1
|
Choi YY, Jang MJ, Park BD, Um IC. Fabrication, Structure, and Properties of Nonwoven Silk Fabrics Prepared with Different Cocoon Layers. Int J Mol Sci 2023; 24:11485. [PMID: 37511244 PMCID: PMC10380708 DOI: 10.3390/ijms241411485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, five different nonwoven silk fabrics were fabricated with silk fibers from different cocoon layers, and the effect of the cocoon layer on the structural characteristics and properties of the nonwoven silk fabric was examined. The diameter of the silk fiber and thickness of the nonwoven silk fabric decreased from the outer to the inner cocoon layer. More amino acids with higher hydrophilicity (serine, aspartic acid, and glutamic acid) and lower hydrophilicity (glycine and alanine) were observed in the outer layers. From the outer to the inner layer, the overall crystallinity and contact angle of the nonwoven silk fabric increased, whereas its yellowness index, moisture retention, and mechanical properties decreased. Regardless of the cocoon layer at which the fiber was sourced, the thermal stability of fibroin and sericin and good cell viability remained unchanged. The results of this study indicate that the properties of nonwoven silk fabric can be controlled by choosing silk fibers from the appropriate cocoon layers. Moreover, the findings in this study will increase the applicability of nonwoven silk fabric in the biomedical and cosmetic fields, which require specific properties for industrialization.
Collapse
Affiliation(s)
- Yun Yeong Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Bae YS, Um IC. Effects of Fabrication Conditions on Structure and Properties of Mechanically Prepared Natural Silk Web and Non-Woven Fabrics. Polymers (Basel) 2021; 13:polym13101578. [PMID: 34069044 PMCID: PMC8156477 DOI: 10.3390/polym13101578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.
Collapse
Affiliation(s)
- Yeon-Su Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
| | - In-Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7757; Fax: +82-53-950-6744
| |
Collapse
|
3
|
Wen DL, Deng HT, Liu X, Li GK, Zhang XR, Zhang XS. Wearable multi-sensing double-chain thermoelectric generator. MICROSYSTEMS & NANOENGINEERING 2020; 6:68. [PMID: 34567679 PMCID: PMC8433441 DOI: 10.1038/s41378-020-0179-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/12/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
Wearable electronics play a crucial role in advancing the rapid development of artificial intelligence, and as an attractive future vision, all-in-one wearable microsystems integrating powering, sensing, actuating and other functional components on a single chip have become an appealing tendency. Herein, we propose a wearable thermoelectric generator (ThEG) with a novel double-chain configuration to simultaneously realize sustainable energy harvesting and multi-functional sensing. In contrast to traditional single-chain ThEGs with the sole function of thermal energy harvesting, each individual chain of the developed double-chain thermoelectric generator (DC-ThEG) can be utilized to scavenge heat energy, and moreover, the combination of the two chains can be employed as functional sensing electrodes at the same time. The mature mass-fabrication technology of screen printing was successfully introduced to print n-type and p-type thermoelectric inks atop a polymeric substrate to form thermocouples to construct two independent chains, which makes this DC-ThEG flexible, high-performance and cost-efficient. The emerging material of silk fibroin was employed to cover the gap of the fabricated two chains to serve as a functional layer for sensing the existence of liquid water molecules in the air and the temperature. The powering and sensing functions of the developed DC-ThEG and their interactions were systematically studied via experimental measurements, which proved the DC-ThEG to be a robust multi-functional power source with a 151 mV open-circuit voltage. In addition, it was successfully demonstrated that this DC-ThEG can convert heat energy to achieve a 3.3 V output, matching common power demands of wearable electronics, and harvest biothermal energy to drive commercial electronics (i.e., a calculator). The integration approach of powering and multi-functional sensing based on this new double-chain configuration might open a new chapter in advanced thermoelectric generators, especially in the applications of all-in-one self-powered microsystems.
Collapse
Affiliation(s)
- Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Xin Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Guo-Ke Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Xin-Ran Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Xiao-Sheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
4
|
Liu Q, Wang F, Gu Z, Ma Q, Hu X. Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films. Int J Mol Sci 2018; 19:E3309. [PMID: 30355987 PMCID: PMC6274861 DOI: 10.3390/ijms19113309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Silk fibroin (SF) is a protein polymer derived from insects, which has unique mechanical properties and tunable biodegradation rate due to its variable structures. Here, the variability of structural, thermal, and mechanical properties of two domesticated silk films (Chinese and Thailand B. Mori) regenerated from formic acid solution, as well as their original fibers, were compared and investigated using dynamic mechanical analysis (DMA) and Fourier transform infrared spectrometry (FTIR). Four relaxation events appeared clearly during the temperature region of 25 °C to 280 °C in DMA curves, and their disorder degree (fdis) and glass transition temperature (Tg) were predicted using Group Interaction Modeling (GIM). Compared with Thai (Thailand) regenerated silks, Chin (Chinese) silks possess a lower Tg, higher fdis, and better elasticity and mechanical strength. As the calcium chloride content in the initial processing solvent increases (1%⁻6%), the Tg of the final SF samples gradually decrease, while their fdis increase. Besides, SF with more non-crystalline structures shows high plasticity. Two α- relaxations in the glass transition region of tan δ curve were identified due to the structural transition of silk protein. These findings provide a new perspective for the design of advanced protein biomaterials with different secondary structures, and facilitate a comprehensive understanding of the structure-property relationship of various biopolymers in the future.
Collapse
Affiliation(s)
- Qichun Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China.
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, China.
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China.
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, China.
| | - Qingyu Ma
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
5
|
Zhou L, Wang Q, Wen J, Chen X, Shao Z. Preparation and characterization of transparent silk fibroin/cellulose blend films. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mishra S, Shimpi NG, Mali AD. Effect of surface modified montmorillonite on photo-oxidative degradation of silicone rubber composites. Macromol Res 2012. [DOI: 10.1007/s13233-013-1035-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Tuhin MO, Rahman N, Haque M, Khan RA, Dafader N, Islam R, Nurnabi M, Tonny W. Modification of mechanical and thermal property of chitosan–starch blend films. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Surface modification of montmorillonite (MMT) using column chromatography technique and its application in silicone rubber nanocomposites. Macromol Res 2011. [DOI: 10.1007/s13233-012-0003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Yu L, Hu X, Kaplan D, Cebe P. Dielectric Relaxation Spectroscopy of Hydrated and Dehydrated Silk Fibroin Cast from Aqueous Solution. Biomacromolecules 2010; 11:2766-75. [DOI: 10.1021/bm1008316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Yu
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - Xiao Hu
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - David Kaplan
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| | - Peggy Cebe
- Department of Physics and Astronomy and Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
10
|
Rana VK, Pandey AK, Singh RP, Kumar B, Mishra S, Ha CS. Enhancement of thermal stability and phase relaxation behavior of chitosan dissolved in aqueous l-lactic acid: Using ‘silver nanoparticles’ as nano filler. Macromol Res 2010. [DOI: 10.1007/s13233-010-0801-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|