1
|
Schwerdtfeger LA, Lanser TB, Montini F, Moreira T, LeServe DS, Cox LM, Weiner HL. Akkermansia mono-colonization modulates microglia and astrocytes in a strain specific manner. J Neuroinflammation 2025; 22:94. [PMID: 40148962 PMCID: PMC11951737 DOI: 10.1186/s12974-025-03417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Microglia and astrocytes are the primary glial cells in the central nervous system (CNS) and their function is shaped by multiple factors. Regulation of CNS glia by the microbiota have been reported, although the role of specific bacteria has not been identified. We colonized germ-free mice with the type strain Akkermansia muciniphila (AmT) and a novel A. muciniphila strain BWH-H3 (Am-H3) isolated from a subject with multiple sclerosis and compared to mice colonized with Bacteroides cellulosilyticus strain BWH-E5 (Bc) isolated from a healthy control subject. We then investigated the effect of these bacteria on microglia and astrocyte gene expression by RNA sequencing. We found altered gene expression profiles in brain microglia, with Akkermansia downregulating genes related to antigen presentation and cell migration. Furthermore, we observed strain specific effects, with Akkermansia H3 upregulating histone and protein binding associated genes and downregulating channel and ion transport genes. Astrocyte pathways that were altered by Akkermansia H3 mono-colonization included upregulation of proliferation pathways and downregulation in cytoskeletal associated genes. Furthermore, animals colonized with type strain Akkermansia and strain H3 had effects on the immune system including elevated splenic γδ-T cells and increased IFNγ production in CD4 + T cells. We also measured intestinal short chain fatty acids and found that both A. muciniphila strains produced proprionate while B. cellulosilyticus produced acetate, proprionate, and isovalerate. Taken together, our study shows that specific members of the intestinal microbiota influence both microglial and astroyctes which may be mediated by changes in short chain fatty acids and peripheral immune signaling.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Federico Montini
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Thais Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Hudcovic T, Petr Hermanova P, Kozakova H, Benada O, Kofronova O, Schwarzer M, Srutkova D. Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis. Front Microbiol 2024; 15:1393732. [PMID: 39206364 PMCID: PMC11349737 DOI: 10.3389/fmicb.2024.1393732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
Collapse
Affiliation(s)
- Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Petra Petr Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| |
Collapse
|
3
|
Hasan N, Yang H. Evaluation of microbial and vancomycin treatments in ulcerative colitis in murine models. PLoS One 2023; 18:e0285613. [PMID: 37167242 PMCID: PMC10174502 DOI: 10.1371/journal.pone.0285613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Despite the number of available therapies for ulcerative colitis (UC), severe side effects and high cost has limited their clinical application. Thus, finding new alternative strategies with minimal side effects is inevitable. Therefore, this study aimed to compare the effectiveness of different therapeutic approaches in DSS-induced colitis. METHODS Firstly, we designed oral bio-therapeutic products, Live Bacterial Products (LBP), which include a mixture of fecal bacteria strains isolated from healthy mice and prepared by microencapsulation and freeze-dried techniques. Then we investigated the efficiency of 7 days of freeze-dried FMT, LBP, and vancomycin treatments in DSS-induced colitis. Secondly, we compared the effect of 15 days of microbial therapies (freeze-dried powder of FMT and LBP microcapsules) and seven days of oral vancomycin on the severity of colitis in mice. Furthermore, the levels of IL-1β and TNF-α were measured in serum by ELISA, and the fecal microbiota diversity was analyzed by high-throughput sequencing for all mice groups. RESULTS After seven days of treatments, our results indicated that oral vancomycin reduced the severity of DSS-induced colitis in mice, where weight gain and a decrease in IL-1 β and TNF-α levels were observed in the vancomycin group compared with other treatment groups. While after two weeks of treatment, the LBP microcapsules were able to reduce the severity of colitis. And at the end of the treatment period, weight gain and a decrease in the DAI scores and the levels of IL-1β and TNF-α were noted in the LBP treatment group compared to other treatment groups. By high-throughput sequencing of the 16S rRNA gene, our results showed that while the microcapsules LBP treatment increased the fecal microbial diversity, after vancomycin therapy, most of the fecal microbiota genera and operational taxonomic units (OTUs) were depleted. CONCLUSION Our results concluded that treatment duration and preparation methods affect the microbial therapies' efficiency in UC. Furthermore, this study highlighted the negative consequences of oral vancomycin administration on gut health that should be known before using this medication.
