1
|
Sheemar A, Bellala K, Sharma SV, Sharma S, Kaur I, Rani P, Sivaprasad S, Narayan KV, Das T, Takkar B. Metabolic memory and diabetic retinopathy: Legacy of glycemia and possible steps into future. Indian J Ophthalmol 2024; 72:796-808. [PMID: 38804800 PMCID: PMC11232859 DOI: 10.4103/ijo.ijo_2563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 05/29/2024] Open
Abstract
The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.
Collapse
Affiliation(s)
| | - Keerthi Bellala
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vishakhapatnam, Andhra Pradesh, India
| | | | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Padmaja Rani
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, UK
| | - Km Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, USA
| | - Taraprasad Das
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Indian Health Outcomes, Public Health and Health Economics Research Centre (IHOPE), LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Bathina S, Das UN. Resolvin D1 Decreases Severity of Streptozotocin-Induced Type 1 Diabetes Mellitus by Enhancing BDNF Levels, Reducing Oxidative Stress, and Suppressing Inflammation. Int J Mol Sci 2021; 22:1516. [PMID: 33546300 PMCID: PMC7913477 DOI: 10.3390/ijms22041516] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by increased production of pro-inflammatory cytokines secreted by infiltrating macrophages and T cells that destroy pancreatic β cells in a free radical-dependent manner that causes decrease or absence of insulin secretion and consequent hyperglycemia. Hence, suppression of pro-inflammatory cytokines and oxidative stress may ameliorate or decrease the severity of diabetes mellitus. To investigate the effect and mechanism(s) of action of RVD1, an anti-inflammatory metabolite derived from docosahexaenoic acid (DHA), on STZ-induced type 1 DM in male Wistar rats, type 1 diabetes was induced by single intraperitoneal (i.p) streptozotocin (STZ-65 mg/kg) injection. RVD1 (60 ng/mL, given intraperitoneally) was administered from day 1 along with STZ for five consecutive days. Plasma glucose, IL-6, TNF-α, BDNF (brain-derived neurotrophic factor that has anti-diabetic actions), LXA4 (lipoxin A4), and RVD1 levels and BDNF concentrations in the pancreas, liver, and brain tissues were measured. Apoptotic (Bcl2/Bax), inflammatory (COX-1/COX-2/Nf-κb/iNOS/PPAR-γ) genes and downstream insulin signaling proteins (Gsk-3β/Foxo1) were measured in the pancreatic tissue along with concentrations of various antioxidants and lipid peroxides. RVD1 decreased severity of STZ-induced type 1 DM by restoring altered plasma levels of TNF-α, IL-6, and BDNF (p < 0.001); expression of pancreatic COX-1/COX-2/PPAR-γ genes and downstream insulin signaling proteins (Gsk-3β/Foxo1) and the concentrations of antioxidants and lipid peroxides to near normal. RVD1 treatment restored expression of Bcl2/Pdx genes, plasma LXA4 (p < 0.001) and RVD1 levels and increased brain, pancreatic, intestine, and liver BDNF levels to near normal. The results of the present study suggest that RVD1 can prevent STZ-induced type 1 diabetes by its anti-apoptotic, anti-inflammatory, and antioxidant actions and by activating the Pdx gene that is needed for pancreatic β cell proliferation.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India;
- Department of Biotechnology, Gandhi Institute of Science (GIS), GITAM University, Visakhapatnam 530048, India
| | - Undurti N. Das
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India;
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA
- International Research Centre, Biotechnologies of the Third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
3
|
Ayalew AA. Chromatographic and spectroscopic determination of solvent-extracted Lantana camara leaf oil. J Int Med Res 2020; 48:300060520962344. [PMID: 33100100 PMCID: PMC7645447 DOI: 10.1177/0300060520962344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective This study aimed to determine the chemical profile of Lantana camara leaf oil. Methods The essential oil was extracted from dried leaf samples using the Soxhlet extraction method. The oil was separated from the solvent and the bioactive compounds were identified using gas chromatography–mass spectroscopy (GC-MS) and Fourier transform infrared spectroscopy (FTIR). The identified peaks in the mass spectrum were matched with the database of the US National Institute of Standards and Technology (NIST) library. Results The FT-IR results indicated the presence of alcohols, carboxylic acids, phenols, alkanes, ketones, and primary amine compounds. GC-MS identified 43 compounds representing 95% of the total leaf essential oil components. Some of the major isolated compounds included a pyrrolizine; 1-dodecanol; 1,2-nonadecanediol; phytol; 1,3-dioxolane; 4-undecene, 9-methyl, (Z)-; 1-eicosanol; and imidazole. Conclusions The identified constituents of the extracted oil have established pharmacologic and insecticidal activities, and these compounds are also used in the drink, food, and cosmetic industries. This extract is highly valuable for the medical treatment of various ailments.
