1
|
Mozhui K, Lu AT, Li CZ, Haghani A, Sandoval-Sierra JV, Wu Y, Williams RW, Horvath S. Genetic loci and metabolic states associated with murine epigenetic aging. eLife 2022; 11:e75244. [PMID: 35389339 PMCID: PMC9049972 DOI: 10.7554/elife.75244] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep longevity and genomic data. We use a 'pan-mammalian' microarray that provides a common platform for assaying the methylome across mammalian clades. We computed epigenetic clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic variation. We describe the multifactorial variance of methylation at these CpGs and show that high-fat diet augments the age-related changes. Entropy increases with age. The progression to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a given age. We identified two genetic loci that modulate epigenetic age acceleration (EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and the other on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated with EAA in humans, including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome analyses revealed correlations with oxidation-reduction, metabolic, and immune response pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a tight coupling between the metabolic state and epigenetic aging.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of MedicineMemphisUnited States
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of MedicineMemphisUnited States
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los AngelesLos AngelesUnited States
| | - Caesar Z Li
- Department of Human Genetics, David Geffen School of Medicine, University of California Los AngelesLos AngelesUnited States
| | - Amin Haghani
- Department of Biostatistics, Fielding School of Public Health, University of California Los AngelesLos AngelesUnited States
| | - Jose Vladimir Sandoval-Sierra
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of MedicineMemphisUnited States
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
- University of GenevaGenevaSwitzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of MedicineMemphisUnited States
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los AngelesLos AngelesUnited States
- Department of Biostatistics, Fielding School of Public Health, University of California Los AngelesLos AngelesUnited States
| |
Collapse
|
2
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
3
|
Roy S, Sleiman MB, Jha P, Ingels JF, Chapman CJ, McCarty MS, Ziebarth JD, Hook M, Sun A, Zhao W, Huang J, Neuner SM, Wilmott LA, Shapaker TM, Centeno AG, Ashbrook DG, Mulligan MK, Kaczorowski CC, Makowski L, Cui Y, Read RW, Miller RA, Mozhui K, Williams EG, Sen S, Lu L, Auwerx J, Williams RW. Gene-by-environment modulation of lifespan and weight gain in the murine BXD family. Nat Metab 2021; 3:1217-1227. [PMID: 34552269 PMCID: PMC8478125 DOI: 10.1038/s42255-021-00449-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
How lifespan and body weight vary as a function of diet and genetic differences is not well understood. Here we quantify the impact of differences in diet on lifespan in a genetically diverse family of female mice, split into matched isogenic cohorts fed a low-fat chow diet (CD, n = 663) or a high-fat diet (HFD, n = 685). We further generate key metabolic data in a parallel cohort euthanized at four time points. HFD feeding shortens lifespan by 12%: equivalent to a decade in humans. Initial body weight and early weight gains account for longevity differences of roughly 4-6 days per gram. At 500 days, animals on a HFD typically gain four times as much weight as control, but variation in weight gain does not correlate with lifespan. Classic serum metabolites, often regarded as health biomarkers, are not necessarily strong predictors of longevity. Our data indicate that responses to a HFD are substantially modulated by gene-by-environment interactions, highlighting the importance of genetic variation in making accurate individualized dietary recommendations.
Collapse
Affiliation(s)
- Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pooja Jha
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Casey J Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Anna Sun
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Jinsong Huang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Sarah M Neuner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Lynda A Wilmott
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Thomas M Shapaker
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | | | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Robert W Read
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
4
|
Vitiello D, Dakhovnik A, Statzer C, Ewald CY. Lifespan-Associated Gene Expression Signatures of Recombinant BXD Mice Implicates Coro7 and Set in Longevity. Front Genet 2021; 12:694033. [PMID: 34306034 PMCID: PMC8299419 DOI: 10.3389/fgene.2021.694033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although genetic approaches have identified key genes and pathways that promote longevity, systems-level approaches are less utilized. Here, we took advantage of the wealth of omics data characterizing the BXD family of mice. We associated transcript and peptide levels across five tissues from both female and male BXD isogenic lines with their median lifespan. We identified over 5000 genes that showed a longevity correlation in a given tissue. Surprisingly, we found less than 1% overlap among longevity-correlating genes across tissues and sex. These 1% shared genes consist of 51 genes, of which 13 have been shown to alter lifespan. Only two genes -Coro7 and Set- showed a longevity correlation in all tissues and in both sexes. While differential regulation of aging across tissues and sex has been reported, our systems-level analysis reveals two unique genes that may promote healthy aging in unique sex- and tissue-agnostic manner.