Collapse
Affiliation(s)
- Nihal Hasan
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People’s Republic of China
- Faculty of Health Science, Al-Baath University, Homs, Syria
| | - Hongyi Yang
- Department of Microbiology, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
4
|
Mishra R, Rajsiglová L, Lukáč P, Tenti P, Šima P, Čaja F, Vannucci L. Spontaneous and Induced Tumors in Germ-Free Animals: A General Review. ACTA ACUST UNITED AC 2021; 57:medicina57030260. [PMID: 33799911 PMCID: PMC8002107 DOI: 10.3390/medicina57030260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome’s importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.
Collapse
Affiliation(s)
- Rajbardhan Mishra
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Lenka Rajsiglová
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Pavol Lukáč
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Paolo Tenti
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Peter Šima
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
| | - Fabián Čaja
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (R.M.); (L.R.); (P.L.); (P.T.); (P.Š.); (F.Č.)
- Correspondence: ; Tel.: +42-024-106-2394
| |
Collapse
|
5
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
6
|
Hasannejad-Bibalan M, Mojtahedi A, Eshaghi M, Rohani M, Pourshafie MR, Talebi M. The effect of selected Lactobacillus strains on dextran sulfate sodium-induced mouse colitis model. Acta Microbiol Immunol Hung 2020; 67:138-142. [PMID: 32554841 DOI: 10.1556/030.2020.00834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) comprises two major illnesses: Crohn's disease (CD) and ulcerative colitis (UC). Dextran sulfate sodium (DSS) mouse colitis model has been used in understanding the mechanism of IBD. This study was conducted to examine selected Lactobacillus spp. as potential IBD treatment in the DSS-induced animal model. Balb/c mice were used and colitis was induced by adding 5% dextran sodium sulfate into the drinking water for 8 days. Colon length, disease activity index (DAI) and histological analysis were measured as markers of inflammation in DSS colitis mice. The majority of the Lactobacillus species significantly prevented the shortening of the colon length compared with the DSS group. The DAI scores of mice were significantly reduced following usage of four Lactobacillus strains included: Lactobacillus plantarum 03 and 06, Lactobacillus brevis 02 and Lactobacillus rhamnosus 01. The histological analysis exhibited that oral administration of Lactobacillus strains had therapeutic effects on mice colitis. L. plantarum and L. brevis showed better therapeutic effect against DSS-induced acute colitis mice. The probiotic activities of these three isolates indicated that the probiotic effects were strain specific and none of these useful bacteria could exhibit all of the valued probiotic properties simultaneously.
Collapse
Affiliation(s)
| | - Ali Mojtahedi
- 1Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Morteza Eshaghi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- 3Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Malihe Talebi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Janeckova L, Kostovcikova K, Svec J, Stastna M, Strnad H, Kolar M, Hudcovic T, Stancikova J, Tureckova J, Baloghova N, Sloncova E, Galuskova K, Tlaskalova-Hogenova H, Korinek V. Unique Gene Expression Signatures in the Intestinal Mucosa and Organoids Derived from Germ-Free and Monoassociated Mice. Int J Mol Sci 2019; 20:ijms20071581. [PMID: 30934845 PMCID: PMC6480644 DOI: 10.3390/ijms20071581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.
