1
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target Oncol 2017; 12:571-597. [PMID: 28815409 PMCID: PMC5610669 DOI: 10.1007/s11523-017-0514-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach. Anti-IGF-1R monoclonal antibodies (mAbs) do not inhibit IGF ligand 2 (IGF-2) activation of the insulin receptor isoform-A (INSR-A), which may limit their anti-proliferative activity. In addition, due to their lack of specificity, IGF-1R tyrosine kinase inhibitors are associated with hyperglycemia as a result of interference with signaling through the classical metabolic INSR-B isoform; this may preclude their use at clinically effective doses. Conversely, IGF-1/IGF-2 ligand-neutralizing mAbs inhibit proliferative/anti-apoptotic signaling via IGF-1R and INSR-A, without compromising the metabolic function of INSR-B. Therefore, combination regimens that include these agents may be more efficacious and tolerable versus IGF-1R-targeted combinations. Herein, we review the preclinical and clinical experience with IGF-targeted therapies to-date, and discuss the rationale for future combination approaches as a means to overcome treatment resistance.
Collapse
Affiliation(s)
- Aaron Simpson
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria.
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
3
|
The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5). Gene 2017; 619:21-29. [DOI: 10.1016/j.gene.2017.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/02/2017] [Accepted: 03/25/2017] [Indexed: 11/24/2022]
|
4
|
Vishwamitra D, Curry CV, Alkan S, Song YH, Gallick GE, Kaseb AO, Shi P, Amin HM. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer 2015; 14:53. [PMID: 25884514 PMCID: PMC4415347 DOI: 10.1186/s12943-015-0324-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Background The type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase promotes the survival of an aggressive subtype of T-cell lymphoma by interacting with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncogenic protein. NPM-ALK+ T-cell lymphoma exhibits much higher levels of IGF-IR than normal human T lymphocytes. The mechanisms underlying increased expression of IGF-IR in this lymphoma are not known. We hypothesized that upregulation of IGF-IR could be attributed to previously unrecognized defects that inherently exist in the transcriptional machinery in NPM-ALK+ T-cell lymphoma. Methods and results Screening studies showed substantially lower levels of the transcription factors Ikaros isoform 1 (Ik-1) and myeloid zinc finger 1 (MZF1) in NPM-ALK+ T-cell lymphoma cell lines and primary tumor tissues from patients than in human T lymphocytes. A luciferase assay supported that Ik-1 and MZF1 suppress IGF-IR gene promoter. Furthermore, ChIP assay showed that these transcription factors bind specific sites located within the IGF-IR gene promoter. Forced expression of Ik-1 or MZF1 in the lymphoma cells decreased IGF-IR mRNA and protein. This decrease was associated with downregulation of pIGF-IR, and the phosphorylation of its interacting proteins IRS-1, AKT, and NPM-ALK. In addition, overexpression of Ik-1 and MZF1 decreased the viability, proliferation, migration, and anchorage-independent colony formation of the lymphoma cells. Conclusions Our results provide novel evidence that the aberrant decreases in Ik-1 and MZF1 contribute significantly to the pathogenesis of NPM-ALK+ T-cell lymphoma through the upregulation of IGF-IR expression. These findings could be exploited to devise new strategies to eradicate this lymphoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0324-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA.
