1
|
Rahdar M, Davoudi S, Dehghan S, Javan M, Hosseinmardi N, Behzadi G, Janahmadi M. Reversal of electrophysiological and behavioral deficits mediated by 5-HT7 receptor upregulation following LP-211 treatment in an autistic-like rat model induced by prenatal valproic acid exposure. Neuropharmacology 2024; 257:110057. [PMID: 38964596 DOI: 10.1016/j.neuropharm.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Dep. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
3
|
Schmidt SD, Zinn CG, Cavalcante LE, Ferreira FF, Furini CRG, Izquierdo I, de Carvalho Myskiw J. Participation of Hippocampal 5-HT 5A, 5-HT 6 and 5-HT 7 Serotonin Receptors on the Consolidation of Social Recognition Memory. Neuroscience 2022; 497:171-183. [PMID: 35718219 DOI: 10.1016/j.neuroscience.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Social recognition is the ability of animals to identify and recognize a conspecific. The consolidation of social stimuli in long-term memory is crucial for the establishment and maintenance of social groups, reproduction and species survival. Despite its importance, little is known about the circuitry and molecular mechanisms involved in the social recognition memory (SRM). Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator, which plays a key role in learning and memory. Focusing on the more recently described 5-HT receptors, we investigated in the CA1 region of the dorsal hippocampus the participation of 5-HT5A, 5-HT6 and 5-HT7 receptors in the consolidation of SRM. Male Wistar rats cannulated in CA1 were subjected to a social discrimination task. In the sample phase the animals were exposed to a juvenile conspecific for 1 h. Immediately after, they received different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. The animals that received infusions of 5-HT5A receptor antagonist SB-699551 (10 µg/µL), 5-HT6 receptor agonist WAY-208466 (0.63 µg/µL) or 5-HT7 receptor agonist AS-19 (5 µg/µL) intra-CA1 were unable to recognize the familiar juvenile. This effect was blocked by the coinfusion of WAY-208466 plus 5-HT6 receptor antagonist SB-271046 (10 µg/µL) or AS-19 plus 5-HT7 receptor antagonist SB-269970 (5 µg/µL). The present study helps to clarify the neurobiological functions of the 5-HT receptors more recently described and extends our knowledge about mechanisms underlying the SRM.
Collapse
Affiliation(s)
- Scheila Daiane Schmidt
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Lorena Evelyn Cavalcante
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Flávia Fagundes Ferreira
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Psychobiology and Neurocomputation Laboratory (LPBNC), Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Building 43422, Room 208A, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Ku SP, Hargreaves EL, Wirth S, Suzuki WA. The contributions of entorhinal cortex and hippocampus to error driven learning. Commun Biol 2021; 4:618. [PMID: 34031534 PMCID: PMC8144598 DOI: 10.1038/s42003-021-02096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/09/2021] [Indexed: 11/12/2022] Open
Abstract
Computational models proposed that the medial temporal lobe (MTL) contributes importantly to error-driven learning, though little direct in-vivo evidence for this hypothesis exists. To test this, we recorded in the entorhinal cortex (EC) and hippocampus (HPC) as macaques performed an associative learning task using an error-driven learning strategy, defined as better performance after error relative to correct trials. Error-detection signals were more prominent in the EC relative to HPC. Early in learning hippocampal but not EC neurons signaled error-driven learning by increasing their population stimulus-selectivity following error trials. This same pattern was not seen in another task where error-driven learning was not used. After learning, different populations of cells in both the EC and HPC signaled long-term memory of newly learned associations with enhanced stimulus-selective responses. These results suggest prominent but differential contributions of EC and HPC to learning from errors and a particularly important role of the EC in error-detection. Ku et al. recorded in the entorhinal cortex (EC) and hippocampus (HPC) of macaques during associative learning tasks in order to test the computational model prediction that they contribute to error-driven learning. They demonstrate that the EC and HPC have prominent but differential contributions to learning from errors, with the EC having a particularly prominent role in error-detection.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Center for Neural Science, New York University, New York, NY, USA. .,Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Eric L Hargreaves
- Division of Neurosurgery, Rutgers University -- Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron Cedex, France
