1
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
2
|
Marcano ACB, Onipinla AK, Caulfield MJ, Munroe PB. Recent advances in the identification of genes for human hypertension. Expert Rev Cardiovasc Ther 2014; 3:733-41. [PMID: 16076282 DOI: 10.1586/14779072.3.4.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is a well-established fact that genes are involved in the etiology of hypertension. However, identification of the gene variants still remains a challenge. Over the years, different approaches and technologies, including genome-wide scans, case-control association studies, experiments on inbred rodent models and expression profiling, have been utilized to elucidate hypertension susceptibility genes, but so far the results have been equivocal. During the last year, further chromosomal regions harboring blood pressure loci have been identified, and transcriptomics has been applied to aid the identification of disease genes. There are great expectations for the future with regards to further advancements in transcriptomics and proteomics. This review reports primarily on work that has been carried out in the last 12 months in the field, and considers its contribution towards a better understanding of the genetic mechanisms involved in blood pressure regulation and hypertension.
Collapse
Affiliation(s)
- Ana C B Marcano
- Clinical Pharmacology and The Genome Centre, The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, EC1M 6BQ, UK.
| | | | | | | |
Collapse
|
3
|
Rapp JP. Theoretical model for gene-gene, gene-environment, and gene-sex interactions based on congenic-strain analysis of blood pressure in Dahl salt-sensitive rats. Physiol Genomics 2013; 45:737-50. [PMID: 23757391 DOI: 10.1152/physiolgenomics.00046.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a significant literature describing quantitative trait loci (QTL) controlling blood pressure (BP) in the Dahl salt-sensitive (S) rat. In studies to identify the genes underlying BP QTL it has been common practice to place chromosomal segments from low BP strains on the genetic background of the S rat and then reduce the congenic segments by substitution mapping. The present work suggests a model to simulate genetic interactions found using such congenic strains. The QTL are considered to be switches that can be either in series or in parallel represented by the logic operators AND or OR, respectively. The QTL switches can be on/off switches but are also allowed specific leak properties. The QTL switches are represented by a "universal" switch consisting of two molecules binding to form a complex. Genetic inputs enter the model as allelic products of one of the binding molecules and environmental variation (including dietary salt- and sex-related differences) enters as an influence on the concentration of the other binding molecule. The pairwise interactions of QTL are very well simulated and fall into recognizable patterns. There is, however, often more than one assumed model to predict a given pattern so that all patterns do not necessarily have a unique solution. Nevertheless, the models obtained provide a framework for placing the QTL in pathways relative to one another. Moreover, based on their leak properties pairs of QTL could be identified in which one QTL may alter the properties of the other QTL.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA. )
| |
Collapse
|
4
|
Kunert MP, Dwinell MR, Lombard JH. Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiol Genomics 2010; 42A:244-58. [PMID: 20841496 DOI: 10.1152/physiolgenomics.00124.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present experiments, utilizing the high-throughput vascular protocol of PhysGen (Program for Genomic Applications) characterized the responses of aortic rings to vasoconstrictor (phenylephrine) and vasodilator (acetylcholine, sodium nitroprusside, and reduced tissue bath Po(2)) stimuli in consomic rat strains derived from a cross between the Fawn Hooded Hypertensive rat (FHH/EurMcwi) and the Brown Norway normotensive (BN/NHsdMcwi) rat. The effects of substituting individual BN chromosomes into the FHH genetic background were determined in animals that were maintained on a low-salt (0.4% NaCl) diet or switched to a high-salt (4% NaCl) diet for 3 wk. Sex-specific differences were evaluated in male and female consomic rats on similar dietary salt intake. Multiple chromosomes affected various vascular reactivity phenotypes in the FHH × BN consomic panel, and substantial salt-dependent changes in vascular reactivity and sex-specific differences in aortic reactivity were observed in individual consomic strains. However, compared with earlier studies of consomic rats derived from a cross between the BN rat and the Dahl salt-sensitive (SS) rat, only 3-7% of the vascular phenotypes were affected in a similar manner by substituting specific BN chromosomeschromosomes into the FHH genetic background versus the SS genetic background. The findings of the present study stress the potential value of consomic rat panels in gaining insight into genetic factors influencing vascular reactivity and suggest that the chromosomes that appear to be involved in the determination of aortic ring reactivity in different rodent models of hypertension are highly strain- and sex specific.