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Lyu X, Xin Y, Mi R, Ding J, Wang X, Hu J, Fan R, Wei X, Song Y, Zhao RY. Overexpression of Wilms tumor 1 gene as a negative prognostic indicator in acute myeloid leukemia. PLoS One 2014; 9:e92470. [PMID: 24667279 PMCID: PMC3965428 DOI: 10.1371/journal.pone.0092470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/21/2014] [Indexed: 11/28/2022] Open
Abstract
Chromosomal aberrations are useful in assessing treatment options and clinical outcomes of acute myeloid leukemia (AML) patients. However, 40 ∼ 50% of the AML patients showed no chromosomal abnormalities, i.e., with normal cytogenetics aka the CN-AML patients. Testing of molecular aberrations such as FLT3 or NPM1 can help to define clinical outcomes in the CN-AML patients but with various successes. Goal of this study was to test the possibility of Wilms' tumor 1 (WT1) gene overexpression as an additional molecular biomarker. A total of 103 CN-AML patients, among which 28% had overexpressed WT1, were studied over a period of 38 months. Patient's response to induction chemotherapy as measured by the complete remission (CR) rate, disease-free survival (DFS) and overall survival (OS) were measured. Our data suggested that WT1 overexpression correlated negatively with the CR rate, DFS and OS. Consistent with previous reports, CN-AML patients can be divided into three different risk subgroups based on the status of known molecular abnormalities, i.e., the favorable (NPM1(mt)/no FLT3(ITD)), the unfavorable (FLT3(ITD)) and the intermediate risk subgroups. The WT1 overexpression significantly reduced the CR, DFS and OS in both the favorable and unfavorable groups. As the results, patients with normal WT1 gene expression in the favorable risk group showed the best clinical outcomes and all survived with complete remission and disease-free survival over the 37 month study period; in contrast, patients with WT1 overexpression in the unfavorable risk group displayed the worst clinical outcomes. WT1 overexpression by itself is an independent and negative indicator for predicting CR rate, DFS and OS of the CN-AML patients; moreover, it increases the statistical power of predicting the same clinical outcomes when it is combined with the NPM1(mt) or the FLT3(ITD) genotypes that are the good or poor prognostic markers of CN-AML.
Collapse
Affiliation(s)
- Xiaodong Lyu
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yaping Xin
- Department of Endocrinology and Metabolic Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruihua Mi
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Ding
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianwei Wang
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieying Hu
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruihua Fan
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Wei
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Song
- Henan Institute of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Richard Y. Zhao
- Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Falahatpisheh MH, Nanez A, Ramos KS. AHR regulates WT1 genetic programming during murine nephrogenesis. Mol Med 2011; 17:1275-84. [PMID: 21863216 DOI: 10.2119/molmed.2011.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 08/17/2011] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence suggests that the blueprint of chronic renal disease is established during early development by environmental cues that dictate alterations in differentiation programming. Here we show that aryl hydrocarbon receptor (AHR), a lig-and-activated basic helix-loop-helix-PAS homology domain transcription factor, disrupts murine renal differentiation by interfering with Wilms tumor suppressor gene (WT1) signaling in the developing kidney. Embryonic kidneys of C57BL/6J Ahr⁻/⁻ mice at gestation d (GD) 14 showed reduced condensation in the nephrogenic zone and decreased numbers of differentiated structures compared with wild-type mice. These deficits correlated with increased expression of the (+) 17aa Wt1 splice variant, decreased mRNA levels of Igf-1 rec., Wnt-4 and E-cadherin, and reduced levels of 52 kDa WT1 protein. AHR knockdown in wild-type embryonic kidney cells mimicked these alterations with notable increases in (+) 17aa Wt1 mRNA, reduced levels of 52 kDa WT1 protein, and increased (+) 17aa 40-kDa protein. AHR downregulation also reduced Igf-1 rec., Wnt-4, secreted frizzled receptor binding protein-1 (sfrbp-1) and E-cadherin mRNAs. In the case of Igf-1 rec. and Wnt-4, genetic disruption was fully reversed upon restoration of cellular Wt1 protein levels, confirming that functional interactions between AHR and Wt1 represent a likely molecular target for renal developmental interference.