Collapse
Affiliation(s)
- Lucie Janeckova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Klara Kostovcikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jiri Svec
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Prague, Srobarova 50, 100 34 Prague 10, Czech Republic.
| | - Monika Stastna
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Michal Kolar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Tomas Hudcovic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jitka Stancikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jolana Tureckova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Nikol Baloghova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sloncova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Katerina Galuskova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Helena Tlaskalova-Hogenova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Vladimir Korinek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
8
|
KOLINSKA J, ZAKOSTELECKA M, ZEMANOVA Z, LISA V, GOLIAS J, KOZAKOVA H, DVORAK B. Cellular Differentiation of Non-Transformed Intestinal Epithelial Cells Is Regulated by Lactobacillus rhamnosus and L. casei Strains. Physiol Res 2018; 67:261-273. [DOI: 10.33549/physiolres.933643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to characterize an in vitro modulating effect of three commensal Lactobacillus strains on cellular differentiation of non-transformed crypt-like rat small intestinal cell line IEC-18. IEC-18 was grown on extracellular matrix, with or without presence of Lactobacillus strains. Gene expression of IEC-18 bacterial detection system – such as Toll-like receptors TLR-2, TLR-4, signal adapter MyD88, cytoplasmic NOD2 receptor, inflammatory cytokines IL-18, IL-1β, chemokine IL-8 and enzyme caspase-1 – was evaluated using real-time PCR. Expression and localization of TLR-2, TLR-4, IL-18 and caspase-1 proteins was demonstrated by Western blotting and immunofluorescent staining. Secretion of IL-18 to apical and basolateral surfaces was assayed by ELISA. Our results suggested that L. casei LOCK0919 accelerated differentiation of IEC-18 by stimulating TLR-2, TLR-4, MyD88, IL-18, caspase-1 mRNAs and proteins. L. casei LOCK0919 increased expression and transfer of villin and β-catenin from cytoplasm to cell membrane. Presence of L. rhamnosus LOCK0900 resulted in detachment of IEC-18 layer from extracellular matrix leading to induction of IL-1β, of TLR-2 and IL-8 mRNAs and stimulation of MyD88, caspase-1 and cytosolic receptor NOD2 mRNAs. L. rhamnosus LOCK0908 was not recognized by TLR-2 or TLR-4 receptors. Lactobacilli-IEC-18 crosstalk enhanced immune and barrier mucosal functions.
Collapse
Affiliation(s)
- J. KOLINSKA
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Jourová L, Anzenbacher P, Lišková B, Matušková Z, Hermanová P, Hudcovic T, Kozáková H, Hrnčířová L, Anzenbacherová E. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol (Praha) 2017; 62:463-469. [PMID: 28337589 DOI: 10.1007/s12223-017-0517-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.
Collapse
Affiliation(s)
- L Jourová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - P Anzenbacher
- Department of Pharmacology, Palacky University Olomouc, Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - B Lišková
- Department of Pharmacology, Palacky University Olomouc, Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Z Matušková
- Department of Pharmacology, Palacky University Olomouc, Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - P Hermanová
- Institute of Microbiology, The Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - T Hudcovic
- Institute of Microbiology, The Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - H Kozáková
- Institute of Microbiology, The Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - L Hrnčířová
- Institute of Microbiology, The Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - E Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Abstract
Animal models of human disease are a critical tool in both basic research and drug development. The results of preclinical efficacy studies often inform progression of therapeutic candidates through the drug development pipeline; however, the extent to which results in inflammatory bowel disease (IBD) models predict human drug response is an ongoing concern. This review discusses how murine models are currently being used in IBD research. We focus on the considerations and caveats for commonly used models in preclinical efficacy studies and discuss the value of models that utilize specific pathogenic pathways of interest rather than model all aspects of human disease.
