1
|
Kaur R, Chauhan I. Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health. Biodegradation 2024; 35:863-892. [PMID: 38985381 DOI: 10.1007/s10532-024-10092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.
Collapse
Affiliation(s)
- Rishpreet Kaur
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India
| | - Indu Chauhan
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India.
| |
Collapse
|
2
|
Peñas M, Beloqui A, Martínez de Ilarduya A, Suttiruengwong S, Hernández R, Müller AJ. Enzymatic Degradation Behavior of Self-Degradable Lipase-Embedded Aliphatic and Aromatic Polyesters and Their Blends. Biomacromolecules 2024; 25:4030-4045. [PMID: 38856657 PMCID: PMC11238343 DOI: 10.1021/acs.biomac.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Over the past decade, the preparation of novel materials by enzyme-embedding into biopolyesters has been proposed as a straightforward method to produce self-degrading polymers. This paper reports the preparation and enzymatic degradation of extruded self-degradable films of three different biopolyesters: poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS), as well as three binary/ternary blends. Candida antarctica lipase B (CalB) has been employed for the enzyme-embedding procedure, and to the best of our knowledge, the use of this approach in biopolyester blends has not been reported before. The three homopolymers exhibited differentiated degradation and suggested a preferential attack of CalB on PBS films over PBAT and PLA. Moreover, the self-degradable films obtained from the blends showed slow degradation, probably due to the higher content in PLA and PBAT. These observations pave the way for exploring enzymes capable of degrading all blend components or an enzymatic mixture for blend degradation.
Collapse
Affiliation(s)
- Mario
Iván Peñas
- Institute
of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
- Polymat
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián 20018, Spain
| | - Ana Beloqui
- Polymat
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Antxon Martínez de Ilarduya
- Department
of Chemical Engineering, Polytechnic University
of Catalonia ETSEIB-UPC, Diagonal 647, Barcelona 08028, Spain
| | - Supakij Suttiruengwong
- Sustainable
Materials Laboratory, Department of Materials Science and Engineering,
Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Rebeca Hernández
- Institute
of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Alejandro J. Müller
- Polymat
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
3
|
Meyer Cifuentes IE, Degenhardt J, Neumann-Schaal M, Jehmlich N, Ngugi DK, Öztürk B. Comparative biodegradation analysis of three compostable polyesters by a marine microbial community. Appl Environ Microbiol 2023; 89:e0106023. [PMID: 38014952 PMCID: PMC10734441 DOI: 10.1128/aem.01060-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Biodegradable plastics can be used in applications where the end product cannot be efficiently recycled due to high levels of contaminations, e.g., food or soil. Some of these plastics have a dedicated end of life, such as composting, but their degradation in the marine environment is poorly understood. In this study we showed that marine microbial communities can degrade a range of biodegradable polymers with different physical and chemical properties and use these as a sole carbon source for growth. We have also provided insights into the degradation mechanisms using a combined metagenomic and metaproteomic approach. In addition, we have identified three new enzymes that are capable of degrading both aliphatic polymers and aliphatic-aromatic copolymers, which can be used for biotechnological applications.
Collapse
Affiliation(s)
- Ingrid E. Meyer Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julius Degenhardt
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
4
|
Kimura Y, Fukuda Y, Otsu R, Yu J, Mino S, Misawa S, Maruyama S, Ikeda Y, Miyamachi R, Noguchi H, Kato S, Yamamoto Y, Sawabe T. A lesson from polybutylene succinate plastisphere to the discovery of novel plastic degrading enzyme genes in marine vibrios. Environ Microbiol 2023; 25:2834-2850. [PMID: 37775475 DOI: 10.1111/1462-2920.16512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Polybutylene succinate (PBS) is an eco-friendly green plastic. However, PBS was shown as being non-biodegradable in marine environments, and up until now, only a limited number of PBS-degrading marine microbes have been discovered. We first set up in vitro PBS- and PBSA (polybutylene succinate adipate)-plastispheres to characterize novel PBS-degrading marine microbes. Microbial growth and oxygen consumption were observed in both PBS- and PBSA-plastispheres enriched with natural seawater collected from Usujiri, Hokkaido, Japan, and Vibrionaceae and Pseudoalteromonadaceae were significantly enriched on these films. Further gene identification indicated that vibrios belonging to the Gazogenes clade possess genes related to a PBS degrading enzyme (PBSase). The PBS degradation assay for six Gazogenes clade vibrios identified Vibrio ruber, Vibrio rhizosphaerae, and Vibrio spartinae as being capable of degrading PBS. We further identified the gene responsible for PBSase from the type strain of V. ruber, and the purified recombinant vibrio PBSase was found to have low-temperature adaptation and was active under high NaCl concentrations. We also provided docking models between the vibrio PBSase and PBS and PBSA units to show how vibrio PBSase interacts with each substrate compared to the Acidovorax PBSase. These results could contribute to a more sustainable society through further utilization of PBS in marine environments and plastic recycling.