Collapse
Affiliation(s)
- M Hadi Falahatpisheh
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | | | | |
Collapse
|
7
|
Chen MY, Clark AJ, Chan DC, Ware JL, Holt SE, Chidambaram A, Fillmore HL, Broaddus WC. Wilms' tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression. J Neurooncol 2011; 103:87-102. [PMID: 20820871 PMCID: PMC3277601 DOI: 10.1007/s11060-010-0374-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/18/2010] [Indexed: 12/27/2022]
Abstract
Wilms' tumor 1 (WT1) is a transcription factor with a multitude of downstream targets that have wide-ranging effects in non-glioma cell lines. Though its expression in glioblastomas is now well-documented, the role of WT1 in these tumors remains poorly defined. We hypothesized that WT1 functions as an oncogene to enhance glioblastoma viability and chemoresistance. WT1's role was examined by studying the effect of WT1 silencing and overexpression on DNA damage, apoptosis and cell viability. Results indicated that WT1 silencing adversely affected glioblastoma viability, at times, in synergy with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and cisplatin. To investigate other mechanisms through which WT1 could affect viability, we measured cell cycle distribution, senescence, and autophagy. WT1 silencing had no effect on these processes. Lastly, we examined WT1 regulation of IGF-1R expression. Counterintuitively, upregulation of IGF-1R was evident after WT1 silencing. In conclusion, WT1 functions as a survival factor in glioblastomas, possibly through inhibition of IGF-1R expression.
Collapse
Affiliation(s)
- Mike Y. Chen
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Hospitals, Virginia Commonwealth University Health System, P.O. Box 980631, Richmond, VA 23298-0631, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Aaron J. Clark
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Hospitals, Virginia Commonwealth University Health System, P.O. Box 980631, Richmond, VA 23298-0631, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Dana C. Chan
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Hospitals, Virginia Commonwealth University Health System, P.O. Box 980631, Richmond, VA 23298-0631, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Joy L. Ware
- Department of Human Genetics and Pathology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Shawn E. Holt
- Department of Human Genetics and Pathology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Archana Chidambaram
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - Helen L. Fillmore
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Hospitals, Virginia Commonwealth University Health System, P.O. Box 980631, Richmond, VA 23298-0631, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| | - William C. Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Hospitals, Virginia Commonwealth University Health System, P.O. Box 980631, Richmond, VA 23298-0631, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University Hospitals, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Geoerger B, Brasme JF, Daudigeos-Dubus E, Opolon P, Venot C, Debussche L, Vrignaud P, Vassal G. Anti-insulin-like growth factor 1 receptor antibody EM164 (murine AVE1642) exhibits anti-tumour activity alone and in combination with temozolomide against neuroblastoma. Eur J Cancer 2010; 46:3251-62. [PMID: 20591650 DOI: 10.1016/j.ejca.2010.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is overexpressed in many tumours and contributes to tumourigenicity, cell proliferation, metastasis and resistance, thus representing a promising therapeutic target. The human IGF-1R antagonistic monoclonal antibody EM164 (murine AVE1642) has shown activity in adult cancers and is being evaluated in patients with advanced malignancies. We investigated the EM164 for its therapeutic potential against childhood neuroblastoma. EM164 at 0.07, 0.7 and 7 μg/mL exhibited anti-proliferative activity against all nine cell lines tested in (3)H-thymidine incorporation assay in vitro. Cell proliferation after EM164 exposure ranged between 24% and 80% compared to controls. Sensitivity was independent from culture serum conditions, intensity of IGF-1R expression and IGF-II secretion, although associated with inhibition of AKT activation. In vivo, EM164 administered intravenously at 40 mg/kg twice weekly for 4 weeks yielded significant tumour growth delays (TGD) of 13.4d in advanced stage IGR-N91 and 12.9 d in SK-N-AS tumours compared to controls (p = 0.02 and p = 0.0059, respectively). Simultaneous treatment of EM164 0.7 μg/mL and temozolomide resulted in enhanced activity in vitro. In vivo, treatment with temozolomide at the maximum tolerated dose (100mg/kg/d for 5 consecutive days) and EM164 yielded a significantly greater TGD of 29.1d (p<0.01) and two complete tumour regressions (CR) compared to 18.1d (p = ns) and one CR for EM164 alone and 16.1d (p = ns) for temozolomide alone. Our results demonstrate the potential of the anti-IGF-1R antibody alone and in combination with alkylating agents and support the therapeutic development of the AVE1642 for aggressive neuroblastoma.