Collapse
Affiliation(s)
| | | | | | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Sandoval‐Sierra JV, Helbing AHB, Williams EG, Ashbrook DG, Roy S, Williams RW, Mozhui K. Body weight and high-fat diet are associated with epigenetic aging in female members of the BXD murine family. Aging Cell 2020; 19:e13207. [PMID: 32790008 PMCID: PMC7511861 DOI: 10.1111/acel.13207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023] Open
Abstract
DNA methylation (DNAm) is shaped by genetic and environmental factors and modulated by aging. Here, we examine interrelations between epigenetic aging, body weight (BW), and life span in 12 isogenic strains from the BXD family of mice that exhibit over twofold variation in longevity. Genome-wide DNAm was assayed in 70 liver specimens from predominantly female cases, 6-25 months old, that were maintained on normal chow or high-fat diet (HFD). We defined subsets of CpG regions associated with age, BW at young adulthood, and strain-by-diet-dependent life span. These age-associated differentially methylated CpG regions (age-DMRs) featured distinct genomic characteristics, with DNAm gains over time occurring in sites such as promoters and exons that have high CpG density and low average methylation. CpG regions associated with BW were enriched in introns, tended to have lower methylation in mice with higher BW, and were inversely correlated with gene expression (i.e., higher mRNA levels in mice with higher BW). CpG regions associated with life span were linked to genes involved in life span modulation, including the telomerase reverse transcriptase gene, Tert, which had both lower methylation and higher expression in long-lived strains. An epigenetic clock defined from age-DMRs revealed accelerated aging in mice belonging to strains with shorter life spans. Both higher BW and the HFD were associated with accelerated epigenetic aging. Our results highlight the age-accelerating effect of heavier BW. Furthermore, we demonstrate that the measure of epigenetic aging derived from age-DMRs can predict genotype and diet-induced differences in life span among female BXD members.
Collapse
Affiliation(s)
| | - Alexandra H. B. Helbing
- Department of Preventive Medicine University of Tennessee Health Science Center College of Medicine Memphis TN USA
| | - Evan G. Williams
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center College of Medicine Memphis TN USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center College of Medicine Memphis TN USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center College of Medicine Memphis TN USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine University of Tennessee Health Science Center College of Medicine Memphis TN USA
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Center College of Medicine Memphis TN USA
| |
Collapse
|
6
|
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:1087-1098. [PMID: 31969430 PMCID: PMC7056975 DOI: 10.1534/g3.120.401041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Limited lifespan and senescence are near-universal phenomena. These quantitative traits exhibit variation in natural populations due to the segregation of many interacting loci and from environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed reproductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and delayed reproductive senescence is the first step toward understanding the evolutionary forces that maintain segregating variation at these loci in nature and may provide potential targets for therapeutic intervention to delay senescence while increasing lifespan.