Collapse
Affiliation(s)
- Adane Adugna Ayalew
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| |
Collapse
|
4
|
Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes 2015; 8:181-188. [PMID: 25897251 PMCID: PMC4396517 DOI: 10.2147/dmso.s82272] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic hyperglycemia and the corresponding glucotoxicity are the main pathogenic mechanisms of diabetes and its complications. Streptozotocin (STZ)-induced diabetic animal models are useful platforms for the understanding of β cell glucotoxicity in diabetes. As diabetes induced by a single STZ injection is often referred to as type 1 diabetes that is caused by STZ's partial destruction of pancreas, one question often being asked is whether the STZ type 1 diabetes animal model is a good model for studying the mitochondrial mechanisms of β cell glucotoxicity. In this mini review, we provide evidence garnered from the literature that the STZ type 1 diabetes is indeed a suitable model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Evidence presented includes: 1) continued β cell derangement is due to chronic hyperglycemia after STZ is completely eliminated out of the body; 2) STZ diabetes can be reversed by insulin treatment, which indicates that β cell responds to treatment and shows ability to regenerate; and 3) STZ diabetes can be ameliorated or alleviated by administration of phytochemicals. In addition, mechanisms of STZ action and fundamental gaps in understanding mitochondrial mechanisms of β cell dysfunction are also discussed.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
5
|
Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IMP, Rudge MVC. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:819065. [PMID: 24977161 PMCID: PMC4058231 DOI: 10.1155/2014/819065] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Glucose homeostasis is controlled by endocrine pancreatic cells, and any pancreatic disturbance can result in diabetes. Because 8% to 12% of diabetic pregnant women present with malformed fetuses, there is great interest in understanding the etiology, pathophysiological mechanisms, and treatment of gestational diabetes. Hyperglycemia enhances the production of reactive oxygen species, leading to oxidative stress, which is involved in diabetic teratogenesis. It has also been suggested that maternal diabetes alters embryonic gene expression, which might cause malformations. Due to ethical issues involving human studies that sometimes have invasive aspects and the multiplicity of uncontrolled variables that can alter the uterine environment during clinical studies, it is necessary to use animal models to better understand diabetic pathophysiology. This review aimed to gather information about pathophysiological mechanisms and fetal outcomes in streptozotocin-induced diabetic rats. To understand the pathophysiological mechanisms and factors involved in diabetes, the use of pancreatic regeneration studies is increasing in an attempt to understand the behavior of pancreatic beta cells. In addition, these studies suggest a new preventive concept as a treatment basis for diabetes, introducing therapeutic efforts to minimize or prevent diabetes-induced oxidative stress, DNA damage, and teratogenesis.
Collapse
Affiliation(s)
- D. C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
- Department of Gynecology and Obstetrics, Botucatu Medical School, UNESP-Univsidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. O. Netto
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. L. Iessi
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - F. Q. Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - S. B. Corvino
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - B. Dallaqua
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - Y. K. Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - A. Bueno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - I. M. P. Calderon
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| | - M. V. C. Rudge
- Laboratory of Experimental Research on Gynecology and Obstetrics, Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, UNESP-Universidade Estadual Paulista, Distrito de Rubião Júnior S/N, 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
6
|
Evaluation of chromosomal instability in diabetic rats treated with naringin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:365292. [PMID: 21941606 PMCID: PMC3176618 DOI: 10.1155/2011/365292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/05/2011] [Indexed: 12/03/2022]
Abstract
We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients.