Collapse
Affiliation(s)
- Mary Pat Kunert
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
5
|
Aneas I, Rodrigues MV, Pauletti BA, Silva GJJ, Carmona R, Cardoso L, Kwitek AE, Jacob HJ, Soler JMP, Krieger JE. Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiol Genomics 2009; 37:52-7. [PMID: 19126752 DOI: 10.1152/physiolgenomics.90299.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To dissect the genetic architecture controlling blood pressure (BP) regulation in the spontaneously hypertensive rat (SHR) we derived congenic rat strains for four previously mapped BP quantitative trait loci (QTLs) in chromosomes 2, 4, and 16. Target chromosomal regions from the Brown Norway rat (BN) averaging 13-29 cM were introgressed by marker-assisted breeding onto the SHR genome in 12 or 13 generations. Under normal salt intake, QTLs on chromosomes 2a, 2c, and 4 were associated with significant changes in systolic BP (13, 20, and 15 mmHg, respectively), whereas the QTL on chromosome 16 had no measurable effect. On high salt intake (1% NaCl in drinking water for 2 wk), the chromosome 16 QTL had a marked impact on SBP, as did the QTLs on chromosome 2a and 2c (18, 17, and 19 mmHg, respectively), but not the QTL on chromosome 4. Thus these four QTLs affected BP phenotypes differently: 1) in the presence of high salt intake (chromosome 16), 2) only associated with normal salt intake (chromosome 4), and 3) regardless of salt intake (chromosome 2c and 2a). Moreover, salt sensitivity was abrogated in congenics SHR.BN2a and SHR.BN16. Finally, we provide evidence for the influence of genetic background on the expression of the mapped QTLs individually or as a group. Collectively, these data reveal previously unsuspected nuances of the physiological roles of each of the four mapped BP QTLs in the SHR under basal and/or salt loading conditions unforeseen by the analysis of the F2 cross.
Collapse
Affiliation(s)
- Ivy Aneas
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kriegel AJ, Greene AS. Substitution of Brown Norway chromosome 16 preserves cardiac function with aging in a salt-sensitive Dahl consomic rat. Physiol Genomics 2008; 36:35-42. [PMID: 18940898 DOI: 10.1152/physiolgenomics.00054.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determination of the genetic factors that control the progression of left ventricular hypertrophy (LVH) to heart failure has been difficult despite extensive study in animal models. Here we have characterized a consomic rat model of LVH resulting from the introgression of chromosome 16 from the normotensive Brown Norway (BN) rat onto the genetic background of the Dahl salt-sensitive (SS/Mcwi) rat by marker assisted breeding. The SS-16BN/Mcwi consomic rats are normotensive but display LVH equivalent to the hypertensive SS/Mcwi rats at early ages. In this study we tracked the development of LVH by echocardiography and analyzed changes in cardiac function and morphology with aging in the SS-16BN/Mcwi, SS/Mcwi, and BN to determine if the consomic SS-16BN/Mcwi was a model of hypertrophic cardiomyopathy (HCM). Aging SS-16BN/Mcwi rats showed no evidence of heart failure or impaired cardiac function upon extensive analysis of left ventricle function by echocardiography and pressure-volume relationships, while their parental SS/Mcwi experienced deterioration in function between 18 and 36 wk of age. In addition aging SS-16BN/Mcwi did not exhibit tissue remodeling common to pathological hypertrophy and HCM such as increased fibrosis and reduced capillary density in the myocardium. In fact, SS-16BN/Mcwi were better protected from developing LV fibrosis with age than either the hypertensive SS/Mcwi or normotensive BN parental strains. This suggests that a gene or genes on chromosome 16 may be involved with both blood pressure regulation and preservation of cardiac function with aging.