Collapse
Affiliation(s)
- Yutaro Kimura
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yutaka Fukuda
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Rumi Otsu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juwanen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Satoru Misawa
- Medical Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Maruyama
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Yuta Ikeda
- Food Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Remi Miyamachi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hiroshi Noguchi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Kato
- Research and Consulting Div, Mitsubishi Chemical Research Corporation, Tokyo, Japan
| | - Yasuhito Yamamoto
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
5
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Singh M, Kaneko T. Ultra-tough artificial woods of polyphenol-derived biodegradable Co-polymer with Poly(butylene succinate). Heliyon 2023; 9:e16567. [PMID: 37303518 PMCID: PMC10248044 DOI: 10.1016/j.heliyon.2023.e16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Large productions of plastics worldwide are greater concern to the environment because of their non degradability and thus, damaging the ecosystem. Recent advancements in biobased plastics are growing exponentially because of their promise of a sustainable environment. Biobased polycoumarates plastics have a wood-like appearance with liquid crystalline grains, light brown color, and cinnamon-like aroma, but have very low toughness. The polycoumarates were hybridized via main-chain transesterification with poly (butylene succinate) (PBS). PBS itself being a biobased material has added more value to the final product due to biodegradability. The mechanical flexibility and toughness of the bio-based copolymers were controlled by varying the PBS content. As a result, well-processable and in-soil degradable artificial woods with a high strain energy density of approximately 76 MJ/m3 were developed while maintaining the wood-like appearance.
Collapse
|
7
|
El Yousfi R, Brahmi M, Dalli M, Achalhi N, Azougagh O, Tahani A, Touzani R, El Idrissi A. Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers (Basel) 2023; 15:1835. [PMID: 37111982 PMCID: PMC10142392 DOI: 10.3390/polym15081835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure-property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Collapse
Affiliation(s)
- Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohamed Premier, Oujda 60000, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, University Mohamed Premier, P. B. 300, Nador 62700, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco
| | - Rachid Touzani
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, University Mohamed Premier, Oujda 60000, Morocco
| |
Collapse
|
8
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|
9
|
Eissenberger K, Ballesteros A, De Bisschop R, Bugnicourt E, Cinelli P, Defoin M, Demeyer E, Fürtauer S, Gioia C, Gómez L, Hornberger R, Ißbrücker C, Mennella M, von Pogrell H, Rodriguez-Turienzo L, Romano A, Rosato A, Saile N, Schulz C, Schwede K, Sisti L, Spinelli D, Sturm M, Uyttendaele W, Verstichel S, Schmid M. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers (Basel) 2023; 15:1184. [PMID: 36904425 PMCID: PMC10007551 DOI: 10.3390/polym15051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Arantxa Ballesteros
- Centro Tecnológico ITENE, Parque Tecnológico, Carrer d’Albert Einstein 1, 46980 Paterna, Spain
| | - Robbe De Bisschop
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Elodie Bugnicourt
- Graphic Packaging International, Fountain Plaza, Belgicastraat 7, 1930 Zaventem, Belgium
| | - Patrizia Cinelli
- Planet Bioplastics S.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Marc Defoin
- Bostik SA, 420 rue d’Estienne d’Orves, 92700 Colombes, France
| | - Elke Demeyer
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Siegfried Fürtauer
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Lola Gómez
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | - Ramona Hornberger
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Mara Mennella
- KNEIA S.L., Carrer d’Aribau 168-170, 08036 Barcelona, Spain
| | - Hasso von Pogrell
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | | | - Angela Romano
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Antonella Rosato
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadja Saile
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Christian Schulz
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Katrin Schwede
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Chemical Division, Via del Gelso 13, 59100 Prato, Italy
| | - Max Sturm
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Willem Uyttendaele
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | | | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
10
|