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Carter F, Chapman CA. Serotonin 5-HT 1A Receptor-Mediated Reduction of Excitatory Synaptic Transmission in Layers II/III of the Parasubiculum. Neuroscience 2019; 406:325-332. [PMID: 30902681 DOI: 10.1016/j.neuroscience.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Serotonin (5-HT) has important effects on cognitive function within the hippocampal region where it modulates membrane potential and excitatory and inhibitory synaptic transmission. Here, we investigated how 5-HT modulates excitatory synaptic strength in layers II/III of the parasubiculum in rat brain slices. Bath-application of 1 or 10 μM 5-HT resulted in a strong, dose-dependent, and reversible reduction in the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded in the parasubiculum. The 5-HT reuptake blocker citalopram (10 μM) also reduced fEPSP amplitudes, indicating that 5-HT released within the slice inhibits synaptic transmission. The reduction of fEPSPs induced by 5-HT was blocked by the 5-HT1A receptor blocker NAN-190 (10 μM), but not by the 5-HT7 receptor blocker SB-269970 (10 μM). Moreover, the 5-HT1A agonist 8-OH-DPAT induced a reduction of fEPSP amplitude similar to that induced by 5-HT. The reduction was prevented by the 5-HT1A receptor blocker NAN-190. The reduction in fEPSPs induced by either 5-HT or by 8-OH-DPAT was accompanied by an increase in paired-pulse ratio, suggesting that it is due mainly to reduced glutamate release. Our data suggest that the effects of serotonin on cognitive function may depend in part upon a 5-HT1A-mediated reduction of excitatory synaptic transmission in the parasubiculum. This may also affect synaptic processing in the entorhinal cortex, which receives the major output projection of the parasubiculum.
Collapse
Affiliation(s)
- Francis Carter
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6.
| |
Collapse
|
6
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|
7
|
Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun 2017; 8:14727. [PMID: 28367951 PMCID: PMC5382255 DOI: 10.1038/ncomms14727] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing. Dopaminergic dysfunction occurs in Alzheimer's disease (AD). The authors show that in a mouse model of AD, loss of dopaminergic neurons in the ventral tegmental area, but not the substantia nigra, occurs at early pre-plaque stages, and may contribute to impaired cognition and reward processing.
Collapse
|
8
|
Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology 2016; 101:188-203. [DOI: 10.1016/j.neuropharm.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
9
|
Costa L, Sardone LM, Lacivita E, Leopoldo M, Ciranna L. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome. Front Behav Neurosci 2015; 9:65. [PMID: 25814945 PMCID: PMC4357247 DOI: 10.3389/fnbeh.2015.00065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/24/2015] [Indexed: 12/03/2022] Open
Abstract
Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome.
Collapse
Affiliation(s)
- Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Lara M Sardone
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari Bari, Italy
| | | | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| |
Collapse
|
10
|
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41. [DOI: 10.1016/j.pneurobio.2012.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2012] [Accepted: 06/22/2012] [Indexed: 01/11/2023]
|
11
|
D'Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol 2012; 99:42-60. [PMID: 22789698 DOI: 10.1016/j.pneurobio.2012.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
The human brain contains about 100 billion neurons forming an intricate network of innumerable connections, which continuously adapt and rewire themselves following inputs from external and internal environments as well as the physiological synaptic, dendritic and axonal sculpture during brain maturation and throughout the life span. Growing evidence supports the idea that Alzheimer's disease (AD) targets selected and functionally connected neuronal networks and, specifically, their synaptic terminals, affecting brain connectivity well before producing neuronal loss and compartmental atrophy. The understanding of the molecular mechanisms underlying the dismantling of neuronal circuits and the implementation of 'clinically oriented' methods to map-out the dynamic interactions amongst neuronal assemblies will enhance early/pre-symptomatic diagnosis and monitoring of disease progression. More important, this will open the avenues to innovative treatments, bridging the gap between molecular mechanisms and the variety of symptoms forming disease phenotype. In the present review a set of evidence supports the idea that altered brain connectivity, exhausted neural plasticity and aberrant neuronal activity are facets of the same coin linked to age-related neurodegenerative dementia of Alzheimer type. Investigating their respective roles in AD pathophysiology will help in translating findings from basic research to clinical applications.