Collapse
Affiliation(s)
- Grace A Parker
- Department of Biological Sciences
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| | | | | | | | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Trudy F C Mackay
- Department of Biological Sciences,
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| |
Collapse
|
7
|
Brown A, Schuetz D, Han Y, Daria D, Nattamai KJ, Eiwen K, Sakk V, Pospiech J, Saller T, van Zant G, Wagner W, Geiger H. The lifespan quantitative trait locus gene Securin controls hematopoietic progenitor cell function. Haematologica 2020; 105:317-324. [PMID: 31073078 PMCID: PMC7012499 DOI: 10.3324/haematol.2018.213009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andreas Brown
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Desiree Schuetz
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Deidre Daria
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Karina Eiwen
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Johannes Pospiech
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Thomas Saller
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Gary van Zant
- University of Kentucky College of Medicine, UK Medical Center, Lexington, KY, USA
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany .,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Singh PP, Demmitt BA, Nath RD, Brunet A. The Genetics of Aging: A Vertebrate Perspective. Cell 2019; 177:200-220. [PMID: 30901541 PMCID: PMC7592626 DOI: 10.1016/j.cell.2019.02.038] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ravi D Nath
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Gujar H, Liang JW, Wong NC, Mozhui K. Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. PLoS One 2018. [PMID: 29529061 PMCID: PMC5846735 DOI: 10.1371/journal.pone.0193496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Illumina Infinium MethylationEPIC provides an efficient platform for profiling DNA methylation in humans at over 850,000 CpGs. Model organisms such as mice do not currently benefit from an equivalent array. Here we used this array to measure DNA methylation in mice. We defined probes targeting conserved regions and performed differential methylation analysis and compared between the array-based assay and affinity-based DNA sequencing of methyl-CpGs (MBD-seq) and reduced representation bisulfite sequencing. Mouse samples consisted of 11 liver DNA from two strains, C57BL/6J (B6) and DBA/2J (D2), that varied widely in age. Linear regression was applied to detect differential methylation. In total, 13,665 probes (1.6% of total probes) aligned to conserved CpGs. Beta-values (β-value) for these probes showed a distribution similar to that in humans. Overall, there was high concordance in methylation signal between the EPIC array and MBD-seq (Pearson correlation r = 0.70, p-value < 0.0001). However, the EPIC probes had higher quantitative sensitivity at CpGs that are hypo- (β-value < 0.3) or hypermethylated (β-value > 0.7). In terms of differential methylation, no EPIC probe detected a significant difference between age groups at a Benjamini-Hochberg threshold of 10%, and the MBD-seq performed better at detecting age-dependent change in methylation. However, the top most significant probe for age (cg13269407; uncorrected p-value = 1.8 x 10-5) is part of the clock CpGs used to estimate the human epigenetic age. For strain, 219 EPIC probes detected significant differential methylation (FDR cutoff 10%) with ~80% CpGs associated with higher methylation in D2. This higher methylation profile in D2 compared to B6 was also replicated by the MBD-seq data. To summarize, we found only a small subset of EPIC probes that target conserved sites. However, for this small subset the array provides a reliable assay of DNA methylation and can be effectively used to measure differential methylation in mice.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jane W. Liang
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Nicholas C. Wong
- Monash Bioinformatics Platform, Monash University, Clayton VIC, Australia
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Centre, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Loos M, Verhage M, Spijker S, Smit AB. Complex Genetics of Behavior: BXDs in the Automated Home-Cage. Methods Mol Biol 2017; 1488:519-530. [PMID: 27933542 DOI: 10.1007/978-1-4939-6427-7_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.
Collapse
Affiliation(s)
- Maarten Loos
- Sylics (Synaptologics BV), 71033, 1008 BA, Amsterdam, The Netherlands. .,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands. .,NeuroBsik Mouse Phenomics Consortium:, A list of additional members of the Neuro-BSIK Mouse Phenomics Consortium is provided in the Acknowledgments., Wageningen, Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands.,NeuroBsik Mouse Phenomics Consortium:, A list of additional members of the Neuro-BSIK Mouse Phenomics Consortium is provided in the Acknowledgments., Wageningen, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,NeuroBsik Mouse Phenomics Consortium:, A list of additional members of the Neuro-BSIK Mouse Phenomics Consortium is provided in the Acknowledgments., Wageningen, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,NeuroBsik Mouse Phenomics Consortium:, A list of additional members of the Neuro-BSIK Mouse Phenomics Consortium is provided in the Acknowledgments., Wageningen, Netherlands
| |
Collapse
|
12
|
A Chromosome 13 locus is associated with male-specific mortality in mice. Aging Clin Exp Res 2016; 28:59-67. [PMID: 25995165 DOI: 10.1007/s40520-015-0370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Mortality is a highly complex trait influenced by a wide array of genetic factors. METHODS We examined a population of 1200 mice that were F2 generation offspring of a 4-way reciprocal cross between C57BL6/J and DBA2/J strains. Animals were sacrificed at age 200, 500, or 800 days and genotyped at 96 markers. The 800 days old cohort, which were the survivors of a much larger breeding group, were examined for enriched frequency of alleles that benefit survival and depletion of alleles that reduce survival. RESULTS Loci on Chr 13 in males and on Chr X in females were significantly distorted from Mendelian expectations, even after conservative correction for multiple testing. DBA2/J alleles between 35 and 80 Mb on Chr 13 were underrepresented in the age 800 male animals. D2 genotypes in this region were also associated with premature death during behavioral testing. Furthermore, confirmatory analysis showed BXD recombinant inbred strains carrying the D2 alleles in this region had shorter median survival. Exploration of available pathology data indicated that a syndrome involving dental malocclusions, pancreatic islet hypertrophy, and kidney lipidosis may have mediated the effects of DBA alleles on mortality specifically in male mice. The heterozygote advantage locus on the X Chr was not found to be associated with any pathology. CONCLUSIONS These results suggest a novel locus influencing survival in the B6/D2 genetic background, perhaps via a metabolic disorder that emerges by 200 days of age in male animals.