Caixia Zhao, Xu Y, Yang S, Zou G, Li J, Dai J, Pan X. Poly(butylene succinate-co-butylene oxybisbenzoic) Esters with High Toughness: Synthesis, Characterization and Recovery Properties. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Gan H, Okada T, Kimura S, Kasuya KI, Iwata T. Manufacture, physical properties, and degradation of biodegradable polyester microbeads. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Dong Y, Wang J, Yang Y, Wang Q, Zhang X, Hu H, Zhu J. Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Enzymatic Degradation of the Most Common Aliphatic Bio-Polyesters and Evaluation of the Mechanisms Involved: An Extended Study. Polymers (Basel) 2022; 14:polym14091850. [PMID: 35567020 PMCID: PMC9101158 DOI: 10.3390/polym14091850] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Commercial hydrolytic enzymes belonging to different subclasses (several lipases, proteinase k, cutinase) were investigated for their ability to degrade different aliphatic polyesters, i.e., poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBSA), two poly(caprolactone), having two different molecular weights, poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC). The enzyme screening was first carried out by investigating the capacity of fully degrading the target polymers in 24 h, then weight loss measurements of selected polyesters and target enzymes were performed. Solid residues after enzyme degradation were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Liquid fractions were studied via GPC, 1H NMR and high-performance liquid chromatography (HPLC). PCL and PBSA were found to be the most biodegradable polyesters, under the conditions used in this study. PBS was fully degraded only by cutinase, whereas none of the tested enzymes were able to completely degrade PLA and PPC, in the conditions assessed here. Cutinase exhibited the highest hydrolytic activity on PBSA, while lipase from Candida sp. (CALB) on low molecular weight PCL. Chemical analyses on residual solids showed that the enzymatic degradation occurred homogeneously from the surface through an erosion mechanism and did not significantly affect the macromolecular structure and thermal stability. Cleaving action mode for each enzyme (endo- and/or exo-type) on the different polyesters were also proposed based on the evaluation of the degradation products in the liquid fraction.
Collapse
|
14
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
15
|
Thiyagarajan S, Maaskant-Reilink E, Ewing TA, Julsing MK, van Haveren J. Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes. RSC Adv 2021; 12:947-970. [PMID: 35425100 PMCID: PMC8978869 DOI: 10.1039/d1ra08217e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
The use of plastics in a wide range of applications has grown substantially over recent decades, resulting in enormous growth in production volumes to meet demand. Though a wide range of biomass-derived chemicals and materials are available on the market, the production volumes of such renewable alternatives are currently not sufficient to replace their fossil-based analogues due to various factors, in particular cost-effectiveness. Hence, the majority of plastics are still industrially produced from fossil-based feedstocks. Moreover, various reports have clearly raised concern about the plastics that are not recycled at their end-of-life and instead end up in landfills or the oceans. To avoid further pollution of our planet, it is highly desirable to develop recycling processes that use plastic waste as feedstock. Chemical recycling processes could potentially offer a solution, since they afford monomers from which new polymers can be produced, with the same performance as virgin plastics. In this manuscript, the opportunities for using either chemical or biochemical (i.e., enzymatic) approaches in the depolymerization of polycondensation polymers for recycling purposes are reviewed. Our aim is to highlight the strategies that have been developed so far to break down plastic waste into monomers, providing the first step in the development of chemical recycling processes for plastic waste, and to create a renewed awareness of the need to valorize plastic waste by efficiently transforming it into virgin plastics.
Collapse
Affiliation(s)
| | | | - Tom A Ewing
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| | - Mattijs K Julsing
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| | - Jacco van Haveren
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| |
Collapse
|
16
|
Huang Q, Kimura S, Iwata T. Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
pH-Stat Titration: A Rapid Assay for Enzymatic Degradability of Bio-Based Polymers. Polymers (Basel) 2021; 13:polym13060860. [PMID: 33799772 PMCID: PMC7998482 DOI: 10.3390/polym13060860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Bio-based polymers have been suggested as one possible opportunity to counteract the progressive accumulation of microplastics in the environments. The gradual substitution of conventional plastics by bio-based polymers bears a variety of novel materials. The application of bioplastics is determined by their stability and bio-degradability, respectively. With the increasing implementation of bio-based plastics, there is also a demand for rapid and non-elaborate methods to determine their bio-degradability. Here, we propose an improved pH Stat titration assay optimized for bio-based polymers under environmental conditions and controlled temperature. Exemplarily, suspensions of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) microparticles were incubated with proteolytic and lipolytic enzymes. The rate of hydrolysis, as determined by counter-titration with a diluted base (NaOH), was recorded for two hours. PLA was hydrolyzed by proteolytic enzymes but not by lipase. PBS, in contrast, showed higher hydrolysis rates with lipase than with proteases. The thermal profile of PLA hydrolysis by protease showed an exponential increase from 4 to 30 °C with a temperature quotient Q10 of 5.6. The activation energy was 110 kJ·mol-1. pH-Stat titration proved to be a rapid, sensitive, and reliable procedure supplementing established methods of determining the bio-degradability of polymers under environmental conditions.