Collapse
Affiliation(s)
- Marcello D'Amelio
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | |
Collapse
|
12
|
Alfaro-Rodríguez A, González-Piña R, Bueno-Nava A, Arch-Tirado E, Ávila-Luna A, Uribe-Escamilla R, Vargas-Sánchez J. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats. Metab Brain Dis 2011; 26:213-20. [PMID: 21789566 DOI: 10.1007/s11011-011-9254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/13/2011] [Indexed: 11/29/2022]
Abstract
The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.
Collapse
Affiliation(s)
- Alfonso Alfaro-Rodríguez
- Departamento de Neurofisiología, Laboratorio de Neuroquímica, Instituto Nacional de Rehabilitación, SSA, Calz. México-Xochimilco 289 Col. Arenal de Guadalupe, Delegación Tlalpan, C.P. 14389 México City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ledgerwood CJ, Greenwood SM, Brett RR, Pratt JA, Bushell TJ. Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways. Br J Pharmacol 2011; 162:286-94. [PMID: 20825410 PMCID: PMC3012422 DOI: 10.1111/j.1476-5381.2010.01015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) has emerged as an interesting compound with therapeutic potential in several CNS disorders. However, whether it can modulate synaptic activity in the CNS remains unclear. Here, we have investigated whether CBD modulates synaptic transmission in rat hippocampal cultures and acute slices. EXPERIMENTAL APPROACH The effect of CBD on synaptic transmission was examined in rat hippocampal cultures and acute slices using whole cell patch clamp and standard extracellular recordings respectively. KEY RESULTS Cannabidiol decreased synaptic activity in hippocampal cultures in a concentration-dependent and Pertussis toxin-sensitive manner. The effects of CBD in culture were significantly reduced in the presence of the cannabinoid receptor (CB(1) ) inverse agonist, LY320135 but were unaffected by the 5-HT(1A) receptor antagonist, WAY100135. In hippocampal slices, CBD inhibited basal synaptic transmission, an effect that was abolished by the proposed CB(1) receptor antagonist, AM251, in addition to LY320135 and WAY100135. CONCLUSIONS AND IMPLICATIONS Cannabidiol reduces synaptic transmission in hippocampal in vitro preparations and we propose a role for both 5-HT(1A) and CB(1) receptors in these CBD-mediated effects. These data offer some mechanistic insights into the effects of CBD and emphasize that further investigations into the actions of CBD in the CNS are required in order to elucidate the full therapeutic potential of CBD.
