1
|
Vladimirov YA, Proskurnina EV. Free radicals and cell chemiluminescence. BIOCHEMISTRY (MOSCOW) 2010; 74:1545-66. [DOI: 10.1134/s0006297909130082] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
2
|
Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia–reperfusion rats. Brain Res 2009; 1292:180-90. [DOI: 10.1016/j.brainres.2009.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
|
3
|
Cakir E, Usul H, Peksoylu B, Sayin OC, Alver A, Topbas M, Baykal S, Kuzeyli K. Effects of citicoline on experimental spinal cord injury. J Clin Neurosci 2005; 12:923-6. [PMID: 16257217 DOI: 10.1016/j.jocn.2005.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/31/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effects of citicoline on experimental spinal cord injury (SCI). BACKGROUND Citicoline has been successfully used in clinical studies of head injury and cerebral infarction, but there is limited literature regarding its use in experimental SCI. STUDY DESIGN Twenty adult Wistar rats were divided into four groups: sham, trauma, vehicle, and citicoline-treated. SCI was produced using a weight drop technique. Citicoline 300 mg/kg was given intraperitoneally, 5 minutes after the induction of trauma. The animals were sacrificed and 1 cm long samples of injured spinal cord were obtained at 48 hours post-SCI. Lipid peroxidation was estimated by the thiobarbituric acid test. Neurological examinations were performed using a previously described grading scale. RESULTS Measures of lipid peroxidation and motor scores of the citicoline-treated group were significantly lower than those in the other injury groups. CONCLUSIONS Citicoline attenuated lipid peroxidation after SCI and improved the motor scores. Further investigations will be required to determine the long-term effects of this drug on spinal cord injury.
Collapse
Affiliation(s)
- Ertugrul Cakir
- Department of Neurosurgery, Karadeniz Technical University, School of Medicine, Trabzon, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Candelario-Jalil E, Alvarez D, Merino N, León OS. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 2003; 47:245-53. [PMID: 14512150 DOI: 10.1016/s0168-0102(03)00184-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabolism of arachidonic acid by cyclooxygenase is one of the primary sources of reactive oxygen species in the ischemic brain. Neuronal overexpression of cyclooxygenase-2 has recently been shown to contribute to neurodegeneration following ischemic injury. In the present study, we examined the possibility that the neuroprotective effects of the cyclooxygenase-2 inhibitor nimesulide would depend upon reduction of oxidative stress following cerebral ischemia. Gerbils were subjected to 5 min of transient global cerebral ischemia followed by 48 h of reperfusion and markers of oxidative stress were measured in hippocampus of gerbils receiving vehicle or nimesulide treatment at three different clinically relevant doses (3, 6 or 12 mg/kg). Compared with vehicle, nimesulide significantly (P<0.05) reduced hippocampal glutathione depletion and lipid peroxidation, as assessed by the levels of malondialdehyde (MDA), 4-hydroxy-alkenals (4-HDA) and lipid hydroperoxides levels, even when the treatment was delayed until 6 h after ischemia. Biochemical evidences of nimesulide neuroprotection were supported by histofluorescence findings using the novel marker of neuronal degeneration Fluoro-Jade B. Few Fluoro-Jade B positive cells were seen in CA1 region of hippocampus in ischemic animals treated with nimesulide compared with vehicle. These results suggest that nimesulide may protect neurons by attenuating oxidative stress and reperfusion injury following the ischemic insult with a wide therapeutic window of protection.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba.
| | | | | | | |
Collapse
|
5
|
Candelario-Jalil E, González-Falcón A, García-Cabrera M, Álvarez D, Al-Dalain S, Martínez G, Sonia León O, Springer JE. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 2003; 86:545-55. [PMID: 12859668 PMCID: PMC1636020 DOI: 10.1046/j.1471-4159.2003.01812.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.
Collapse
Affiliation(s)
| | - Armando González-Falcón
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Michel García-Cabrera
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Dalia Álvarez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Said Al-Dalain
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Gregorio Martínez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Olga Sonia León
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Joe E. Springer
- Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
6
|
Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martínez G, León OS. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 2001; 41:233-41. [PMID: 11672836 DOI: 10.1016/s0168-0102(01)00282-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time course of oxidative damage in different brain regions was investigated in the gerbil model of transient cerebral ischemia. Animals were subjected to both common carotid arteries occlusion for 5 min. After the end of ischemia and at different reperfusion times (2, 6, 12, 24, 48, 72, 96 h and 7 days), markers of lipid peroxidation, reduced and oxidized glutathione levels, glutathione peroxidase, glutathione reductase, manganese-dependent superoxide dismutase (MnSOD) and copper/zinc containing SOD (Cu/ZnSOD) activities were measured in hippocampus, cortex and striatum. Oxidative damage in hippocampus was maximal at late stages after ischemia (48-96 h) coincident with a significant impairment in glutathione homeostasis. MnSOD increased in hippocampus at 24, 48 and 72 h after ischemia, coincident with the marked reduction in the activity of glutathione-related enzymes. The late disturbance in oxidant-antioxidant balance corresponds with the time course of delayed neuronal loss in the hippocampal CA1 sector. Cerebral cortex showed early changes in oxidative damage with no significant impairment in antioxidant capacity. Striatal lipid peroxidation significantly increased as early as 2 h after ischemia and persisted until 48 h with respect to the sham-operated group. These results contribute significant information on the timing and factors that influence free radical formation following ischemic brain injury, an essential step in determining effective antioxidant intervention.