Collapse
|
19
|
Amin M, Bhatti HN, Nawaz S, Bilal M. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnol Appl Biochem 2021; 69:410-419. [PMID: 33559904 DOI: 10.1002/bab.2118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
Microbial lipases hold a prominent position in biocatalysis by their capability to mediate reactions in aqueous and nonaqueous media. Herein, a lipase from Penicillium fellutanum was biochemically characterized and investigated its potential to degrade poly (ɛ-caprolactone) (PCL). The lipase exhibited stability over a broad pH spectrum and performed best at pH 8.5 and 45 °C. The activation energy was determined to be 66.37 kJ/mol by Arrhenius plot, whereas Km and Vmax for pNPP hydrolysis were 0.75 mM and 83.33 μmol/mL/Min, respectively. A rise in temperature reduced the Gibbs free energy, whereas the enthalpy of thermal unfolding (∆H*) remains the same up to 54 °C following a modest decline at 61 °C. The entropy (∆S*) of the enzyme demonstrated an increasing trend up to 54 °C and dropped at 61 °C. Lipase retained stability by incubation with various industrially relevant organic solvents (benzene, hexanol, ether, and acetone). However, exposure to urea and guanidine hydrochloride influenced its catalytic activity to different extents. Under optimal operating conditions, lipase catalyzed the excellent degradation of PCL film degradation leading to 66% weight loss, increased surface erosion, and crystallinity. Fourier-transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy studies monitored the weight loss after enzymatic hydrolysis. The findings indicate that P. fellutanum lipase would be a prospective biocatalytic system for polyesters depolymerization and environmental remediation.
Collapse
Affiliation(s)
- Misbah Amin
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, People's Republic of China
| |
Collapse
|
20
|
Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140315. [DOI: 10.1016/j.bbapap.2019.140315] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
21
|
Effect of organic solvent on enzymatic degradation of cyclic PBS-based polymers by lipase N435. Int J Biol Macromol 2019; 137:215-223. [PMID: 31255620 DOI: 10.1016/j.ijbiomac.2019.06.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate-co-cyclohexane dimethanol succinate) (P(BS-co-CHDMS)) and poly(butylene succinate-co-butanediol cyclohexanedicarboxylic acid) (P(BS-co-BCHDA)) were catalytically degraded by Candida antarctica lipase Novozyme 435 (N435) in CHCl3 and THF. The results indicated that the degradation rate was P(BS-co-CHDMS) > P(BS-co-BCHDA) > poly(butylene succinate) (PBS). The degradation rate of copolyesters was higher in CHCl3 than in THF, the highest degradation rate of 67% being obtained for P(BS-co-CHDMS). Hence, the CHCl3 solvent is more suitable for the enzyme-catalytic degradation of copolyesters, since the lipase can easier recognize the butylene succinate (BS-), (butanediol cyclohexanedicarboxylic acid) (BCA-), and (cyclohexane dimethanol succinate-type) (CMS-type) ester bonds in this solvent. Moreover, it can recognize the CMS-type ester bonds with a higher specificity than the (butanediol cyclohexanedicarboxylic acid type) (BCA-type) ester bonds. Molecular simulation results indicated that the structure of the lipase was stable in CHCl3 and THF. However, CHCl3 proved to be more suitable for a stable activity of the enzyme. The active pocket contains acyl-binding hydrophilic residues which are recognized by the substrate. The increase in the content of saturated cycles can increase the hydrophobicity of the substrate and thus, the amount of substrate bond to enzyme active site is increased, which facilitates the enzymatic degradation of copolyesters.