Collapse
Affiliation(s)
- Jason DeVoss
- Department of Immunology, Genentech, Inc., San Francisco, California, USA
| | - Lauri Diehl
- Department of Pathology, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
11
|
Zhan Y, Chen PJ, Sadler WD, Wang F, Poe S, Núñez G, Eaton KA, Chen GY. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res 2013; 73:7199-210. [PMID: 24165160 DOI: 10.1158/0008-5472.can-13-0827] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a critical player in the development of both colitis-associated and sporadic colon cancers. Several studies suggest that the microbiota contribute to inflammation and tumorigenesis; however, studies to understand the role of the microbiota in colon tumor development in germ-free (GF) mice are limited. We therefore studied the effects of the microbiota on the development of inflammation and tumors in GF and conventionally raised specific pathogen-free (SPF) mice treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). We discovered that GF mice developed significantly more and larger tumors compared with that in SPF mice after AOM and DSS treatment despite the lack of early acute inflammation in response to chemically induced injury by DSS. Although the extent of intestinal epithelial damage and apoptosis was not significantly different in GF and SPF mice, there was a delay in intestinal epithelial repair to DSS-induced injury in GF mice resulting in a late onset of proinflammatory and protumorigenic responses and increased epithelial proliferation and microadenoma formation. Recolonization of GF mice with commensal bacteria or administration of lipopolysaccharide reduced tumorigenesis. Thus, although commensal bacteria are capable of driving chronic inflammation and tumorigenesis, the gut microbiota also have important roles in limiting chemically induced injury and proliferative responses that lead to tumor development.
Collapse
Affiliation(s)
- Yu Zhan
- Authors' Affiliations: Division of Hematology and Oncology, Department of Internal Medicine, Department of Pathology, Comprehensive Cancer Center, Unit for Laboratory Animal Medicine, and Department of Microbiology and Immunology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wen HZ, Hao WW, Li J, Tang ZP. Factors influencing the development of animal models of dextran sulphate sodium-induced colitis. Shijie Huaren Xiaohua Zazhi 2011; 19:3666-3671. [DOI: 10.11569/wcjd.v19.i36.3666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal models of dextran sulphate sodium (DSS)-induced colitis have demonstrated several correlations with human ulcerative colitis (UC) since the first report of DSS-induced colitis in hamsters in 1985. These animal models have similarities to human UC in etiology, pathology, pathogenesis and therapeutic response, and are deemed suitable for investigating the pathogenesis and therapeutic options of UC and UC-related dysplasia-adenocarcinoma sequence. Although induction of colitis with DSS is relatively cheap and simple, the development of this model is influenced by many factors, such as DSS concentration, administration duration, DSS molecular weight and animal species. These factors are important for successful development of DSS-induced colitis. In this paper we summarize factors influencing the development of animal models of DSS-induced colitis.
Collapse
|
13
|
Splichalova A, Trebichavsky I, Rada V, Vlkova E, Sonnenborn U, Splichal I. Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine. Clin Exp Immunol 2010; 163:242-9. [PMID: 21155989 DOI: 10.1111/j.1365-2249.2010.04283.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The colonization, translocation and protective effect of two intestinal bacteria - PR4 (pig commensal strain of Bifidobacterium choerinum) or EcN (probiotic Escherichia coli strain Nissle 1917) - against subsequent infection with a virulent LT2 strain of Salmonella enterica serovar Typhimurium were studied in gnotobiotic pigs after oral association. The clinical state of experimental animals correlated with bacterial translocation and levels of inflammatory cytokines [a chemokine, interleukin (IL)-8, a proinflammatory cytokine, tumour necrosis factor (TNF)-α and an anti-inflammatory cytokine, IL-10] in plasma and intestinal lavages. Gnotobiotic pigs orally mono-associated with either PR4 or EcN thrived, and bacteria were not found in their blood. No significant inflammatory cytokine response was observed. Mono-association with Salmonella caused devastating septicaemia characterized by high levels of IL-10 and TNF-α in plasma and TNF-α in the intestine. Di-associated gnotobiotic pigs were given PR4 or EcN for 24 h. Subsequently, they were infected orally with Salmonella and euthanized 24 h later. Pigs associated with bifidobacteria before Salmonella infection suffered from severe systemic infection and mounted similar cytokine responses as pigs infected with Salmonella alone. In contrast, EcN interfered with translocation of Salmonella into mesenteric lymph nodes and systemic circulation. Pigs pre-associated with EcN thrived and their clinical condition correlated with the absence of IL-10 in their plasma and a decrease of TNF-α in plasma and ileum.