Collapse
Affiliation(s)
- E Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, 10600, Havana City, Cuba.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and improves outcome from experimental cerebral ischemia. Rats that were subjected to 90 min focal ischemia and 7 d recovery were given MnTE-2-PyP(5+) (or vehicle) intracerebroventricularly 60 min before ischemia, or 5 or 90 min or 6 or 12 hr after reperfusion. Biomarkers of brain oxidative stress were measured at 4 hr after postischemic treatment (5 min or 6 hr). MnTE-2-PyP(5+), given 60 min before ischemia, improved neurologic scores and reduced total infarct size by 70%. MnTE-2-PyP(5+), given 5 or 90 min after reperfusion, reduced infarct size by 70-77% and had no effect on temperature. MnTE-2-PyP(5+) treatment 6 hr after ischemia reduced total infarct volume by 54% (vehicle, 131 +/- 60 mm(3); MnTE-2-PyP(5+), 300 ng, 60 +/- 68 mm(3)). Protection was observed in both cortex and caudoputamen, and neurologic scores were improved. No MnTE-2-PyP(5+) effect was observed if it was given 12 hr after ischemia. MnTE-2-PyP(5+) prevented mitochondrial aconitase inactivation and reduced 8-hydroxy-2'-deoxyguanosine formation when it was given 5 min or 6 hr after ischemia. In mice, MnTE-2-PyP(5+) reduced infarct size and improved neurologic scores when it was given intravenously 5 min after ischemia. There was no effect of 150 or 300 ng of MnTE-2-PyP(5+) pretreatment on selective neuronal necrosis resulting from 10 min forebrain ischemia and 5 d recovery in rats. Administration of a metalloporphyrin catalytic antioxidant had marked neuroprotective effects against focal ischemic insults when it was given up to 6 hr after ischemia. This was associated with decreased postischemic superoxide-mediated oxidative stress.
Collapse
|
8
|
Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 2001; 21:374-84. [PMID: 11323523 DOI: 10.1097/00004647-200104000-00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gp91-phox is an integral component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex that generates reactive oxygen species (ROS) in activated circulating phagocytes. The authors previously demonstrated that gp91-phox knockout (KO) mice show significant protection from neuronal injury after cerebral ischemia--reperfusion injury, suggesting a pivotal role for this enzyme. Moreover, results from chimeric mice suggested that elimination of gp91-phox from both circulating phagocytes and a putative central nervous system (CNS) source were required to confer neuroprotection. In the current study, the authors demonstrated gp91-phox-specific immunostaining of perivascular cells in the CNS of control rats. However, after transient cerebral ischemia, gp91-phox-positive phagocytes were observed within the core ischemic region and activated microglial cells were positive in the penumbra. Such activated microglial cells were also gp91-phox-positive in the CNS of a chimpanzee with mild meningitis. Finally, in humans, both normal adult CNS tissues and isolated fetal microglial cells expressed gp91-phox mRNA. These microglia also expressed mRNA for the five other known components that comprise the NADPH oxidase complex. These data strongly suggest that microglial cells may contain a functionally active NADPH oxidase capable of generating ROS during CNS inflammation.
