1
|
Wayllace NM, Hedín N, Busi MV, Gomez-Casati DF. Identification, molecular and biochemical characterization of a novel thermoactive and thermostable glucoamylase from Thermoanaerobacter ethanolicus. Biotechnol Lett 2022; 44:1201-1216. [PMID: 35997915 DOI: 10.1007/s10529-022-03296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE We identified a new glucoamylase (TeGA) from Thermoanaerobacter ethanolicus, a thermophilic anaerobic bacterium. Structural studies suggest that TeGA belongs to the family 15 of glycosylhydrolases (GH15). METHODS The expression of this enzyme was optimized in E. coli (BL21) cells in order to have the highest amount of soluble protein (around 3 mg/l of culture medium). RESULTS TeGA showed a high optimum temperature of 75 °C. It also showed one of the highest specific activities reported for a bacterial glucoamylase (75.3 U/mg) and was also stable in a wide pH range (3.0-10.0). Although the enzyme was preferentially active with maltose, it was also able to hydrolyze different soluble starches such as those from potato, corn or rice. TeGA showed a high thermostability up to around 70 °C, which was increased in the presence of PEG8000, and also showed to be stable in the presence of moderate concentrations of ethanol. CONCLUSION We propose that TeGA could be suitable for use in different industrial processes such as biofuel production and food processing.
Collapse
Affiliation(s)
- Natael M Wayllace
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Nicolas Hedín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
2
|
Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. ACTA ACUST UNITED AC 2021; 30:e00625. [PMID: 34041001 PMCID: PMC8141877 DOI: 10.1016/j.btre.2021.e00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
We investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39 °C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.
Collapse
|
3
|
Wang C, Yang L, Luo L, Tang S, Wang Q. Purification and characterization of glucoamylase of Aspergillus oryzae from Luzhou-flavour Daqu. Biotechnol Lett 2020; 42:2345-2355. [PMID: 32623532 DOI: 10.1007/s10529-020-02956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To obtain novel glucoamylase from Daqu microbe. RESULTS A dominant strain known as LZ2 with high activity of hydrolyzing starch was isolated from Luzhou Daqu, a Chinese traditional fermentation starter. The LZ2 was identified as Aspergillus oryzae by 18S rDNA sequence analysis. Glucoamylase from LZ2, named as GA-LZ2, was purified to homogeneity and showed a single band with expected molecular mass of 60 kD. The GA-LZ2 effectively degraded amylose, rice starch and wheat starch. Optimal temperature and pH value of enzyme were 60 °C and pH 4.0 respectively. The GA-LZ2 displayed significant thermal stability and pH stability at moderate temperature and low pH. Intriguingly, the thermostability was enhanced in the presence of starch. In addition, GA-LZ2 exhibited insensitivity to glucose, independence of metal ions and tolerance to organic solvents. The GA-LZ2 retained complete activity in the presence of 100 mM glucose and 5% ethanol and methanol. CONCLUSION Glucoamylase GA-LZ2 displayed broad substrate specificity, strong stability and tolerance, suggesting that GA-LZ2 carry potential for industrial application in bioethanol production.
Collapse
Affiliation(s)
- Chuan Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China.
| | - Lianli Yang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Lunan Luo
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Shichao Tang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Qiang Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Lincoln L, More VS, More SS. Purification and biochemical characterization of extracellular glucoamylase from Paenibacillus amylolyticus strain. J Basic Microbiol 2019; 59:375-384. [PMID: 30681161 DOI: 10.1002/jobm.201800540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 11/06/2022]
Abstract
In the present study, glucoamylase produced from a soil bacterium Paenibacillus amylolyticus NEO03 was cultured under submerged fermentation conditions. The extracellular enzyme was purified by starch adsorption chromatography and further by gel filtration, with 2.73-fold and recovery of 40.02%. The protein exhibited molecular mass of ∼66,000 Da as estimated by SDS-PAGE and depicted to be a monomer. The enzyme demonstrated optimum activity at pH range 6.0-7.0 and temperature range 30-40 °C. Glucoamylase was mostly activated by Mn2+ metal ions and depicted no dependency on Ca2+ ions. The enzyme preferentially hydrolyzed all the starch substrates. High substrate specificity was demonstrated towards soluble starch and kinetic values Km and Vmax were 2.84 mg/ml and 239.2 U/ml, respectively. The products of hydrolysis of soluble starch were detected by thin layer chromatography which showed only D -glucose, indicating a true glucoamylase. The secreted glucoamylase from P. amylolyticus strain possesses properties suitable for saccharification processes such as biofuel production.