Collapse
Affiliation(s)
- Birgit Geoerger
- UPRES EA 3535, Pharmacology and New Treatments of Cancer, Université Paris-Sud XI, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ramos KS, Hadi Falahatpisheh M, Nanez A, He Q. Modulation of Biological Regulatory Networks During Nephrogenesis. Drug Metab Rev 2008; 38:677-83. [PMID: 17145695 DOI: 10.1080/03602530600959532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mesenchymal-to-epithelial transition is an important biological event during the course of renal cell differentiation as condensing mesenchyme gives rise to tubuloepithelial structures. Wilms' tumor suppressor gene (Wt1) has been identified as a master regulator of the complex genetic events that mediate mesenchymal transdifferentiation. Evidence is summarized here showing that the tightly regulated series of genetic and biochemical events during nephrogenesis is disrupted by superactivation of aryl hydrocarbon receptor (Ahr) by benzo(a)pyrene (BaP), a ubiquitous polycyclic aromatic hydrocarbon and renal carcinogen (Falahatpisheh and Ramos, 2003). Nephron formation is inhibited by BaP, a response that involves inhibition of metanephric cell differentiation and shifts in the relative abundance of Wt1 splice variants. A systems biology paradigm that combined approaches from genomics, transcriptomics, and bioinformatics revealed that the global response of murine metanephric cultures to BaP involves downregulation of Ahr and disruption of downstream targets of Wt1. Discrete networks of genetic regulation were resolved using Boolean idealizations and included genes involved in renal cell differentiation and metabolic control. This work has established a role for Ahr in renal cell differentiation and kidney development and resolved putative molecular interactions between Ahr and Wt1.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Congenital mesoblastic nephroma (CMN) is a rare primary pediatric renal tumor occurring predominantly in infants. There is no known association between CMN and WT1 gene expression and the association of hemihypertrophy and CMN is not well known. We report an infant with isolated hemihypertrophy and WT1-positive CMN, and the results of WT1 immunostaining in 13 other patients with CMN diagnosed over 14 years at SickKids. Of the 14 total patients 3 had positive nuclear immunostaining for WT1. Two patients also expressed WT1 RNA by reverse transcription-polymerase chain reaction. In conclusion, contrary to previous reports, WT1 may be expressed in CMN and CMN can be associated with hemihypertrophy in the absence of Beckwith-Wiedemann syndrome.
Collapse
|
11
|
Ariyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 2007; 9:1-17. [PMID: 17524167 DOI: 10.1017/s1462399407000336] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In addition to its loss playing a pivotal role in the development of a childhood kidney malignancy, the Wilms tumour 1 gene (WT1) has emerged as an important factor in normal and malignant haematopoiesis. Preferentially expressed in CD34+ haematopoietic progenitors and down-regulated in more-differentiated cells, the WT1 transcription factor has been implicated in regulation of apoptosis, proliferation and differentiation. Putative target genes, such as BCL2, MYC, A1 and cyclin E, may cooperate with WT1 to modulate cell growth. However, the effects of WT1 on target gene expression appear to be isoform-specific. Certain WT1 isoforms are over-represented in leukaemia, but the exact mechanisms underlying the role of WT1 in transformation remain unclear. The ubiquity of WT1 in haematological malignancies has led to efforts to exploit it as a marker for minimal residual disease and as a prognostic factor, with conflicting results. In vitro killing of tumour cells by WT1-specific CD8+ cytotoxic T lymphocytes facilitated design of Phase I vaccine trials that showed clinical regression of WT1-positive tumours. Alternative methods employing WT1-specific immunotherapy are being investigated and might ultimately be used to optimise multimodal therapy of haematological malignancies.
