLA-B and -C have identical sequences in this region. Variation in the putative NRE sequence and RII-kappa B2 junctional sequence was apparently generated by gene conversion between B and C loci. Each locus had two sequence patterns at the putative RII site. Overall, sequence analysis of variant alleles demonstrated that there is limited variation in a nonrandom fashion. These results may provide a structural basis for locus and allele-specific modulation of these genes.
Collapse
|
14
|
Katz SL, Ehrlich R. De novo methylation of an MHC class I transgene following transformation with human adenoviruses is not correlated with its altered expression. DNA Cell Biol 1994; 13:321-31. [PMID: 7516661 DOI: 10.1089/dna.1994.13.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biological importance of class I histocompatibility antigens in a large variety of immune mechanisms is widely recognized, and their role in tumor rejection has been proven in several experimental tumor systems. Reduced expression of class I antigens, which is correlated with enhanced tumorigenicity, was shown in these systems to be mainly the result of transcriptional down-regulation. Mouse embryonal fibroblasts expressing H-2 antigens and the product of a miniature swine class I transgene, transformed by adenovirus 12, exhibit low levels of all class I antigens on the cell surface. Half of the cell lines demonstrate a suppressed level of class I mRNAs. Cell lines derived from transformation with the early region of adenovirus 5 express a high level of class I antigens. DNAs from adenovirus-transformed cells are extensively hypermethylated both in the 5' and the coding regions of the transgene compared to DNAs from immortalized cell lines and primary embryonal fibroblasts. Nevertheless, hypermethylation of these sequences is not correlated with mRNA level or cell-surface expression of the transgene product. Treatment of the transformed cells with high concentration of 5-azacytidine (5 Aza-C) induced merely a minor enhancement in the expression of class I mRNAs and class I antigens. Thus, this system is a perfect example of where viral transformation is associated with induced methylation of a class I gene, but hypermethylation does not affect its expression. The role of de novo methylation of genes in this system might be associated with transformation, or generation of mutations in CpG-rich sequences.
Collapse
Affiliation(s)
- S L Katz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
15
|
Occupancy of upstream regulatory sites in vivo coincides with major histocompatibility complex class I gene expression in mouse tissues. Mol Cell Biol 1992. [PMID: 1630463 DOI: 10.1128/mcb.12.8.3590] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) class I HLA-B7 transgene carrying a 660-bp upstream sequence is expressed in the mouse with tissue specificity that parallels that of the expression of endogenous mouse MHC class I (H-2) genes. We have performed in vivo genomic footprinting for the HLA-B7 transgene and the endogenous H-2Kb gene. We show that the upstream region of both the transgene and the endogenous gene was extensively occupied in spleen tissue, where these genes are expressed at high levels. In contrast, no occupancy was detected in brain tissue, where expression of these genes is virtually absent. Sites exhibiting in vivo protection correspond to cis elements previously shown to bind to nuclear factors in vitro, including the constitutive enhancer region I and the interferon response element. The strongest tissue-specific protection was detected at site alpha, located downstream from the interferon response element. Site alpha bound a constitutively expressed nuclear factor(s) in vitro that exhibited an overlapping specificity which may involve a nuclear hormone receptor, RXR, and an AP-1-related factor. Site alpha was functional in vivo, as it enhanced MHC class I transcription in lymphocytes. These results show that the tissue-specific occupancy of the MHC class I regulatory sequences in vivo correlates with their expression and suggest that in vivo occupancy is controlled by a mechanism other than the mere presence of factors capable of binding to these sites. Our results suggest that a sequence present in the 660-bp upstream region in a human leukocyte antigen gene directs tissue-specific occupancy of MHC class I genes in vivo, independently of their position and copy number, illustrating a potential advantage of using a transgene for delimitation of the sequence requirement for in vivo occupancy.
Collapse
|
16
|
In vivo function of regulatory DNA sequence elements of a major histocompatibility complex class I gene. Mol Cell Biol 1992. [PMID: 1620117 DOI: 10.1128/mcb.12.7.3078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression.
Collapse
|
17
|
Dey A, Thornton AM, Lonergan M, Weissman SM, Chamberlain JW, Ozato K. Occupancy of upstream regulatory sites in vivo coincides with major histocompatibility complex class I gene expression in mouse tissues. Mol Cell Biol 1992; 12:3590-9. [PMID: 1630463 PMCID: PMC364625 DOI: 10.1128/mcb.12.8.3590-3599.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The major histocompatibility complex (MHC) class I HLA-B7 transgene carrying a 660-bp upstream sequence is expressed in the mouse with tissue specificity that parallels that of the expression of endogenous mouse MHC class I (H-2) genes. We have performed in vivo genomic footprinting for the HLA-B7 transgene and the endogenous H-2Kb gene. We show that the upstream region of both the transgene and the endogenous gene was extensively occupied in spleen tissue, where these genes are expressed at high levels. In contrast, no occupancy was detected in brain tissue, where expression of these genes is virtually absent. Sites exhibiting in vivo protection correspond to cis elements previously shown to bind to nuclear factors in vitro, including the constitutive enhancer region I and the interferon response element. The strongest tissue-specific protection was detected at site alpha, located downstream from the interferon response element. Site alpha bound a constitutively expressed nuclear factor(s) in vitro that exhibited an overlapping specificity which may involve a nuclear hormone receptor, RXR, and an AP-1-related factor. Site alpha was functional in vivo, as it enhanced MHC class I transcription in lymphocytes. These results show that the tissue-specific occupancy of the MHC class I regulatory sequences in vivo correlates with their expression and suggest that in vivo occupancy is controlled by a mechanism other than the mere presence of factors capable of binding to these sites. Our results suggest that a sequence present in the 660-bp upstream region in a human leukocyte antigen gene directs tissue-specific occupancy of MHC class I genes in vivo, independently of their position and copy number, illustrating a potential advantage of using a transgene for delimitation of the sequence requirement for in vivo occupancy.