Collapse
Affiliation(s)
- Lynette Lincoln
- Department of Biochemistry, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - Veena S More
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Rezaul Kar KM, Husaini A, Tasnim T. Production and Characterization of Crude Glucoamylase from Newly Isolated Aspergillus flavus NSH9 in Liquid Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajbmb.2017.118.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Maiti S, Sahoo S, Roy S. Production and Partial Purification of Hyperthermostable Alkaline Amylase in a Newly Isolated Bacillus cereus (sm-sr14) from Hot-spring Water. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jm.2017.187.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Carrasco M, Alcaíno J, Cifuentes V, Baeza M. Purification and characterization of a novel cold adapted fungal glucoamylase. Microb Cell Fact 2017; 16:75. [PMID: 28464820 PMCID: PMC5414198 DOI: 10.1186/s12934-017-0693-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Amylases are used in various industrial processes and a key requirement for the efficiency of these processes is the use of enzymes with high catalytic activity at ambient temperature. Unfortunately, most amylases isolated from bacteria and filamentous fungi have optimal activity above 45 °C and low pH. For example, the most commonly used industrial glucoamylases, a type of amylase that degrades starch to glucose, are produced by Aspergillus strains displaying optimal activities at 45–60 °C. Thus, isolating new amylases with optimal activity at ambient temperature is essential for improving industrial processes. In this report, a glucoamylase secreted by the cold-adapted yeast Tetracladium sp. was isolated and biochemically characterized. Results The effects of physicochemical parameters on enzyme activity were analyzed, and pH and temperature were found to be key factors modulating the glucoamylase activity. The optimal conditions for enzyme activity were 30 °C and pH 6.0, and the Km and kcat using soluble starch as substrate were 4.5 g/L and 45 min−1, respectively. Possible amylase or glucoamylase encoding genes were identified, and their transcript levels using glucose or soluble starch as the sole carbon source were analyzed. Transcription levels were highest in medium supplemented with soluble starch for the potential glucoamylase encoding gene. Comparison of the structural model of the identified Tetracladium sp. glucoamylase with the solved structure of the Hypocrea jecorina glucoamylase revealed unique structural features that may explain the thermal lability of the glucoamylase from Tetracladium sp. Conclusion The glucoamylase secreted by Tetracladium sp. is a novel cold-adapted enzyme and its properties should render this enzyme suitable for use in industrial processes that require cold-active amylases, such as biofuel production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0693-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Carrasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 342, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 342, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 342, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 342, Casilla 653, Santiago, Chile.
| |
Collapse
|
8
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Ramesh V, Murty VR. Partitioning of thermostable glucoamylase in polyethyleneglycol/salt aqueous two-phase system. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0056-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Wei W, Ma J, Guo S, Wei DZ. A type I pullulanase of Bacillus cereus Nws-bc5 screening from stinky tofu brine: Functional expression in Escherichia coli and Bacillus subtilis and enzyme characterization. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kumar V, Sahai V, Bisaria V. Production of amylase and chlamydospores by Piriformospora indica, a root endophytic fungus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y. Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 2010; 87:225-33. [PMID: 20155355 DOI: 10.1007/s00253-010-2439-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/27/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
Abstract
A thermostable glucoamylase (TtcGA) from Thermoanaerobacter tengcongensis MB4 was successfully expressed in Escherichia coli. The full-length gene (2112 bp) encodes a 703-amino acid polypeptide including a predicted signal peptide of 21 residues. The recombinant mature protein was partially purified to 30-fold homogeneity by heat treatment and gel filtration chromatography. The mature protein is a monomer with the molecular weight of 77 kD. The recombinant enzyme showed maximum activity at 75 degrees C and pH 5.0. It is the most thermostable bacterial glucoamylase described to date with nearly no activity loss after incubation at 75 degrees C for 6 h. TtcGA can hydrolyze both alpha-1, 4- and alpha-1, 6-glycosidic linkages in various alpha-glucans. It showed preference for maltooligosaccharides over polysaccharides with specific activity of 80 U/mg towards maltose. Kinetic studies revealed that TtcGA had the highest activity on maltooligosaccharide with four monosaccharide units. The cations Ca2+, Mn2+, Co2+, Mg2+, and reducing agent DTT showed no obvious effects on the action of TtcGA. In contrast, the enzyme was inactivated by Zn2+, Pb2+, Cu2+, and EDTA.