Collapse
Affiliation(s)
- C J Ledgerwood
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
14
|
Deng PY, Poudel SKS, Rojanathammanee L, Porter JE, Lei S. Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex. Mol Pharmacol 2007; 72:208-18. [PMID: 17452494 DOI: 10.1124/mol.107.034389] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus; the superficial layers (layers I-III) of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. The superficial layers of the EC receive strong serotonergic projections from the raphe nuclei. However, the function of serotonin in the EC is still elusive. In the present study, we examined the molecular and cellular mechanisms underlying serotonin-mediated inhibition of the neuronal excitability in the superficial layers (layers II and III) of the EC. Application of serotonin inhibited the excitability of stellate and pyramidal neurons in the superficial layers of the EC by activating the TWIK-1 type of the two-pore domain K(+) channels. The effects of 5-HT were mediated via 5-HT(1A) receptors and required the function of Galpha(i3) subunit and protein kinase A. Serotonin-mediated inhibition of EC activity resulted in an inhibition of hippocampal function. Our study provides a cellular mechanism that might at least partially explain the roles of serotonin in many physiological functions and neurological diseases.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
15
|
Kim DS, Kim JE, Kwak SE, Kim DW, Choi SY, Kwon OS, Kang TC. Seizure activity selectively reduces 5-HT1A receptor immunoreactivity in CA1 interneurons in the hippocampus of seizure-prone gerbils. Brain Res 2007; 1154:181-93. [PMID: 17493597 DOI: 10.1016/j.brainres.2007.03.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Since the correlation between the serotonin (5-hydroxytryptamine, 5-HT) system and seizure activity remains to be clarified, we investigated the 5-HT system in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference of the 5-HT system in the hippocampi of young animals (predisposed and juvenile gerbils) in both SR and SS gerbils. 5-HT immunoreactivity in the dorsal raphe nucleus and the median raphe nucleus was also similarly detected in both animal groups. As compared to SR adult gerbils, only 5-HT1A receptor immunoreactivity was selectively reduced in CA1 interneurons within SS adult gerbils. (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (a 5-HT1A receptor agonist, 1 and 2 mg/kg) markedly reduced paired-pulse inhibition in the CA1 region of SS adult gerbils only. These findings suggest that the selective reduction in 5-HT1A receptor expression on CA1 interneurons of SS adult gerbil may not be developmental defects, but be an acquired compensatory change induced by repeated seizure activity.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Ma L, Shalinsky MH, Alonso A, Dickson CT. Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons. Hippocampus 2007; 17:114-29. [PMID: 17146777 DOI: 10.1002/hipo.20250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although serotonin (5-HT) is an important neuromodulator in the superficial layers of the medial entorhinal cortex (mEC), there is some disagreement concerning its influences upon the membrane properties of neurons within this region. We performed whole cell recordings of mEC Layer II projection neurons in rat brain slices in order to characterize the intrinsic influences of 5-HT. In current clamp, 5-HT evoked a biphasic response consisting of a moderately short latency and large amplitude hyperpolarization followed by a slowly developing, long lasting, and small amplitude depolarization. Correspondingly, in voltage clamp, 5-HT evoked a robust outward followed by a smaller inward shift of holding current. The outward current evoked by 5-HT showed a consistent current/voltage (I/V) relationship across cells with inward rectification, and demonstrating a reversal potential that was systematically dependent upon the extracellular concentration of K(+), suggesting that it was predominantly carried by potassium ions. However, the inward current showed a less consistent I/V relationship across different cells, suggesting multiple independent ionic mechanisms. The outward current was mediated through activation of 5-HT(1A) receptors via a G-protein dependent mechanism while inward currents were evoked in a 5-HT(1A)-independent fashion. A significant proportion of the inward current was blocked by the I(h) inhibitor ZD7288 and appeared to be due to 5-HT modulation of I(h) as 5-HT shifted the activation curve of I(h) in a depolarizing fashion. Serotonin is thus likely to influence, in a composite fashion, the information processing of Layer II neurons in the mEC and thus, the passage of neocortical information via the perforant pathway to the hippocampus.