Collapse
|
7
|
Attia SM, Helal GK, Alhaider AA. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem Biol Interact 2009; 180:296-304. [PMID: 19497428 DOI: 10.1016/j.cbi.2009.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 11/29/2022]
Abstract
To examine if a single or multiple oral administration of metformin, a member of the biguanide class of anti-diabetic agents, has any genotoxic and cytotoxic potential in normal and diabetic rats, a mammalian model, cytogenetic assays through several endpoints such as induction of micronuclei, chromosome aberrations, mitotic activity of bone marrow cells, sperm-head anomaly and assays of some oxidative stress markers have been conducted by the use of standard techniques. Diabetes was induced by streptozotocin injection. Metformin was administrated to both diabetic and non-diabetic rats in single doses of 100, 500 or 2500 mg/kg along with vehicle control groups for diabetic and non-diabetic rats. The animals were killed by cervical dislocation at 24h after treatment, and then bone marrow cells were sampled. Also, a multiple dose study has done in which diabetic and non-diabetic animals were treated with 100 or 500 mg/kg of metformin daily for 4 or 8 weeks after which the animals were killed by cervical dislocation, and then bone marrow and sperm cells were collected. Concurrent control groups were also included in each experiment. The obtained results revealed that metformin was neither genotoxic nor cytotoxic for the rats in all groups at all tested doses. Moreover, metformin significantly reduced the diabetes-induced genomic instability and cell proliferation changes in somatic and germinal cells in a dose-dependent manner (2500, 500, >100mg/kg). In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including, enhanced lipid peroxidation and reduction in the reduced glutathione level. Treatment with metformin ameliorated these biochemical markers. In conclusion, metformin is a non-genotoxic or cytotoxic compound and may protect from genomic instability induced by hyperglycemia. Apart from its well-known anti-diabetic effect, the antigenotoxic effect of metformin could be possibly ascribed to its radical scavenger effect that modulated the genomic instability responses and cell proliferation changes induced by hyperglycemia.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
8
|
Lima PHO, Damasceno DC, Sinzato YK, de Souza MDSS, Salvadori DMF, Calderon IDMP, Rudge MVC. Levels of DNA damage in blood leukocyte samples from non-diabetic and diabetic female rats and their fetuses exposed to air or cigarette smoke. Mutat Res 2008; 653:44-9. [PMID: 18455954 DOI: 10.1016/j.mrgentox.2008.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 01/11/2023]
Abstract
The objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2); non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40mg/kgb.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking.
Collapse
Affiliation(s)
- Paula Helena Ortiz Lima
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University , São Paulo State, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Streptozotocin (Streptozocin, STZ, CAS No. 18883-66-4) is a monofunctional nitrosourea derivative isolated from Streptomyces achromogenes. It has broad spectrum antibiotic activity and antineoplastic properties and is often used to induce diabetes mellitus in experimental animals through its toxic effects on pancreatic beta cells. STZ is a potent alkylating agent known to directly methylate DNA and is highly genotoxic, producing DNA strand breaks, alkali-labile sites, unscheduled DNA synthesis, DNA adducts, chromosomal aberrations, micronuclei, sister chromatid exchanges, and cell death. This antibiotic was found to be mutagenic in bacterial assays and eukaryotic cells. STZ is also carcinogenic; a single administration induces tumors in rat kidney, liver, and pancreas. Several lines of evidence indicate that free radicals are involved in the production of DNA and chromosome damage by this compound. Because of the use of STZ as an antineoplastic agent, the study of its genotoxicity has considerable practical significance. The purpose of this review is to present our current knowledge regarding the genotoxicity of STZ.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900, La Plata, Argentina.