Collapse
Affiliation(s)
- Yingying Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
13
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Michelin M, Ruller R, Ward RJ, Moraes LAB, Jorge JA, Terenzi HF, Polizeli MDLTM. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii. J Ind Microbiol Biotechnol 2007; 35:17-25. [DOI: 10.1007/s10295-007-0261-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
|
15
|
Riaz M, Perveen R, Javed MR, Nadeem H, Rashid MH. Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M. Fungal glucoamylases. Biotechnol Adv 2005; 24:80-5. [PMID: 16091302 DOI: 10.1016/j.biotechadv.2005.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/22/2005] [Indexed: 11/28/2022]
Abstract
Fungi are employed to produce industrially important glucoamylases. Most glucoamylases are glycosylated. Glycosylation enhances the enzyme stability. Glucoamylases contain both starch binding and catalytic binding domains, the former being responsible for activity on raw (insoluble) starch. Proteases may act on this domain causing the enzyme to lose its activity on insoluble starch. Optimal activity is observed at pH 4.5 to 6.5 and 50 to 70 degrees C. Glucoamylases contain up to 7 sub-sites with highly varying affinity. They can be produced by different methods including submerged, solid state and semi-solid state fermentation processes.
Collapse
Affiliation(s)
- Dariush Norouzian
- Department of Chemical Engineering, University of Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
17
|
Gill RK, Kaur J. A thermostable glucoamylase from a thermophilic Bacillus sp.: characterization and thermostability. J Ind Microbiol Biotechnol 2004; 31:540-3. [PMID: 15672284 DOI: 10.1007/s10295-004-0185-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
A thermostable glucoamylase (GA) showed optimum activity at 70 degrees C and pH 5.0. It was highly stable at pH 7.0. The half-life of the enzyme at pH 7.0 was 13, 8, and 3 h 40 min at 60, 65, and 70 degrees C respectively. The residual activity of the enzyme sample incubated at 5 psi (110 degrees C) for 30 min was about 32% of the control set (incubated at 4 degrees C), while no activity was observed at 10 and 15 psi. The thermostability of the enzyme was enhanced twofold in the presence of 0.5% (w/v) starch at 5 psi. Thin-layer chromatography indicated that this enzyme is a GA.
Collapse
Affiliation(s)
- Rupinder K Gill
- Department of Biotechnology, Panjab University, Chandigarh, 160 014, India
| | | |
Collapse
|
18
|
Abstract
Pullulan degrading enzymes belong to a group of glycosylhydrolases that are widely distributed in nature and are produced by an extremely wide variety of species. Among them the thermophilic and mesophilic bacteria are a rich source of these enzymes. There are many biotechnological applications for these enzymes and a rapidly growing amount of information about their diversity, genetic as well as biochemical and biophysical characteristics. The properties of these enzymes vary and are somewhat linked to the natural environment inhabited by the producing organisms. Genes for these enzymes have been cloned from several strains and their amino acid sequences show highly conserved regions common to the enzymes of the amylase family. Molecular studies have greatly extended our knowledge on pullulan degrading enzymes and their biosynthesis. However, enzyme production levels have usually not been as high as had been assumed possible, and the properties of some enzymes are less than optimal for their industrial applications. Some of these problems can be overcome with the use of good producer organisms, optimized expression/secretion vectors, and site-directed mutagenesis. The molecular biology of pullulan degrading enzymes has been and continues to be a valuable system for studying basic questions of cell biology, such as mechanisms of gene regulation and secretion, and the structure-function relationships of proteins.