Collapse
Affiliation(s)
- A J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
7
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Jacob HJ, Cowley AW. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Renal Physiol 2008; 295:F837-42. [PMID: 18653478 DOI: 10.1152/ajprenal.90341.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study examined the genetic basis of hypertension and renal disease in Dahl SS/Mcwi (Dahl Salt-Sensitive) rats using a complete chromosome substitution panel of consomic rats in which each of the 20 autosomes and the X and Y chromosomes were individually transferred from the Brown Norway (BN) rat onto the Dahl SS/Mcwi genetic background. Male and female rats of each of the two parental and 22 consomic strains (10-12 rats/group) were fed a high-salt (8.0% NaCl) diet for 3 wk. Mean arterial blood pressure rose by 60 mmHg and urinary protein and albumin excretion increased 3- and 20-fold, respectively, in male SS/Mcwi rats compared with BN controls. Substitution of chromosomes 1, 5, 7, 8, 13, or 18 from the BN onto the SS/Mcwi background attenuated the development of hypertension, proteinuria, and albuminuria in male rats. In female rats, substitution of chromosomes 1 and 5 also decreased blood pressure, protein excretion, and albumin excretion. These studies also identified several chromosomes in male (6, 11, Y) and female (4, 6, 11, 19, 20) rats that reduced albuminuria without altering blood pressure. These data indicate that genes contributing to salt-sensitive hypertension are found on multiple chromosomes of the Dahl SS/Mcwi rat. Furthermore, this consomic rat panel provides a stable genetic platform that can facilitate further gene mapping by either linkage studies or the breeding of congenic and subcongenic rats.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Duong C, Charron S, Xiao C, Hamet P, Ménard A, Roy J, Deng AY. Distinct quantitative trait loci for kidney, cardiac, and aortic mass dissociated from and associated with blood pressure in Dahl congenic rats. Mamm Genome 2006; 17:1147-61. [PMID: 17143582 DOI: 10.1007/s00335-006-0086-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/30/2006] [Indexed: 01/19/2023]
Abstract
Blood pressure (BP) is largely determined by quantitative trait loci (QTLs) in Dahl salt-sensitive (DSS) rats. Little is known about QTLs controlling kidney (K), cardiac (C), and aortic (A) mass (i.e. Km, Cm, and Am, respectively) of DSS rats independent of BP. Their identification can facilitate our understanding of end organ damage. In this work, 36 congenic strains were employed to define QTLs for Km, Cm, and Am either independent of or associated with BP. Five new QTLs, i.e., KmQTLs, that influence Km independent of Cm, Am, and BP were defined. Four new CakmQTLs were defined for Cm, Am, and Km independent of BP. Among them, the CakmC10QTL1 interval contained 13 genes and undefined loci, and none was known to influence the phenotypes in question, paving the way for a novel gene discovery. Among 17 individual QTLs for BP, 14 also affected Cm, Km, and Am, i.e., they are BpcakmQTLs. In contrast, one BpQTL had no effect on Cm, Am, and Kam. Therefore, BP and Cm, Am, and Km have distinct and shared genetic determinants. The discovery of individual Km and Cakm QTLs will likely facilitate the identification of mechanisms underlying renal, cardiac, and/or aortic hypertrophy independent of hypertension.
Collapse
Affiliation(s)
- Chenda Duong
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Charron S, Duong C, Ménard A, Roy J, Eliopoulos V, Lambert R, Deng AY. Epistasis, Not Numbers, Regulates Functions of Clustered Dahl Rat Quantitative Trait Loci Applicable to Human Hypertension. Hypertension 2005; 46:1300-8. [PMID: 16286573 DOI: 10.1161/01.hyp.0000192024.72367.c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.
Collapse
Affiliation(s)
- Sophie Charron
- Research Centre-Centre Hospitalier, Université de Montréal, Hôtel Dieu, 3840 rue St. Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Eliopoulos V, Dutil J, Deng Y, Grondin M, Deng AY. Severe hypertension caused by alleles from normotensive Lewis for a quantitative trait locus on chromosome 2. Physiol Genomics 2005; 22:70-5. [PMID: 15827238 DOI: 10.1152/physiolgenomics.00019.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pursuing fully a suggestion from linkage analysis that there might be a quantitative trait locus (QTL) for blood pressure (BP) in a chromosome (Chr) 2 region of the Dahl salt-sensitive rat (DSS), four congenic strains were made by replacing various fragments of DSS Chr 2 with those of Lewis (LEW). Consequently, a BP QTL was localized to a segment of around 3 cM or near 3 Mb on Chr 2 by comparative congenics. The BP-augmenting alleles of this QTL originated from the LEW rat, a normotensive strain compared with DSS. The dissection of a QTL with such a paradoxical effect illustrated the power of congenics in unearthing a gene hidden in the context of the whole animal system, presumably by interactions with other genes. The locus for the angiotensin II receptor AT-1B ( Agtr1b) is not supported as a candidate gene for the QTL because a congenic strain harboring it did not have an effect on BP. There are ∼19 known and unknown genes present in the QTL interval. Among them, no standout candidate genes are reputed to affect BP. Thus the QTL will likely represent a novel gene for BP regulation.