| | | |
Collapse
|
10
|
Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J 2001; 356:31-41. [PMID: 11336633 PMCID: PMC1221809 DOI: 10.1042/0264-6021:3560031] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptozotocin (STZ), an analogue of GlcNAc, inhibits purified rat spleen O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase (O-GlcNAcase), the enzyme that removes O-GlcNAc from protein. We have shown previously that STZ increases pancreatic islet O-linked protein glycosylation. In light of these data, we investigated the possibility further that STZ causes beta-cell death by inhibiting O-GlcNAcase. In isolated islets, the time course and dose curve of STZ-induced O-glycosylation correlated with beta-cell toxicity. STZ inhibition of rat islet O-GlcNAcase activity also paralleled that of its beta-cell toxicity, with significant inhibition occurring at a concentration of 1 mM. In contrast, STZ inhibition of rat brain O-GlcNAcase and beta-TC3 insulinoma cell O-GlcNAcase was significantly right-shifted compared with islets, with STZ only significantly inhibiting activity at a concentration of 5 mM, the same concentration required for beta-TC3 cell toxicity. In comparison, N-methyl-N-nitrosourea, the nitric oxide-donating portion of STZ, did not cause increased islet O-glycosylation, beta-cell toxicity or inhibition of beta-cell O-GlcNAcase. Enhanced STZ sensitivity of islet O-GlcNAcase compared with O-GlcNAcase from other tissues or an insulinoma cell line suggests why actual islet beta-cells are particularly sensitive to STZ. Confirming this idea, STZ-induced islet beta-cell toxicity was completely blocked by GlcNAc, which also prevented STZ-induced O-GlcNAcase inhibition, but was not even partially blocked by glucose, glucosamine or GalNAc. Together, these data demonstrate that STZ's inhibition of beta-cell O-GlcNAcase is the mechanism that accounts for its diabetogenic toxicity.
Collapse
Affiliation(s)
- R J Konrad
- Department of Pathology, University of Alabama at Birmingham, P230G West Pavilion, 619 South 19th Street, Birmingham, AL 35233-7331, USA.
| | | | | | | | | |
Collapse
|
11
|
Huang X, Hultgren B, Dybdal N, Stewart TA. Islet expression of interferon-alpha precedes diabetes in both the BB rat and streptozotocin-treated mice. Immunity 1994; 1:469-78. [PMID: 7895158 DOI: 10.1016/1074-7613(94)90089-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanism(s) leading to beta cell dysfunction in type I diabetes has not been defined. We have investigated whether islet expression of IFN alpha could be a cause of the lesions that are hallmarks of type I diabetes. Streptozotocin induces the expression of interferon-alpha by pancreatic islets prior to the diabetes induced by streptozotocin. Increased IFN alpha, induced by poly I/C or expressed from a transgene will exacerbate the diabetogenic effects of streptozotocin. In another rodent model of type I diabetes (the BB rat), islet expression of IFN alpha precedes lymphocytic infiltration and diabetes. As in the streptozotocin model, in the BB rats poly I/C will induce islet expression of IFN alpha and accelerate the onset of diabetes. These results are consistent with the hypothesis that islet expression of IFN alpha participates in causing type I diabetes.