Collapse
Affiliation(s)
- S P Green
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Yamaguchi S, Hamaguchi S, Mishio M, Okuda Y, Kitajima T. Propofol prevents lipid peroxidation following transient forebrain ischemia in gerbils. Can J Anaesth 2000; 47:1025-30. [PMID: 11032281 DOI: 10.1007/bf03024877] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To ascertain whether propofol prevents lipid peroxidation on delayed neuronal death induced by transient forebrain ischemia in the hippocampal CA1 subfield in gerbils. METHODS Forty gerbils were randomly assigned to five groups: Group I, control, sham operation treated with physiological saline solution (PSS); Group II, ischemia/reperfusion treated with PSS; Group III, ischemia/reperfusion treated with 50 mg x kg(-1) propofol; Group IV, ischemia/reperfusion treated with 100 mg x kg(-1) propofol; Group V, ischemia/reperfusion treated with 150 mg x kg(-1) propofol. Transient forebrain ischemia was induced by occluding the bilateral common carotid arteries for four minutes under N2O/O2/halothane anesthesia after propofol or PSS. Five days later, the cerebrum was removed and each forebrain was cut into two including the hippocampus. Lipid peroxidation was determined using the production of malondialdehyde (MDA), and histopathological changes in the hippocampal CA1 subfield were examined. RESULTS In group II, the pyramidal cells were atrophic and pycnotic; vacuolation and structural disruption of the radial striated zone was observed. In the other four groups, these changes were not observed. Degenerative ratios of pyramidal cells were: Group I: 4.9 +/- 2.3, Group II: 94.1 +/- 4.5 (P < 0.01), Group III: 12.5 +/- 5.7, Group IV: 11.0 +/- 4.6, Group V: 9.6 +/- 4.9%. Production of MDA was: Group I: 83 +/- 22, Group II: 198 +/- 25 (P < 0.01), Group III: 153 +/- 39, Group IV: 113 +/- 34, Group V: 106 +/- 27 nmol x g(-1) wet tissue. CONCLUSION Propofol attenuated delayed neuronal death by preventing lipid peroxidation induced by transient forebrain ischemia in the hippocampal CA1 subfield in gerbils.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Anesthesiology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation 1999; 42:221-9. [PMID: 10625163 DOI: 10.1016/s0300-9572(99)00083-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The formation of reactive oxygen species during reperfusion is one trigger for neuronal injury after global cerebral ischemia. Because formation of reactive oxygen species requires delivery of molecular oxygen to ischemic tissue, restricting inspired oxygen during reperfusion may decrease neurological damage. This study examined whether ventilation with room air rather than pure oxygen during resuscitation would improve neurological recovery after cardiac arrest in rats. Adult, male rats were subjected to 8 min of asphyxia resulting in cardiac arrest. During resuscitation, rats were ventilated either with hyperoxia (FiO2 = 1.0) or normoxia (FiO2 = 0.21, room air). Neurobehavioral deficits were scored daily for 72 h after resuscitation, after which brains were collected for histology. Normoxia decreased arterial oxygen content. Other physiological parameters and mortality did not differ between groups. All surviving rats exhibited behavioral and histological signs of brain damage. Neurological deficit scores did not differ between normoxia and hyperoxia conditions at any time point. The number of ischemic neurons in the hippocampus also did not differ between groups. These data indicate neither benefit nor detriment of reducing inspired oxygen concentration during resuscitation from asphyxial cardiac arrest in rats.
Collapse
Affiliation(s)
- C A Lipinski
- The Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, MI 48201, USA
| | | | | |
Collapse
|
12
|
Yamaguchi S, Midorikawa Y, Okuda Y, Kitajima T. Propofol prevents delayed neuronal death following transient forebrain ischemia in gerbils. Can J Anaesth 1999; 46:593-8. [PMID: 10391610 DOI: 10.1007/bf03013553] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study was conducted to ascertain whether propofol may protect against delayed neuronal death in the hippocampal CA1 subfield in gerbils. METHODS Thirty-five gerbils were randomly assigned to five groups: Group I, the control group, a sham operation treated with physiological saline solution (PSS); Group II, ischemia/reperfusion treated with PSS; Group III, ischemia/reperfusion treated with 50 mg x kg(-1) propofol; Group IV, ischemia/reperfusion treated with 100 mg x kg(-1) propofol; Group V ischemia/reperfusion treated with 150 mg x kg(-1) propofol. Transient forebrain ischemia was induced by occluding the bilateral common carotid arteries for four minutes under N2O/O2/halothane anesthesia after administration of propofol or PSS. Five days later, histopathological changes in the hippocampal CA1 subfield were examined using a light microscope and degenerative ratio of the pyramidal cells were measured according to the following formula: (number of degenerative pyramidal cell/total number of pyramidal cells per 1 mm of hippocampal CA1 subfield) x 100. RESULTS In group II, the pyramidal cells were atrophic and pycnotic; vacuolation and structural disruption of the radial striated zone was observed. In the other four groups, these changes were not observed. The degenerative ratios of pyramidal cells were as follows; group I: 5.9 +/- 1.9%, group II: 94.6 +/- 2.5% (P < 0.01), group III: 10.7 +/- 1.7%, group IV: 9.7 +/- 1.8%, group V: 9.2 +/- 1.9%. CONCLUSION This study suggests that propofol may prevent delayed neuronal death in the hippocampal CA1 subfield after cerebral ischemia/reperfusion in gerbils.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Anesthesiology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | |
Collapse
|