Collapse
Affiliation(s)
- A Dey
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
18
|
Maguire JE, Frels WI, Richardson JC, Weissman JD, Singer DS. In vivo function of regulatory DNA sequence elements of a major histocompatibility complex class I gene. Mol Cell Biol 1992; 12:3078-86. [PMID: 1620117 PMCID: PMC364522 DOI: 10.1128/mcb.12.7.3078-3086.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression.
Collapse
Affiliation(s)
- J E Maguire
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
19
|
Meadows GG, Wallendal M, Kosugi A, Wunderlich J, Singer DS. Ethanol induces marked changes in lymphocyte populations and natural killer cell activity in mice. Alcohol Clin Exp Res 1992; 16:474-9. [PMID: 1626648 DOI: 10.1111/j.1530-0277.1992.tb01403.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Treatment of mice in vivo with 5% w/v ethanol given in a liquid diet causes marked changes in spleen, peripheral blood, and thymus lymphocytes. In both the thymus and spleen, there is an acute cellular depletion resulting in a significant decrease in gross tissue size and cell number. In spleen and peripheral blood, the percentage of T lymphocytes is increased relative to B lymphocytes, but the ratio of CD4+/CD8+ T cell sub-populations remains unchanged. Splenic natural killer (NK) cell activity is increased in ethanol-consuming mice, although the percentage of NK1.1+ cells is relatively unchanged.
Collapse
Affiliation(s)
- G G Meadows
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
20
|
Saji M, Moriarty J, Ban T, Kohn LD, Singer DS. Hormonal regulation of major histocompatibility complex class I genes in rat thyroid FRTL-5 cells: thyroid-stimulating hormone induces a cAMP-mediated decrease in class I expression. Proc Natl Acad Sci U S A 1992; 89:1944-8. [PMID: 1311856 PMCID: PMC48570 DOI: 10.1073/pnas.89.5.1944] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thyrocytes normally express major histocompatibility complex (MHC) class I, but not class II, cell surface antigens. A rat thyrocyte cell line, FRTL-5, also expresses MHC class I antigens, in addition to a variety of thyroid-specific genes. Treatment of FRTL-5 thyrocytes with physiological concentrations of thyroid-stimulating hormone (TSH) has been shown to induce increased expressed of thyroglobulin and thyroid peroxidase but to simultaneously decrease expression of the TSH receptor. The reduction in TSH receptor expression by TSH is cAMP mediated. In the present study, it is demonstrated that, in thyrocytes treated with TSH, MHC class I expression decreases concomitant with the decrease in TSH receptor expression. This decreased expression is evidenced by reduced cell surface levels of MHC class I antigens, by reduced steady-state RNA levels, and by reduced transcription of the class I genes. TSH-mediated reduction of MHC class I gene transcription in FRTL-5 cells was mapped to a region within 135 base pairs of the promoter.
Collapse
Affiliation(s)
- M Saji
- Laboratory of Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
21
|
Giacomini P, Ciucci A, Nicotra MR, Nastruzzi C, Feriotto G, Appella E, Gambari R, Pozzi L, Natali PG. Tissue-specific expression of the HLA-DRA gene in transgenic mice. Immunogenetics 1991; 34:385-91. [PMID: 1721044 DOI: 10.1007/bf01787489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transgenic mice were produced containing a 33 kilobase (kb) DNA fragment encompassing the five exons and all the known regulatory regions of the class II HLA-DRA gene. The transgene displayed regulated expression [constitutive and interferon-gamma (IFN)-gamma induced] of the human products in most mouse tissues. The tissue distribution of the DRA transgene products more closely resembled that of their mouse homologues, the endogenous H-2 Ea products, than the wider distribution of DRA products in humans. This was evident in several tissues (endothelia of small vessels, especially those of glomerular capillaries, Kupffer cells, and epithelial cells lining the gastrointestinal tract), known to differentially express class II molecules in the two species. Thus, the wider human specific pattern of expression requires an exact cis/trans complementation which is incompletely reconstituted in transgenic mice, suggesting that human-specific cis-acting elements may have arisen during evolution to direct the expression of class II genes to those anatomical regions which usually lack them in the mouse. The only example of aberrant expression of the DRA gene in the present series of transgenic mice was in the dendritic and/or epithelial cells of the thymic cortex, which displayed greatly reduced DR alpha levels in spite of a normal expression of the endogenous E alpha molecules.
Collapse
Affiliation(s)
- P Giacomini
- Immunology Laboratory, Regina Elena Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shemesh J, Rotem-Yehudar R, Ehrlich R. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses. J Virol 1991; 65:5544-8. [PMID: 1895404 PMCID: PMC249056 DOI: 10.1128/jvi.65.10.5544-5548.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells.
Collapse
Affiliation(s)
- J Shemesh
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
23
|
A complex regulatory DNA element associated with a major histocompatibility complex class I gene consists of both a silencer and an enhancer. Mol Cell Biol 1991. [PMID: 2072915 DOI: 10.1128/mcb.11.8.4217] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.
Collapse
|
24
|
Weissman JD, Singer DS. A complex regulatory DNA element associated with a major histocompatibility complex class I gene consists of both a silencer and an enhancer. Mol Cell Biol 1991; 11:4217-27. [PMID: 2072915 PMCID: PMC361246 DOI: 10.1128/mcb.11.8.4217-4227.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression.
Collapse
Affiliation(s)
- J D Weissman
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|