Collapse
Affiliation(s)
- Li Ma
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Schiller L, Jähkel M, Oehler J. The influence of sex and social isolation housing on pre- and postsynaptic 5-HT1A receptors. Brain Res 2006; 1103:76-87. [PMID: 16814751 DOI: 10.1016/j.brainres.2006.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Serotonergic (5-HT) receptors are crucial for different brain functions and play an important role in several pathological conditions. We analysed [3H]8-OH-DPAT-specific binding to 5-HT1A receptors in male and female mice after group or isolation housing by in vitro autoradiography (n = 6 per group). Females displayed higher postsynaptic 5-HT1A receptor binding compared to males, especially in the cortex. In contrast, lower [3H]8-OH-DPAT-specific binding was found in the female hippocampus. No sex difference was seen for the somatodendritic 5-HT1A autoreceptor. Sex differences in postsynaptic 5-HT1A receptor binding should be relevant to behavioural sex differences, especially in locomotor activity and hippocampus-dependent behaviours. Six weeks isolation housing caused an increase in 5-HT1A receptor binding in most of the brain regions analysed and was more pronounced in males. In isolated males, the increases were detected in the CA1 field of the hippocampus (+16.8%), in the septum (+76.8%), in the cortical amygdala (+24.6%), in the periaqueductal gray (+67.2%) and in the different cortical regions analysed (+61.8-81.4%). [3H]8-OH-DPAT-specific binding increased significantly in the dentate gyrus (+47.1%), the supramammillary nucleus (+31.2%) and in the ventromedial hypothalamus (+34.4%) of isolated females. Sex-dependent isolation-induced alterations in [3H]8-OH-DPAT-specific binding were also found in the raphe nuclei. Isolation-induced increases in 5-HT1A receptor binding could be relevant to the behavioural disinhibition with heightened arousal, impulsivity and activity often observed in isolates. The male-specific alterations in the corticolimbic system as well as in the midbrain could be crucial for isolation-induced aggression.
Collapse
Affiliation(s)
- Lydia Schiller
- AG Neurobiologie, Klinik für Psychiatrie, Universitätsklinikum der TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | |
Collapse
|
18
|
Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I. Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 2006; 98:1100-13. [PMID: 16771832 DOI: 10.1111/j.1471-4159.2006.03942.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anti-convulsant properties of angiotensin IV (Ang IV), an inhibitor of insulin-regulated aminopeptidase (IRAP) and somatostatin-14, a substrate of IRAP, were evaluated in the acute pilocarpine rat seizure model. Simultaneously, the neurochemical changes in the hippocampus were monitored using in vivo microdialysis. Intracerebroventricularly (i.c.v.) administered Ang IV or somatostatin-14 caused a significant increase in the hippocampal extracellular dopamine and serotonin levels and protected rats against pilocarpine-induced seizures. These effects of Ang IV were both blocked by concomitant i.c.v. administration of the somatostatin receptor-2 antagonist cyanamid 154806. These results reveal a possible role for dopamine and serotonin in the anti-convulsant effect of Ang IV and somatostatin-14. Our study suggests that the ability of Ang IV to inhibit pilocarpine-induced convulsions is dependent on somatostatin receptor-2 activation, and is possibly mediated via the inhibition of IRAP resulting in an elevated concentration of somatostatin-14 in the brain.
Collapse
Affiliation(s)
- Bart Stragier
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the retrohippocampal areas of the New Zealand white rabbit. ACTA ACUST UNITED AC 2005; 210:199-207. [PMID: 16170538 DOI: 10.1007/s00429-005-0004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2005] [Indexed: 12/19/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of serotonin-immunoreactive axons in the paleocortical retrohippocampal areas, viz. the subiculum, presubiculum, parasubiculum and entorhinal area, and the adjoining neocortical perirhinal and retrosplenial cortices of the New Zealand white rabbit. Serotonergic axons could be segregated into three different fiber types named fine fibers, beaded fibers and stem-axons. Fine fibers were evenly distributed thin axons with small fusiform/granular varicosities. Beaded fibers were thin axons with large varicosities, predominantly located in the retrohippocampal supragranular layers, where they often formed pericellular arrays. Stem-axons were thick straight, nonvaricose axons seen in the white matter