Collapse
Affiliation(s)
- X Huang
- Department of Endocrine Research, Genentech, Incorporated, South San Francisco, California 94080
| | | | | | | |
Collapse
|
12
|
Miller CP, Fischer LJ. Cyproheptadine-induced alterations in clonal insulin-producing cell lines. Biochem Pharmacol 1990; 39:1983-90. [PMID: 2191652 DOI: 10.1016/0006-2952(90)90619-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cyproheptadine (CPH) inhibits glucose-stimulated insulin synthesis and secretion, and reversibly depletes pancreatic insulin content in the rat. To examine whether the inhibitory actions of CPH on insulin cell function are linked to the ability of glucose to stimulate insulin synthesis and secretion, studies were performed in two different insulin-producing cell lines. CPH effects were compared in HIT-T15 cells, which respond to glucose with increased insulin synthesis and secretion, and in glucose-unresponsive RINm5F cells. CPH produced similar alterations in both cells lines. After a 48-hr culture period in the presence of 0, 0.1, 1.0 or 10.0 microM CPH, cellular insulin stores and media insulin levels were decreased in a concentration-dependent manner. At 10.0 microM CPH, RIN and HIT cell insulin content declined to 34 and 33% of controls respectively. Cellular insulin returned to control levels 48 hr after removal of CPH. In experiments designed to test a direct inhibitory effect on stimulated insulin secretion, 1 and 10.0 microM concentrations of CPH were found to inhibit glucose-stimulated insulin release from HIT cells, and K+, alanine and glyceraldehyde-stimulated release from RIN cells. CPH was also shown to inhibit insulin biosynthesis in both cell lines at concentrations that did not alter the synthesis of total cellular proteins. All of these alterations in cellular function were shown to occur at CPH concentrations that did not affect cell growth or viability. The results show that the actions of CPH do not appear to be dependent upon the existence of operational glucose signalling mechanisms for insulin synthesis and secretion.
Collapse
Affiliation(s)
- C P Miller
- Department of Pharmacology, Michigan State University, East Lansing 48824
| | | |
Collapse
|
13
|
Levy J, Reid I, Halstad L, Gavin JR, Avioli LV. Abnormal cell calcium concentrations in cultured bone cells obtained from femurs of obese and noninsulin-dependent diabetic rats. Calcif Tissue Int 1989; 44:131-7. [PMID: 2492889 DOI: 10.1007/bf02556472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytoplasmic free calcium concentration [Ca2+]i was quantified in cultured bone cells with osteoblastic characteristics. The cells were obtained from femurs of obese (fa/fa) Wistar-Kyoto rats, from nonobese, noninsulin-dependent diabetic (NIDD) Sprague Dawley rats, and from their appropriate controls. [Ca2+]i was also determined in bone cells obtained from in vivo insulin-treated NIDD rats. Obese (Wistar Kyoto) rats had increased body weight (313 +/- 13 vs. 249 +/- 4 g; P less than 0.01), decreased femur weights (0.68 +/- 0.05 vs. 0.89 +/- 0.05 g; P less than 0.05), similar glucose levels (148 +/- 5 vs. 139 +/- 3 mg/dl), and higher plasma insulin levels (6.0 +/- 0.5 vs. 0.7 +/- 0.1 ng/ml; P less than 0.01) when compared with their nonobese [(fa/+); (+/+)] littermates. Nonobese, NIDD rats, compared with their appropriate controls (nondiabetic Sprague Dawley rats) had higher plasma glucose levels (235 +/- 32 vs. 145 +/- 3 mg/dl; P less than 0.01) but their plasma insulins, body weights, and femur weights were similar to controls (0.7 +/- 0.1 vs. 0.6 +/- 0.1 ng/ml; 302 +/- 4 vs. 318 +/- 14 g; 0.97 +/- 0.4 vs. 0.98 +/- 0.04 g, respectively). Long-term (4 weeks) daily insulin treatment (2 u/100 g) of the NIDD rats increased their plasma insulin (1.9 ng/ml; P less than 0.05) and body weight (369 +/- 13 g; P less than 0.05) but did not change their plasma glucose levels (225 +/- 5 mg/dl), or femur weights (0.98 +/- 0.4 g).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Levy
- Division of Endocrinology and Bone Metabolism, Jewish Hospital of St. Louis, Washington University School of Medicine, Missouri
| | | | | | | | | |
Collapse
|
14
|
Kolb H. Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. DIABETES/METABOLISM REVIEWS 1987; 3:751-78. [PMID: 2956075 DOI: 10.1002/dmr.5610030308] [Citation(s) in RCA: 182] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Fram R, Sullivan J, Marinus M. Mutagenesis and repair of DNA damage caused by nitrogen mustard, N,N′-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C in E. coli. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0167-8817(86)90023-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|