Collapse
Affiliation(s)
- A Splichalova
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Trebichavsky I, Splichal I, Rada V, Splichalova A. Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev 2010; 68:459-64. [PMID: 20646223 DOI: 10.1111/j.1753-4887.2010.00305.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The beneficial effect of probiotic Escherichia coli strain Nissle 1917 (EcN) suggests the gut epithelium plays a basic role in immune interactions with bacteria. Contrary to other commensal strains of Escherichia coli, EcN profoundly modulates the gut barrier to elevate its resistance to microbial pathogens. The present review documents the properties of EcN that have led to the protection of gnotobiotic pigs against lethal enteric infections. This effect could be important in light of the growing number of acquired deficiencies that paralyze gut immunity in humans.
Collapse
Affiliation(s)
- Ilja Trebichavsky
- Division of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | | | | | | |
Collapse
|
15
|
Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, Schwarzer M, Tlaskalova-Hogenova H. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 2010; 17:796-804. [PMID: 20379054 DOI: 10.5551/jat.3285] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of our work was to determine the influence of intestinal bacteria on the development of atherosclerotic lesions using apolipoprotein E (ApoE)-deficient knockout mice. METHODS The experiments were performed on ApoE-/--deficient mouse strain C57BL/6, bred under germ-free (GF) conditions for two generations or under conventional conditions with defined microflora (CV). The mice were fed a standard low cholesterol diet or cholesterol-rich diet for 3-4 months. We studied the development of advanced lesions in the thoracic and abdominal aorta by histological, morphometric and immunohistological methods. RESULTS Conventionally reared ApoE-/- mice (containing no pathogenic intestinal microbiota) and fed a standard low cholesterol diet in contrast to a high cholesterol diet did not develop atherosclerotic aortic plaques. In contrast, ApoE-/- mice reared under germfree conditions for 2 generations and fed a low cholesterol diet exhibited atherosclerotic plaques in the aorta. Characteristic lipid deposition with foam cells and macrophages was found in their arterial walls. CONCLUSION In contrast to the absence of atherosclerotic plaques in conventionally reared ApoE-deficient mice, germ-free ApoE-/- mice consuming the same low cholesterol standard diet developed atherosclerotic plaques in the aorta. Differences in atherosclerotic plaques between GF and CV ApoE-/- mice are not so apparent when mice are fed a high cholesterol diet. Our findings thus document the protective effect of microbiota (commensal bacteria) on atherosclerosis development.