Collapse
|
19
|
Zanoelo FF, Polizeli Md MDLTDM, Terenzi HF, Jorge JA. Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 2004; 31:170-6. [PMID: 15160297 DOI: 10.1007/s10295-004-0129-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 03/17/2004] [Indexed: 10/26/2022]
Abstract
The thermophilic fungus Scytalidium thermophilum produced large amounts of periplasmic beta- D-xylosidase activity when grown on xylan as carbon source. The presence of glucose in the fresh culture medium drastically reduced the level of beta- D-xylosidase activity, while cycloheximide prevented induction of the enzyme by xylan. The mycelial beta-xylosidase induced by xylan was purified using a procedure that included heating at 50 degrees C, ammonium sulfate fractioning (30-75%), and chromatography on Sephadex G-100 and DEAE-Sephadex A-50. The purified beta- D-xylosidase is a monomer with an estimated molecular mass of 45 kDa (SDS-PAGE) or 38 kDa (gel filtration). The enzyme is a neutral protein (pI 7.1), with a carbohydrate content of 12% and optima of temperature and pH of 60 degrees C and 5.0, respectively. beta- D-Xylosidase activity is strongly stimulated and protected against heat inactivation by calcium ions. In the absence of substrate, the enzyme is stable for 1 h at 60 degrees C and has half-lives of 11 and 30 min at 65 degrees C in the absence or presence of calcium, respectively. The purified beta- D-xylosidase hydrolyzed p-nitrophenol-beta- D-xylopyranoside and p-nitrophenol-beta- D-glucopyranoside, exhibiting apparent K(m) and V(max) values of 1.3 mM, 88 micromol min(-1) protein(-1) and 0.5 mM, 20 micromol min(-1) protein(-1), respectively. The purified enzyme hydrolyzed xylobiose, xylotriose, and xylotetraose, and is therefore a true beta- D-xylosidase. Enzyme activity was completely insensitive to xylose, which inhibits most beta-xylosidases, at concentrations up to 200 mM. Its thermal stability and high xylose tolerance qualify this enzyme for industrial applications. The high tolerance of S. thermophilum beta-xylosidase to xylose inhibition is a positive characteristic that distinguishes this enzyme from all others described in the literature.
Collapse
Affiliation(s)
- Fabiana Fonseca Zanoelo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
20
|
Guimarães LH, Terenzi HF, Jorge JA, Leone FA, Polizeli ML. Extracellular alkaline phosphatase from the filamentous fungus Aspergillus caespitosus: purification and biochemical characterization. Folia Microbiol (Praha) 2004; 48:627-32. [PMID: 14976719 DOI: 10.1007/bf02993469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Among 30 species of filamentous fungi isolated from Brazilian soil, Aspergillus caespitosus produced and secreted the highest levels of alkaline phosphatase in culture medium supplemented with xylan. The extracellular alkaline phosphatase was purified by DEAE-cellulose and concanavalin A-sepharose chromatography. The enzyme was a glycoprotein containing up to 56% sugar with molar mass of 134.8 kDa, according to gel filtration in Sepharose CL-6B, and 57 kDa according to SDS-PAGE. Nondenaturing electrophoresis (6% PAGE) of the purified enzyme produced a single band, suggesting that the native enzyme was a homodimer. Optima of temperature and pH were 75 degrees C and 8.5, respectively. The enzyme was stable at 50 degrees C and its activity was enhanced by 95% in the presence of Mg2+ (1 mmol/L). 4-Nitrophenyl phosphate was the preferentially hydrolyzed substrate with K(m) and upsilon lim values of 74 mumol/L and 285 mumol/s, in the absence, and 90 mumol/L and 418 mumol/s, in the presence of Mg2+, respectively. The enzyme also hydrolyzed other phosphorylated amino acids (O-phosphothreonine, O-phosphotyrosine, O-phosphoserine).
Collapse
Affiliation(s)
- L H Guimarães
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040 901 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
21
|
Flieger M, Kantorová M, Prell A, Rezanka T, Votruba J. Biodegradable plastics from renewable sources. Folia Microbiol (Praha) 2003; 48:27-44. [PMID: 12744074 DOI: 10.1007/bf02931273] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).
Collapse
Affiliation(s)
- M Flieger
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | | | |
Collapse
|
22
|
Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 2003; 61:323-8. [PMID: 12743761 DOI: 10.1007/s00253-003-1290-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Revised: 02/11/2003] [Accepted: 02/21/2003] [Indexed: 10/25/2022]
Abstract
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).
Collapse
Affiliation(s)
- A C M M Aquino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Brazil
| | | | | | | |
Collapse
|