Collapse
|
13
|
Carnes MU, Campbell T, Huang W, Butler DG, Carbone MA, Duncan LH, Harbajan SV, King EM, Peterson KR, Weitzel A, Zhou S, Mackay TFC. The Genomic Basis of Postponed Senescence in Drosophila melanogaster. PLoS One 2015; 10:e0138569. [PMID: 26378456 PMCID: PMC4574564 DOI: 10.1371/journal.pone.0138569] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Natural populations harbor considerable genetic variation for lifespan. While evolutionary theory provides general explanations for the existence of this variation, our knowledge of the genes harboring naturally occurring polymorphisms affecting lifespan is limited. Here, we assessed the genetic divergence between five Drosophila melanogaster lines selected for postponed senescence for over 170 generations (O lines) and five lines from the same base population maintained at a two week generation interval for over 850 generations (B lines). On average, O lines live 70% longer than B lines, are more productive at all ages, and have delayed senescence for other traits than reproduction. We performed population sequencing of pools of individuals from all B and O lines and identified 6,394 genetically divergent variants in or near 1,928 genes at a false discovery rate of 0.068. A 2.6 Mb region at the tip of the X chromosome contained many variants fixed for alternative alleles in the two populations, suggestive of a hard selective sweep. We also assessed genome wide gene expression of O and B lines at one and five weeks of age using RNA sequencing and identified genes with significant (false discovery rate < 0.05) effects on gene expression with age, population and the age by population interaction, separately for each sex. We identified transcripts that exhibited the transcriptional signature of postponed senescence and integrated the gene expression and genetic divergence data to identify 98 (175) top candidate genes in females (males) affecting postponed senescence and increased lifespan. While several of these genes have been previously associated with Drosophila lifespan, most are novel and constitute a rich resource for future functional validation.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Terry Campbell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Daniel G. Butler
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Mary Anna Carbone
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Laura H. Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Sasha V. Harbajan
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Edward M. King
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Kara R. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Alexander Weitzel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Shanshan Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Trudy F. C. Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| |
Collapse
|
14
|
Yuan R, Gatti DM, Krier R, Malay E, Schultz D, Peters LL, Churchill GA, Harrison DE, Paigen B. Genetic Regulation of Female Sexual Maturation and Longevity Through Circulating IGF1. J Gerontol A Biol Sci Med Sci 2014; 70:817-26. [PMID: 25070661 DOI: 10.1093/gerona/glu114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/11/2014] [Indexed: 01/27/2023] Open
Abstract
We previously reported that insulin-like growth factor 1 (IGF1) was involved in coregulating female sexual maturation and longevity. To understand the underlying genetic mechanisms, based on the strain survey assays of development and aging traits, we crossed two mouse strains, KK/HIJ and PL/J, and produced 307 female F2 mice. We observed the age of vaginal patency (AVP) and the life span of these females. We also measured circulating IGF1 level at 7, 16, 24, 52, and 76 weeks. IGF1 level at 7 weeks significantly correlated with AVP. IGF1 levels at ages of 52 and 76 weeks negatively correlated with longevity (p ≤ .05). A gene mapping study found 22, 4 ,and 3 quantitative trait loci for IGF1, AVP, and life span, respectively. Importantly, the colocalization of IGF1, AVP, and life span quantitative trait loci in the distal region of chromosome 2 suggests this locus carries gene(s) that could regulate IGF1, AVP, and life span. In this region, proprotein convertase subtilisin/kexin type 2 has been found to be associated with female sexual maturation in a human genome-wide association study. We verified the roles of proprotein convertase subtilisin/kexin type 2 in regulating IGF1 and AVP by showing that depletion of proprotein convertase subtilisin/kexin type 2 significantly reduced IGF1 and delayed AVP in mice, suggesting that it also might be involved in the regulation of aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, Bar Harbor, Maine. Geriatric Research Division, Internal Medicine, School of Medicine, Southern Illinois University, Springfield.