Collapse
Affiliation(s)
- Vasiliki Eliopoulos
- Research Centre-Centre Hospitalier de l'Université de Montréal (CHUM), Hôtel Dieu, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, Peng J, Pelinkova K, Tremblay J, Hamet P, Kren V. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics 2005; 21:243-52. [PMID: 15728334 DOI: 10.1152/physiolgenomics.00230.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polydactylous rat strain (PD/Cub) is a highly inbred (F > 90) genetic model of metabolic syndrome. The aim of this study was to analyze the genetic architecture of the metabolic derangements found in the PD/Cub strain and to assess its dynamics in time and in response to diet and medication. We derived a PD/Cub × BN/Cub (Brown Norway) F2 intercross population of 149 male rats and performed metabolic profiling and genotyping and multiple levels of genetic linkage and statistical analyses at five different stages of ontogenesis and after high-sucrose diet feeding and dexamethasone administration challenges. The interval mapping analysis of 83 metabolic and morphometric traits revealed over 50 regions genomewide with significant or suggestive linkage to one or more of the traits in the segregating PD/Cub × BN/Cub population. The multiple interval mapping showed that, in addition to “single” quantitative train loci, there are more than 30 pairs of loci across the whole genome significantly influencing the variation of particular traits in an epistatic fashion. This study represents the first whole genome analysis of metabolic syndrome in the PD/Cub model and reveals several new loci previously not connected to the genetics of insulin resistance and dyslipidemia. In addition, it attempts to present the concept of “dynamic genetic architecture” of metabolic syndrome attributes, evidenced by shifts in the genetic determination of syndrome features during ontogenesis and during adaptation to the dietary and pharmacological influences.
Collapse
Affiliation(s)
- Ondrej Seda
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dutil J, Eliopoulos V, Tremblay J, Hamet P, Charron S, Deng AY. Multiple Quantitative Trait Loci for Blood Pressure Interacting Epistatically and Additively on Dahl Rat Chromosome 2. Hypertension 2005; 45:557-64. [PMID: 15738349 DOI: 10.1161/01.hyp.0000158841.71658.5e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous work demonstrated 2 quantitative trait loci (QTLs), C2QTL1 and C2QTL2, for blood pressure (BP) located on chromosome (Chr) 2 of Dahl salt-sensitive (DSS) rats. However, for a lack of markers, the 2 congenic strains delineating C2QTL1 and C2QTL2 could not be separated. The position of the C2QTL1 was only inferred by comparing 2 congenic strains, one having and another lacking a BP effect. Furthermore, it was not known how adjacent QTLs would interact with one another on Chr 2. In the current investigation, first, a critical chromosome marker was developed to separate 2 C2QTLs. Second, a congenic substrain was created to cover a chromosome fragment thought to harbor C2QTL1. Finally, a series of congenic strains was produced to systematically and comprehensively cover the entire Chr 2 segment containing C2QTL2 and other regions previously untested. Consequently, a total of 3 QTLs were discovered, with C2QTL3 located between C2QTL1 and C2QTL2. C2QTL1, C2QTL2, and C2QTL3 reside in chromosome segments of 5.7 centiMorgan (cM), 3.5 cM, and 1.5 cM, respectively. C2QTL1 interacted epistatically with either C2QTL2 or C2QTL3, whereas C2QTL2 and C2QTL3 showed additive effects to each other. These results suggest that BP QTLs closely linked in a segment interact epistatically and additively to one another on Chr 2.
Collapse
Affiliation(s)
- Julie Dutil
- Research Centre-CHUM, 3840 rue St. Urbain, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Dutil J, Eliopoulos V, Marchand EL, Devlin AM, Tremblay J, Prithiviraj K, Hamet P, Migneault A, deBlois D, Deng AY. A quantitative trait locus for aortic smooth muscle cell number acting independently of blood pressure: implicating the angiotensin receptor AT1B gene as a candidate. Physiol Genomics 2005; 21:362-9. [PMID: 15741507 DOI: 10.1152/physiolgenomics.00063.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular hyperplasia may be involved in the remodeling of vasculature. It was unknown whether there were genetic determinants for aortic smooth muscle cell number (SMCN) and, if so, whether they acted independently of those for blood pressure (BP). To unravel this issue, we utilized congenic strains previously constructed for BP studies. These strains were made by replacing various chromosome 2 segments of the Dahl salt-sensitive (S) rat with those of the Milan normotensive rat (MNS). We measured and compared SMCN in aortic cross-sectional areas and BPs of these strains. Consequently, a quantitative trait locus (QTL) for SMCN was localized to a chromosome region not containing a BP QTL, but harboring the locus for the angiotensin II receptor AT1B (Agtr1b). Agtr1b became a candidate for the SMCN QTL because 1) two significant mutations were found in the coding region between S and all congenic strains possessing the MNS alleles, and 2) contractile responses to angiotensin II were significantly and selectively reduced in congenic rats harboring the MNS alleles of the SMCN QTL compared with S rats. The current investigation presents the first line of evidence that a QTL for aortic SMCN exists, and it acts independently of QTLs for BP. The relevant congenic strains developed therein potentially provide novel mammalian models for the studies of vascular remodeling disorders.