Collapse
Affiliation(s)
- Suzie Ariyaratana
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | |
Collapse
|
12
|
Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28:20-47. [PMID: 16931767 DOI: 10.1210/er.2006-0001] [Citation(s) in RCA: 742] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IGF-I receptor (IGF-IR) signaling and functions are mediated through the activities of a complex molecular network of positive (e.g., type I IGF) and negative (e.g., the type II IGF receptor, IGF-IIR) effectors. Under normal physiological conditions, the balance between the expression and activities of these molecules is tightly controlled. Changes in this delicate balance (e.g., overexpression of one effector) may trigger a cascade of molecular events that can ultimately lead to malignancy. In recent years, evidence has been mounting that the IGF axis may be involved in human cancer progression and can be targeted for therapeutic intervention. Here we review old and more recent evidence on the role the IGF system in malignancy and highlight experimental and clinical studies that provide novel insights into the complex mechanisms that contribute to its oncogenic potential. Controversies arising from conflicting evidence on the relevance of IGF-IR and its ligands to human cancer are discussed. Our review highlights the importance of viewing the IGF axis as a complex multifactorial system and shows that changes in the expression levels of any one component of the axis, in a given malignancy, should be interpreted with caution and viewed in a wider context that takes into account the expression levels, state of activation, accessibility, and functionality of other interacting components. Because IGF targeting for anticancer therapy is rapidly becoming a clinical reality, an understanding of this complexity is timely because it is likely to have an impact on the design, mode of action, and clinical outcomes of newly developed drugs.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Room H6.25687, Pine Avenue West, Montreal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
13
|
Devilard E, Bladou F, Ramuz O, Karsenty G, Dalès JP, Gravis G, Nguyen C, Bertucci F, Xerri L, Birnbaum D. FGFR1 and WT1 are markers of human prostate cancer progression. BMC Cancer 2006; 6:272. [PMID: 17137506 PMCID: PMC1698935 DOI: 10.1186/1471-2407-6-272] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 11/30/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Androgen-independent prostate adenocarcinomas are responsible for about 6% of overall cancer deaths in men. METHODS We used DNA microarrays to identify genes related to the transition between androgen-dependent and androgen-independent stages in the LuCaP 23.1 xenograft model of prostate adenocarcinoma. The expression of the proteins encoded by these genes was then assessed by immunohistochemistry on tissue microarrays (TMA) including human prostate carcinoma samples issued from 85 patients who had undergone radical prostatectomy. RESULTS FGFR1, TACC1 and WT1 gene expression levels were associated with the androgen-independent stage in xenografts and human prostate carcinoma samples. MART1 protein expression was correlated with pT2 tumor stages. CONCLUSION Our results suggest that each of these four genes may play a role, or at least reflect a stage of prostate carcinoma growth/development/progression.
Collapse
Affiliation(s)
- Elizabeth Devilard
- Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, UMR599 Inserm et Institut Paoli-Calmettes, Marseille, France
| | - Franck Bladou
- Département d'Urologie, Hôpital Salvator, Marseille, France
| | - Olivier Ramuz
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
| | | | - Jean-Philippe Dalès
- Département de Pathologie, Hôpital Nord, Marseille, France
- Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Gwenaëlle Gravis
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | | | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, UMR599 Inserm et Institut Paoli-Calmettes, Marseille, France
- Faculté de Médecine, Université de la Méditerranée, Marseille, France
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Luc Xerri
- Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, UMR599 Inserm et Institut Paoli-Calmettes, Marseille, France
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
- Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, UMR599 Inserm et Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
14
|
Finkeltov I, Kuhn S, Glaser T, Idelman G, Wright JJ, Roberts CT, Werner H. Transcriptional regulation of IGF-I receptor gene expression by novel isoforms of the EWS-WT1 fusion protein. Oncogene 2002; 21:1890-8. [PMID: 11896622 DOI: 10.1038/sj.onc.1205042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 09/30/2001] [Accepted: 10/09/2001] [Indexed: 11/09/2022]
Abstract
The EWS family of genes is involved in numerous chromosomal translocations that are characteristic of a variety of sarcomas. A recently described member of this group is desmoplastic small round cell tumor (DSRCT), which is characterized by a recurrent t(11;22)(p13;q12) translocation that fuses the 5' exons of the EWS gene to the 3' exons of the WT1 gene. The originally described chimera comprises exons 1-7 of EWS and exons 8-10 of WT1. We have previously reported that the WT1 protein represses the expression of the IGF-I receptor gene, whereas the EWS(1-7)-WT1(8-10) fusion protein activates IGF-I receptor gene expression. It has recently become apparent that EWS-WT1 chimeras produced in DSCRT are heterogeneous as a result of fusions of different regions of the EWS gene to the WT1 gene. We have recently characterized additional EWS-WT1 translocations that involve the juxtaposition of EWS exons 7 or 8 to WT1 exon 8, and an EWS-WT1 chimera that lacks EWS exon 6. The chimeric transcription factors encoded by these various translocations differ in their DNA-binding characteristics and their ability to transactivate the IGF-I receptor promoter. These data suggest that the molecular pathology of DSRCT is more complex than previously appreciated, and that this diversity may provide the foundation for predictive genotype-phenotype correlations in the future.