| | | | - Rebecca Krier
- The Jackson Laboratory, Bar Harbor, Maine. Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
15
|
Schauwecker PE. Microarray-assisted fine mapping of quantitative trait loci on chromosome 15 for susceptibility to seizure-induced cell death in mice. Eur J Neurosci 2013; 38:3679-90. [PMID: 24001120 DOI: 10.1111/ejn.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
Prior studies with crosses of the FVB/NJ (FVB; seizure-induced cell death-susceptible) mouse and the C57BL/6J (B6; seizure-induced cell death-resistant) mouse revealed the presence of a quantitative trait locus (QTL) on chromosome 15 that influenced susceptibility to kainic acid-induced cell death (Sicd2). In an earlier study, we confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure-induced cell death through the creation of the FVB.B6-Sicd2 congenic strain, and created three interval-specific congenic lines (ISCLs) that encompass Sicd2 on chromosome 15 to fine-map this locus. To further localise this Sicd2 QTL, an additional congenic line carrying overlapping intervals of the B6 segment was created (ISCL-4), and compared with the previously created ISCL-1-ISCL-3 and assessed for seizure-induced cell death phenotype. Whereas all of the ISCLs showed reduced cell death associated with the B6 phenotype, ISCL-4, showed the most extensive reduction in seizure-induced cell death throughout all hippocampal subfields. In order to characterise the susceptibility loci on Sicd2 by use of this ISCL and identify compelling candidate genes, we undertook an integrative genomic strategy of comparing exon transcript abundance in the hippocampus of this newly developed chromosome 15 subcongenic line (ISCL-4) and FVB-like littermates. We identified 10 putative candidate genes that are alternatively spliced between the strains and may govern strain-dependent differences in susceptibility to seizure-induced excitotoxic cell death. These results illustrate the importance of identifying transcriptomics variants in expression studies, and implicate novel candidate genes conferring susceptibility to seizure-induced cell death.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA, 90033, USA
| |
Collapse
|
16
|
Liao CY, Johnson TE, Nelson JF. Genetic variation in responses to dietary restriction--an unbiased tool for hypothesis testing. Exp Gerontol 2013; 48:1025-9. [PMID: 23562825 DOI: 10.1016/j.exger.2013.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 11/19/2022]
Abstract
Dietary restriction (DR) extends lifespan in a wide range of animal models. A major obstacle to understanding how DR modulates lifespan and aging-related dysfunction is the multiplicity of physiological and molecular changes associated with DR. Unraveling their importance to the longevity effect of DR remains a major challenge. In this perspective, we review the marked genetic variation in the response to DR of multiple recombinant inbred (RI) mouse strains. We illustrate how this genetic variation can be exploited to probe the mechanisms mediating lifespan extension by DR, as well as uncover its limits as an intervention. RI strains exhibit marked variation in their lifespan as well as physiological responses to DR. Quantitative genetic and statistical tools can use this phenotypic variation to probe the importance of physiological and molecular changes that have been hypothesized to play roles in DR-mediated lifespan extension.
Collapse
Affiliation(s)
- Chen-Yu Liao
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | |
Collapse
|
17
|
Van Zant G, Liang Y. Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 2012. [PMID: 23197871 DOI: 10.5966/sctm.2012-0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Self-renewal and multilineage differentiation of stem cells are keys to the lifelong homeostatic maintenance of tissues and organs. Hematopoietic aging, characterized by immunosenescence, proinflammation, and anemia, is attributed to age-associated changes in the number and function of hematopoietic stem cells (HSCs) and their microenvironmental niche. Genetic variants and factors regulating stem cell aging are correlatively or causatively associated with overall organismal aging and longevity. Translational use of HSCs for transplantation and gene therapy demands effective methods for stem cell expansion. Targeting the molecular pathways involved in HSC self-renewal, proliferation, and homing has led to enhanced expansion and engraftment of stem cells upon transplantation. HSC transplantation is less effective in elderly people, even though this is the demographic with the greatest need for this form of treatment. Thus, understanding the biological changes in the aging of stem cells as well as local and systematic environments will improve the efficacy of aged stem cells for regenerative medicine and ultimately facilitate improved health and life spans.