Collapse
Affiliation(s)
- Renata Stepankova
- Department of Immunology and Gnotobiology, Institute of Microbiology, vvi, Czech Academy of Sciences, Praque, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sonnenborn U, Schulze J. The non-pathogenicEscherichia colistrain Nissle 1917 – features of a versatile probiotic. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910600903444267] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jürgen Schulze
- Department of Medicine, Ardeypharm GmbH, Herdecke, Germany
- *Present address: Alice-Bloch-Str. 7, D-14558 Nuthetal, Germany
| |
Collapse
|
17
|
Rovenský J, Stančíková M, Švík K, Utěšený J, Bauerová K, Jurčovičová J. Treatment of adjuvant-induced arthritis with the combination of methotrexate and probiotic bacteria Escherichia coli O83 (Colinfant®). Folia Microbiol (Praha) 2009; 54:359-63. [DOI: 10.1007/s12223-009-0045-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/10/2009] [Indexed: 11/30/2022]
|
18
|
Nevoral J, Rada V, Vlková E, Bláhová K, Bronský J, Bubáková D, Killer J. Intestinal microbiota in exclusively breast-fed infants with blood-streaked stools. Folia Microbiol (Praha) 2009; 54:167-71. [PMID: 19418257 DOI: 10.1007/s12223-009-0026-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 01/15/2009] [Indexed: 02/01/2023]
Abstract
Intestinal microbiota in exclusively breast-fed infants with blood-streaked stools and in healthy exclusively breast-fed babies was compared. Total anaerobes, bifidobacteria, lactobacilli, coliform bacteria, enterococci and clostridia were quantified by cultivation methods in feces of 17 full-term exclusively breastfed patients (aged 16.3 +/- 7.4 weeks) with blood-streaked stools and in the control group of 22 healthy fullterm exclusively breast-fed infants (13.7 +/- 6.4 weeks). Specific fluorescence in situ hybridization kits for Bifidobacterium spp. were used for the quantitative detection of bifidobacteria in samples. Control samples had significantly (p < 0.05) higher counts of total anaerobes. Bifidobacteria were not detected in patients' samples in 65 % and in controls in 36 % (p < 0.01). Bifidobacteria counts were also significantly higher in the control group (p < 0.01). Furthermore, clostridia strains were detected only in feces from bifidobacteria-negative infants reaching counts >8 log CFU/g. Lactobacilli were not detected in 65 % patients and in 45 % control samples. However, this difference was not significant as well as the difference in lactobacilli counts. Eosinophilia was observed in 35 % of patients, low IgA concentration in 71 % and also low IgG concentration in 71 %. pANCA positivity was found in 53 % of patients. In conclusion a significant low proportion of bifidobacterial microbiota in patients with blood-streaked stools was shown in comparison with controls.
Collapse
Affiliation(s)
- J Nevoral
- Department of Pediatrics, 2nd Medical School of the Charles University in Prague and University Hospital Motol, 150 06, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen LL, Wang XH, Cui Y, Lian GH, Zhang J, Ouyang CH, Lu FG. Therapeutic effects of four strains of probiotics on experimental colitis in mice. World J Gastroenterol 2009; 15:321-7. [PMID: 19140231 PMCID: PMC2653328 DOI: 10.3748/wjg.15.321] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of four strains of probiotics (E. feacalis, L. acidophilus, C. butyricum and B. adolescentis) on dextran sulphate sodium (DSS)-induced experimental colitis in Balb/c mice.
METHODS: Eighty Balb/c mice were randomly divided into 8 groups. Weight-loss, fecal character, fecal occult blood and hematochezia were recorded daily. Disease activity index (DAI) scores were also evaluated everyday. Length of colon was measured and histological scores were evaluated on the 13th day. Myeloperoxidase (MPO) activity was detected. Interleukin-1 (IL-1) and IL-4 expression was detected by ELISA and RT-PCR.
RESULTS: The four strains of probiotics relieved the inflammatory condition of DSS-induced experimental colitis in mice. Weight loss was slowed down in all probiotics-treated mice. Even weight gain was observed by the end of probiotics treatment. The DAI and histological scores of probiotics-treated mice were lower than those of mice in the control group (1.9 ± 0.2 vs 8.6 ± 0.4, P < 0.05 for E. faecalis). The length of colon of probiotics-treated mice was longer than that of mice in the control group (10.3 ± 0.34 vs 8.65 ± 0.77, P < 0.05 for E. faecalis). The four strains of probiotics decreased the MP activity and the IL-1 expression, but increased the IL-4 expression. E. faecalis had a better effect on DSS-induced experimental colitis in mice than the other three strains.
CONCLUSION: The four strains of probiotics have beneficial effects on experimental colitis in mice. E. faecalis has a better effect on DSS-induced experimental colitis in mice than the other three strains. Supplement of probiotics provides a new therapy for UC.
Collapse
|
20
|
The protective potency of probiotic bacteria and their microbial products against enteric infections-review. Folia Microbiol (Praha) 2008; 53:189-94. [DOI: 10.1007/s12223-008-0023-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 01/01/2023]
|