Collapse
Affiliation(s)
- Ina Finkeltov
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A number of growth factors and cognate receptors that contribute to normal kidney development have been shown to play roles in the pathogenesis of Wilms' tumours. Expression of both hepatocyte growth factor (HGF) and its tyrosine kinase receptor met has been demonstrated in normal tissues and their neoplastic counterparts, implicating these factors in normal development and tumour progression. HGF and met expression has not been studied in Wilms' tumour. Since HGF and met function in a paracrine fashion by regulating tubulogenesis in normal kidney development, they could be involved in the pathogenesis of Wilms' tumour, in which tubular formation is dysplastic. In the present study, a series of ten homotypic (consisting of blastemal, epithelial, and stromal elements) and ten heterotypic (consisting of triphasic histology and a muscle component) Wilms' tumour cases were examined for expression of HGF and met, using in situ hybridization, immunohistochemistry, and western blot analysis. Relatively high met message and protein expression, compared with normal kidney, were evident in homotypic and heterotypic tumour blastemal, epithelial, and rhabdomyoblastic cells and a 145 kD met polypeptide was found in all tumours, with a few cases also expressing the 170 kD precursor form. No apparent alterations of the met receptor were observed. Similarly, HGF protein was also abundantly expressed in blastemal, epithelial, and rhabdomyoblastic cells of the homotypic and heterotypic Wilms' tumours and a 69 kD HGF polypeptide was demonstrated by western blot analysis. Immunohistochemistry for the Ki-67 proliferation marker indicated that the pattern of Ki-67 expression correlated with the HGF and met pattern of expression in both homotypic and heterotypic tumours. These results reveal, for the first time, significant co-expression of met/HGF in Wilms' tumours, with a correspondingly high proliferative index in the same cell groups.
Collapse
Affiliation(s)
- Jennifer Alami
- Department of Paediatric Laboratory Medicine, Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
16
|
ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172010 PMCID: PMC29316 DOI: 10.1073/pnas.041416598] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATM gene is mutated in the syndrome of ataxia telangiectasia (AT), associated with neurologic dysfunction, growth abnormalities, and extreme radiosensitivity. Insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor with tyrosine kinase activity that can mediate mitogenesis, cell transformation, and inhibition of apoptosis. We report here that AT cells express low levels of IGF-IR and show decreased IGF-IR promoter activity compared with wild-type cells. Complementation of AT cells with the ATM cDNA results in increased IGF-IR promoter activity and elevated IGF-IR levels, whereas expression in wild-type cells of a dominant negative fragment of ATM specifically reduces IGF-IR expression, results consistent with a role for ATM in regulating IGF-IR expression at the level of transcription. When expression of IGF-IR cDNA is forced in AT cells via a heterologous viral promoter, near normal radioresistance is conferred on the cells. Conversely, in ATM cells complemented with the ATM cDNA, specific inhibition of the IGF-IR pathway prevents correction of the radiosensitivity. Taken together, these results establish a fundamental link between ATM function and IGF-IR expression and suggest that reduced expression of IGF-IR contributes to the radiosensitivity of AT cells. In addition, because IGF-I plays a major role in human growth and metabolism and serves as a survival and differentiation factor for developing neuronal tissue, these results may provide a basis for understanding other aspects of the AT syndrome, including the growth abnormalities, insulin resistance, and neurodegeneration.