Collapse
|
22
|
Blackwell CJ, Haernvall K, Guebitz GM, Groombridge M, Gonzales D, Khosravi E. Enzymatic Degradation of Star Poly( ε-Caprolactone) with Different Central Units. Polymers (Basel) 2018; 10:polym10111266. [PMID: 30961191 PMCID: PMC6401846 DOI: 10.3390/polym10111266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 11/23/2022] Open
Abstract
Four-arm star poly(ε-caprolactone) with a central poly(ethylene glycol) PEG unit bridged with 2,2-bis(methyl) propionic acid, (PCL)2-b-PEG-b-(PCL)2, and six-arm star PCL homopolymer with a central dipentaerythritol units were hydrolysed using a lipase from Pseudomonas cepacia and the Thermobifida cellulosilytica cutinase Thc_Cut1. For comparative analysis, Y-shaped copolymers containing methylated PEG bridged with bisMPA, MePEG-(PCL)2, and linear triblock copolymers PCL-b-PEG-b-PCL were also subjected to enzymatic hydrolysis. The hydrophilic nature of the polymers was determined using contact angle analysis, showing that a higher PEG content exhibited a lower contact angle and higher surface wettability. Enzymatic hydrolysis was monitored by % mass loss, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). A higher rate of mass loss was found for lipase catalysed hydrolysis of those polymers with the highest PEG content, leading to significant surface erosion and increase in crystallinity within the first two days. Liquid chromatography (LC) and size exclusion chromatography (SEC) of samples incubated with the cutinase showed a significant decrease in molecular weight, increase in dispersity, and release of ε-CL monomer units after 6 h of incubation.
Collapse
Affiliation(s)
| | - Karolina Haernvall
- Austrian Centre of Industrial Biotechnology GmbH, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
| | - Georg M Guebitz
- Austrian Centre of Industrial Biotechnology GmbH, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
- Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
| | - Michael Groombridge
- Procter & Gamble, Cobalt 12A, Silver Fox Way, Cobalt Business Park, Newcastle upon Tyne NE27 0QW, UK.
| | - Denis Gonzales
- Procter & Gamble, Cobalt 12A, Silver Fox Way, Cobalt Business Park, Newcastle upon Tyne NE27 0QW, UK.
| | - Ezat Khosravi
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
23
|
Bi S, Tan B, Soule JL, Sobkowicz MJ. Enzymatic degradation of poly (butylene succinate-co-hexamethylene succinate). Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. Lifetime prediction of biodegradable polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.02.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Baba T, Tachibana Y, Suda S, Kasuya KI. Evaluation of environmental degradability based on the number of methylene units in poly(butylene n-alkylenedionate). Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Georgousopoulou IN, Vouyiouka S, Dole P, Papaspyrides CD. Thermo-mechanical degradation and stabilization of poly(butylene succinate). Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Pellis A, Herrero Acero E, Gardossi L, Ferrario V, Guebitz GM. Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. POLYM INT 2016. [DOI: 10.1002/pi.5087] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna; Department for Agrobiotechnology IFA-Tulln, Institute for Environmental Biotechnology; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| | - Enrique Herrero Acero
- Austrian Centre of Industrial Biotechnology; Division of Enzymes and Polymers; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| | - Lucia Gardossi
- Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Chimiche e Farmaceutiche; Università degli Studi di Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Valerio Ferrario
- Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Chimiche e Farmaceutiche; Università degli Studi di Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences Vienna; Department for Agrobiotechnology IFA-Tulln, Institute for Environmental Biotechnology; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
- Austrian Centre of Industrial Biotechnology; Division of Enzymes and Polymers; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| |
Collapse
|
28
|
Biffinger JC, Barlow DE, Cockrell AL, Cusick KD, Hervey WJ, Fitzgerald LA, Nadeau LJ, Hung CS, Crookes-Goodson WJ, Russell JN. The applicability of Impranil®DLN for gauging the biodegradation of polyurethanes. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Shirali H, Rafizadeh M, Taromi FA. Effect of incorporating bis(2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly(butylene succinate). Macromol Res 2015. [DOI: 10.1007/s13233-015-3095-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Nerantzaki M, Papageorgiou GZ, Bikiaris DN. Effect of nanofiller's type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Kataoka T, Hiramoto K, Kurihara H, Ikehara T. Effects of melt annealing on the miscibility and crystallization of poly(butylene succinate)/poly(ethylene succinate) blends. Polym J 2014. [DOI: 10.1038/pj.2014.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Fan* RR, Zhou* LX, Li DX, Zhang DM, Wu M, Guo G. Preparation and Characterization of Composites Based on Poly (Butylene Succinate) and Poly (Lactic Acid) Grafted Tetracalcium Phosphate. J MACROMOL SCI B 2013. [DOI: 10.1080/00222348.2013.810104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Xu J, Guo BH. Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications. MICROBIOLOGY MONOGRAPHS 2010. [DOI: 10.1007/978-3-642-03287-5_14] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Abraham S, Narine SS. Polynonanolactone synthesized from vegetable oil: Evaluation of physical properties, biodegradation, and drug release behavior. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sinoj Abraham
- Trent University Biomaterials Research Program, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, Ontario, Canada K9J 7B8
| | - Suresh S. Narine
- Trent University Biomaterials Research Program, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, Ontario, Canada K9J 7B8
| |
Collapse
|