Collapse
Affiliation(s)
- Julie Dutil
- Research Centre-Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grondin M, Eliopoulos V, Lambert R, Deng Y, Ariyarajah A, Moujahidine M, Dutil J, Charron S, Deng AY. Complete and overlapping congenics proving the existence of a quantitative trait locus for blood pressure on Dahl rat chromosome 17. Physiol Genomics 2005; 21:112-6. [PMID: 15632271 DOI: 10.1152/physiolgenomics.00275.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linkage studies suggested that a quantitative trait locus (QTL) for blood pressure (BP) was present in a region on chromosome 17 (Chr 17) of Dahl salt-sensitive (DSS) rats. A subsequent congenic strain targeting this QTL, however, could not confirm it. These conflicting results called into question the validity of localization of a QTL by linkage followed by the use of a congenic strain made with an incomplete chromosome coverage. To resolve this issue, we constructed five new congenic strains, designated C17S.L1 to C17S.L5, that completely spanned the +/-2 LOD confidence interval supposedly containing the QTL. Each congenic strain was made by replacing a segment of the DSS rat by that of the normotensive Lewis (LEW) rat. The only section to be LL homozygous is the region on Chr 17 specified in a congenic strain, as evidenced by a total genome scan. The results showed that BPs of C17S.L1 and C17S.L2 were lower (P < 0.04) than that of DSS rats. In contrast, BPs of C17S.L3, C17S.L4, and C17S.L5 were not different (P > 0.6) from that of DSS rats. Consequently, a BP QTL must be located in an interval of approximately 15 cM shared between C17S.L1 and C17S.L2 and unique to them both, as opposed to C17S.L3, C17S.L4, and C17S.L5. The present study illustrates the importance of thorough chromosome coverage, the necessity for a genome-wide screening, and the use of "negative" controls in physically mapping a QTL by congenic strains.
Collapse
Affiliation(s)
- Myrian Grondin
- Research Centre, Centre Hospitalier de l'Universite de Montréal (CHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ahsan A, Ram R, Baig MA, Pasha MAQ. ACE I allele and eNOS G allele crosstalk may have a role in chronic obstructive pulmonary disease. Clin Biochem 2004; 37:1037-40. [PMID: 15498534 DOI: 10.1016/j.clinbiochem.2004.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pulmonary hypertension, a characteristic of chronic obstructive pulmonary disease (COPD) has led us to investigate polymorphisms in angiotensin-converting enzyme (ACE) and endothelial nitric oxide synthase (eNOS) genes. DESIGN AND METHODS Sixty-six normal and 27 patients, all of whom were smokers, were screened for ACE Insertion/Deletion (I/D) and eNOS G894T and CA-repeat polymorphisms and for plasma ACE and NO levels. RESULTS Elevated ACE and decreased NO levels were obtained with the pattern of II to ID to DD and GG to GT to TT conversion, respectively. Furthermore, the genotype combination of II and GG was significantly greater in controls as compared to patients (P = 0.01; OR = 2.43; 95% CI: 1.21-4.87; RR = 2.00, 1.15-3.48). The CA-repeat multialleles showed a trimodal pattern in both the groups with a frequency range of 0.0057-0.103 and 0.0208-0.1875 in the controls and patients, respectively. CONCLUSIONS The lower ACE and higher NO levels by virtue of the interchromosomal interaction between the I and G alleles appear to cause less vasoconstriction and increase vasodilatation that may be advantageous in the improvement of the disease.