Collapse
|
17
|
Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U S A 2001; 98:1676-81. [PMID: 11172010 PMCID: PMC29316 DOI: 10.1073/pnas.98.4.1676] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATM gene is mutated in the syndrome of ataxia telangiectasia (AT), associated with neurologic dysfunction, growth abnormalities, and extreme radiosensitivity. Insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor with tyrosine kinase activity that can mediate mitogenesis, cell transformation, and inhibition of apoptosis. We report here that AT cells express low levels of IGF-IR and show decreased IGF-IR promoter activity compared with wild-type cells. Complementation of AT cells with the ATM cDNA results in increased IGF-IR promoter activity and elevated IGF-IR levels, whereas expression in wild-type cells of a dominant negative fragment of ATM specifically reduces IGF-IR expression, results consistent with a role for ATM in regulating IGF-IR expression at the level of transcription. When expression of IGF-IR cDNA is forced in AT cells via a heterologous viral promoter, near normal radioresistance is conferred on the cells. Conversely, in ATM cells complemented with the ATM cDNA, specific inhibition of the IGF-IR pathway prevents correction of the radiosensitivity. Taken together, these results establish a fundamental link between ATM function and IGF-IR expression and suggest that reduced expression of IGF-IR contributes to the radiosensitivity of AT cells. In addition, because IGF-I plays a major role in human growth and metabolism and serves as a survival and differentiation factor for developing neuronal tissue, these results may provide a basis for understanding other aspects of the AT syndrome, including the growth abnormalities, insulin resistance, and neurodegeneration.
Collapse
Affiliation(s)
- S Peretz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
18
|
Gebelein B, Fernandez-Zapico M, Imoto M, Urrutia R. KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1. J Clin Invest 1998; 102:1911-9. [PMID: 9835615 PMCID: PMC509142 DOI: 10.1172/jci1919] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study of zinc finger proteins has revealed their potential to act as oncogenes or tumor suppressors. Here we report the molecular, biochemical, and functional characterization of KS1 (KRAB/zinc finger suppressor protein 1), a novel, ubiquitously expressed zinc finger gene initially isolated from a rat pancreas library. KS1 contains 10 C2H2 zinc fingers, a KRAB-A/B motif, and an ID sequence that has been shown previously to participate in growth factor-regulated gene expression. Northern blot analysis using pancreatic cell lines demonstrates that KS1 mRNA is inducible by serum and epidermal growth factor, suggesting a role for this gene in cell growth regulation. Biochemical analysis reveals that KS1 is a nuclear protein containing two transcriptional repressor domains, R1 and R2. R1 corresponds to the KRAB-A motif, whereas R2 represents a novel sequence. Transformation assays using NIH3T3 cells demonstrate that KS1 suppresses transformation by the potent oncogenes Ha-ras, Galpha12, and Galpha13. Deletion of the R1/ KRAB-A domain does not modify the transformation suppressive activity of KS1, whereas deletion of R2 abolishes this function. Thus, KS1 is a novel growth factor-inducible zinc finger transcriptional repressor protein with the potential to protect against neoplastic transformation induced by several oncogenes.
Collapse
Affiliation(s)
- B Gebelein
- Department of Molecular Neuroscience, Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
19
|
Sepp-Lorenzino L. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 1998; 47:235-53. [PMID: 9516079 DOI: 10.1023/a:1005955017615] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factors I and II (IGF-I, IGF-II) were originally identified as potent mitogens and as the mediators of growth hormone action. Besides being mitogenic, however, these polypeptide growth factors play a crucial role in cell survival, and contribute to transformation and to maintenance of the malignant phenotype. Here we will discuss signaling by the IGFs, focusing specifically on the structure and function of the IGF-I receptor and the domains of this receptor responsible for distinct IGF functions: mitogenesis, transformation, and protection from apoptosis. We will also compare the structural domains of the related but functionally distinct receptor for insulin.
Collapse
Affiliation(s)
- L Sepp-Lorenzino
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|