of psalterium dorsale, alveus and the plexiform layer. The paleocortical retrohippocampal areas had a dense supragranular innervation with numerous tortuous fine and beaded fibers, intermingled in conglomerates with conspicuous varicosities forming pericellular arrays. In contrast, the neocortical area 17 and the lateral part of the perirhinal cortex (area 36) were innervated by evenly distributed fine fibers with a moderate number of small varicosities and few ramifications, whereas, the retrosplenial cortex (areas 29e, 29ab and 29cd), and the medial part of the perirhinal cortex (area 35) displayed an intermediate innervation pattern, probably reflecting the transitional nature of these areas being located between the paleo- and the neocortex. The described dualistic innervation pattern may functionally enable the serotonergic system to exert a strong influence on the supragranular layers of the retrohippocampal areas and thus on the neural input entering these areas from the perirhinal and neighboring polymodal association neocortices, whereas the innervation pattern in the adjoining neocortical areas points towards a more diffuse and general modulation of neural activity herein.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
20
|
|
21
|
Schimanski LA, Nguyen PV. Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains. Neurosci Biobehav Rev 2004; 28:463-83. [PMID: 15465135 DOI: 10.1016/j.neubiorev.2004.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Inbred mouse strains differ in genetic makeup and display diverse learning and memory phenotypes. Mouse models of memory impairment can be identified by examining hippocampus-dependent memory in multiple strains. These mouse models may be used to establish the genetic, molecular, and cellular correlates of deficits in learning or memory. In this article, we review research that has characterized hippocampal learning and memory in inbred mouse strains. We focus on two well-established behavioral tests, contextual fear conditioning and the Morris water maze (MWM). Selected cellular and molecular correlates of good and poor memory performance in inbred strains are highlighted. These include hippocampal long-term potentiation, a type of synaptic plasticity that can influence hippocampal learning and memory. Further methods that might help to pinpoint the anatomical loci, and genetic and cellular/molecular factors that contribute to memory impairments in inbred mice, are also discussed. Characterization of inbred mouse strains, using multidisciplinary approaches that combine cellular, genetic, and behavioral techniques, can complement directed mutagenesis to help identify molecular mechanisms for normal and abnormal memory functions.
Collapse
Affiliation(s)
- L A Schimanski
- Department of Physiology, University of Alberta, School of Medicine, Edmonton, Alta., T6G 2H7, Canada
| | | |
Collapse
|
22
|
Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y. Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 2004; 89:834-43. [PMID: 15140183 DOI: 10.1111/j.1471-4159.2004.02355.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present microdialysis study evaluated the anticonvulsant activity of extracellular hippocampal dopamine (DA) and serotonin (5-HT) with concomitant assessment of the possible mutual interactions between these monoamines. The anticonvulsant effects of intrahippocampally applied DA and 5-HT concentrations were evaluated against pilocarpine-induced seizures in conscious rats. DA or 5-HT perfusions protected the rats from limbic seizures as long as extracellular DA or 5-HT concentrations ranged, respectively, between 70-400% and 80-350% increases compared with the baseline levels. Co-perfusion with the selective D(2) blocker remoxipride or the selective 5-HT(1A) blocker WAY-100635 clearly abolished all anticonvulsant effects. These anticonvulsant effects were mediated independently since no mutual 5-HT and DA interactions were observed as long as extracellular DA and 5-HT levels remained within these protective ranges. Simultaneous D(2) and 5-HT(1A) receptor blockade significantly aggravated pilocarpine-induced seizures. High extracellular DA (> 1000% increases) or 5-HT (> 900% increases) concentrations also worsened seizure outcome. The latter proconvulsive effects were associated with significant increases in extracellular glutamate (Glu) and mutual increases in extracellular monoamines. Our results suggest that, within a certain concentration range, DA and 5-HT contribute independently to the prevention of hippocampal epileptogenesis via, respectively, D(2) and 5-HT(1A) receptor activation.