Collapse
Affiliation(s)
- Aarif Ahsan
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Delhi 110 007, India
| | | | | | | |
Collapse
|
16
|
Ariyarajah A, Palijan A, Dutil J, Prithiviraj K, Deng Y, Deng AY. Dissecting quantitative trait loci into opposite blood pressure effects on Dahl rat chromosome 8 by congenic strains. J Hypertens 2004; 22:1495-502. [PMID: 15257171 DOI: 10.1097/01.hjh.0000133720.94075.6f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our previous linkage analyses showed that there was likely a quantitative trait locus (QTL) for blood pressure (BP) on chromosome 8 (Chr 8) in the strain comparison between the Dahl salt-sensitive (S) and the Lewis (LEW) rats. The current work is to delineate the chromosome interval harboring this QTL by using congenic strains with different chromosome substitutions. METHODS Two congenic strains were produced by replacing different segments of the S rats with the homologous segments of the LEW rats. A genome-wide marker screening was utilized to accelerate this process. The two strains generated are designated as C8S.L1 and C8S.L2, respectively. BPs of the rats were measured by telemetry. RESULTS C8S.L1 showed a BP lower than that of S rats. In contrast, C8S.L2 did not have chromosome overlaps with C8S.L1, but unexpectedly, exhibited a BP-raising effect, higher than that of S rats. CONCLUSION There are at least two QTLs present in a section of Chr 8 that possess opposite BP effects. The current congenic work reveals not only the presence of QTLs, but the complexity of QTLs on BP. The novel congenic strain with hypertension more severe than S provides a new model for studies in elucidating physiological mechanisms controlling BP.
Collapse
Affiliation(s)
- Anita Ariyarajah
- Research Centre-CHUM, Hôtel Dieu, 3840 rue St Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Kwitek AE, Gullings-Handley J, Yu J, Carlos DC, Orlebeke K, Nie J, Eckert J, Lemke A, Andrae JW, Bromberg S, Pasko D, Chen D, Scheetz TE, Casavant TL, Soares MB, Sheffield VC, Tonellato PJ, Jacob HJ. High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 2004; 14:750-7. [PMID: 15060019 PMCID: PMC383322 DOI: 10.1101/gr.1968704] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The laboratory rat is a major model organism for systems biology. To complement the cornucopia of physiological and pharmacological data generated in the rat, a large genomic toolset has been developed, culminating in the release of the rat draft genome sequence. The rat draft sequence used a variety of assembly packages, as well as data from the Radiation Hybrid (RH) map of the rat as part of their validation. As part of the Rat Genome Project, we have been building a high-density RH map to facilitate data integration from multiple maps and now to help validate the genome assembly. By incorporating vectors from our lab and several other labs, we have doubled the number of simple sequence length polymorphisms (SSLPs), genes, expressed sequence tags (ESTs), and sequence-tagged sites (STSs) compared to any other genome-wide rat map, a total of 24,437 elements. During the process, we also identified a novel approach for integrating the RH placement results from multiple maps. This new integrated RH map contains approximately 10 RH-mapped elements per Mb on the genome assembly, enabling the RH maps to serve as a scaffold for a variety of data visualization tools.
Collapse
Affiliation(s)
- Anne E Kwitek
- Human & Molecular Genetics Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Palijan A, Dutil J, Deng AY. Quantitative trait loci with opposing blood pressure effects demonstrating epistasis on Dahl rat chromosome 3. Physiol Genomics 2003; 15:1-8. [PMID: 14517349 DOI: 10.1152/physiolgenomics.00084.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous linkage studies indicated that there might be a blood pressure (BP) quantitative trait locus (QTL) on chromosome 3 (Chr 3) contrasting between the Dahl salt-sensitive (S) strain and the Lewis (LEW) strain. To prove and then to narrow down the segment containing this QTL, five congenic strains have been generated by replacing various segments of the S rats with the homologous segments of the LEW rats. They are designated as S.L1, S.L2, S.L3, S.L4, and S.L5, respectively. S.L2, S.L3, S.L4, and S.L5 are substrains of S.L1, i.e., they contain substitutions of smaller sections within the large fragment defined by S.L1. The construction of these congenic strains was facilitated by a genome-wide marker screening process. BPs of the rats were measured by telemetry. S.L2 and S.L3 shared a fragment of Chr 3 in common and both showed a BP-lowering effect, indicating the existence of "-BP" QTL alleles from LEW compared with S. In contrast, S.L4 involves a section with no overlap with either S.L2 or S.L3, and S.L4 showed a BP significantly higher than that of S rats, indicating the presence of "+BP" QTL alleles from LEW compared with S. Interestingly, the combined effect of the -BP QTL and +BP QTL alleles was "-" in S.L1, implying that the "-" QTL is epistatic to "+" QTL.
Collapse
Affiliation(s)
- Ana Palijan
- Research Centre-Centre Hospitalier de l'Université de Montreal CHUM, Hôtel Dieu, Montreal, Quebec H2W 1T8, Canada
| | | | | |
Collapse
|