Collapse
Affiliation(s)
- Ralph Clinckers
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Bickmeyer U, Heine M, Manzke T, Richter DW. Differential modulation of I(h) by 5-HT receptors in mouse CA1 hippocampal neurons. Eur J Neurosci 2002; 16:209-18. [PMID: 12169103 DOI: 10.1046/j.1460-9568.2002.02072.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CA1 pyramidal neurons of the hippocampus express various types of serotonin (5-HT) receptors, such as 5-HT(1A), 5-HT(4) and 5-HT(7) receptors, which couple to Galpha(i) or Galpha(s) proteins and operate on different intracellular signalling pathways. In the present paper we verify such differential serotonergic modulation for the hyperpolarization-activated current I(h). Activation of 5-HT(1A) receptors induced an augmentation of current-induced hyperpolarization responses, while the responses declined after 5-HT(4) receptors were activated. The resting potential of neurons hyperpolarized (-2.3 +/- 0.7 mV) after 5-HT(1A) receptor activation, activation of 5-HT(4) receptors depolarized neurons (+3.3 +/- 1.4 mV). Direct activation of adenylyl cyclase (AC) by forskolin also produced a depolarization. In voltage clamp, the Ih current was identified by its characteristic voltage- and time-dependency and by blockade with CsCl or ZD7288. Activation of 5-HT(1A) receptors reduced I(h) and shifted the activation curve to a more negative voltage by -5 mV at half-maximal activation. Activation of 5-HT(4) and 5-HT(7) receptors increased I(h) and shifted the activation curve to the right by +5 mV. Specific activation of 5-HT(4) receptors by BIMU8 increased membrane conductance and showed an increase in I(h) in a subset of cells, but did not induce a significant alteration in the activation curve. In order to verify spatial differences, we applied BIMU8 selectively to the soma and to the dendrites. Only somatic application induced receptor activation. These data are confirmed by immunofluorescence stainings with an antibody against the 5-HT(4) receptor, revealing receptor expression at the somata of the CA1 region. A similar expression pattern was found with a new antibody against 5-HT(7) receptors which reveals immunofluorescence staining on the cell bodies of pyramidal neurons.
Collapse
Affiliation(s)
- Ulf Bickmeyer
- Abteilung Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
24
|
Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A 2000; 97:14731-6. [PMID: 11121072 PMCID: PMC18987 DOI: 10.1073/pnas.97.26.14731] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is a major limbic target of the brainstem serotonergic neurons that modulate fear, anxiety, and learning through postsynaptic serotonin(1A) receptors (5-HT(1A) receptors). Because chronic stress selectively down-regulates the 5-HT(1A) receptors in the hippocampus, we hypothesized that mice lacking these receptors may exhibit abnormalities reminiscent of symptoms of stress-related psychiatric disorders. In particular, a hippocampal deficit in the 5-HT(1A) receptor could contribute to the cognitive abnormalities often seen in these disorders. To test whether a deficit in 5-HT(1A) receptors impairs hippocampus-related functions, we studied hippocampal-dependent learning and memory, synaptic plasticity in the hippocampus, and limbic neuronal excitability in 5-HT(1A)-knockout (KO) mice. 5-HT(1A)-KO animals showed a deficit in hippocampal-dependent learning and memory tests, such as the hidden platform (spatial) version of the Morris water maze and the delayed version of the Y maze. The performance of KO mice was not impaired in nonhippocampal memory tasks such as the visible platform (nonspatial) version of the Morris water maze, the immediate version of the Y maze, and the spontaneous-alternation test of working memory. Furthermore, paired-pulse facilitation in the dentate gyrus of the hippocampus was impaired in 5-HT(1A)-KO mice. Finally, 5-HT(1A)-KO mice, as compared with wild-type animals, displayed higher limbic excitability manifested as lower seizure threshold and higher lethality in response to kainic acid administration. These results demonstrate that 5-HT(1A) receptors are required for maintaining normal hippocampal functions and implicate a role for the 5-HT(1A) receptor in hippocampal-related symptoms, such as cognitive disturbances, in stress-related disorders.
Collapse
Affiliation(s)
- Z Sarnyai
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|