Collapse
Affiliation(s)
- Gary Van Zant
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
18
|
Dixon LR, McQuage MR, Lonon EJ, Buehler D, Seck O, Rueppell O. Pleiotropy of segregating genetic variants that affect honey bee worker life expectancy. Exp Gerontol 2012; 47:631-7. [PMID: 22664574 DOI: 10.1016/j.exger.2012.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 11/28/2022]
Abstract
In contrast to many other complex traits, the natural genetic architecture of life expectancy has not been intensely studied, particularly in non-model organisms, such as the honey bee (Apis mellifera L.). Multiple factors that determine honey bee worker lifespan have been identified and genetic analyses have been performed on some of those traits. Several of the traits are included in a suite of correlated traits that form the pollen hoarding syndrome, which was named after the behavior to store surplus pollen in the nest and is tied to social evolution. Here, seven quantitative trait loci that had previously been identified for their effects on different aspects of the pollen hoarding syndrome were studied for their genetic influence on the survival of adult honey bee workers. To gain a more comprehensive understanding of the genetic architecture of worker longevity, a panel of 280 additional SNP markers distributed across the genome was also tested. Allelic distributions were compared between young and old bees in two backcross populations of the bi-directionally selected high- and low-pollen hoarding strain. Our results suggest a pleiotropic effect of at least one of the behavioral quantitative trait loci on worker longevity and one significant and several other putative genetic effects in other genomic regions. At least one locus showed evidence for strong antagonistic pleiotropy and several others suggested genetic factors that influence pre-emergence survival of worker honey bees. Thus, the predicted association between worker lifespan and the pollen hoarding syndrome was supported at the genetic level and the magnitude of the identified effects also strengthened the view that naturally segregating genetic variation can have major effects on age-specific survival probability in the wild.
Collapse
Affiliation(s)
- Luke R Dixon
- Department of Biology, University of North Carolina, Greensboro, 312 Eberhart Building, Greensboro, NC 27403, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kirschner J, Weber D, Neuschl C, Franke A, Böttger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K. Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell 2012; 11:252-61. [PMID: 22221414 PMCID: PMC3437503 DOI: 10.1111/j.1474-9726.2011.00780.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The African annual fish Nothobranchius furzeri emerged as a new model for age research over recent years. Nothobranchius furzeri show an exceptionally short lifespan, age-dependent cognitive/behavioral decline, expression of age-related biomarkers, and susceptibility to lifespan manipulation. In addition, laboratory strains differ largely in lifespan. Here, we set out to study the genetics of lifespan determination. We crossed a short- to a long-lived strain, recorded lifespan, and established polymorphic markers. On the basis of genotypes of 411 marker loci in 404 F(2) progeny, we built a genetic map comprising 355 markers at an average spacing of 5.5 cM, 22 linkage groups (LGs) and 1965 cM. By combining marker data with lifespan values, we identified one genome-wide highly significant quantitative trait locus (QTL) on LG 9 (P < 0.01), which explained 11.3% of the F(2) lifespan variance, and three suggestive QTLs on LG 11, 14, and 17. We characterized the highly significant QTL by synteny analysis, because a genome sequence of N. furzeri was not available. We located the syntenic region on medaka chromosome 5, identified candidate genes, and performed fine mapping, resulting in a c. 40% reduction of the initial 95% confidence interval. We show both that lifespan determination in N. furzeri is polygenic, and that candidate gene detection is easily feasible by cross-species analysis. Our work provides first results on the way to identify loci controlling lifespan in N. furzeri and illustrates the potential of this vertebrate species as a genetic model for age research.
Collapse
Affiliation(s)
- Jeanette Kirschner
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - David Weber
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Christina Neuschl
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University, Kiel, Germany
| | - Marco Böttger
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Lea Zielke
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Eileen Powalsky
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Dmitry Shagin
- Evrogen JSC, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Andreas Petzold
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Nils Hartmann
- Molecular Genetics, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Molecular Genetics, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Gudrun A. Brockmann
- Faculty of Agriculture and Horticulture, Department of Crop and Animal Sciences, Humboldt‐University, Berlin, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Cellerino
- Biology of Aging, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
- Scuola Normale Superiore, Pisa, Italy
| | - Kathrin Reichwald
- Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
20
|
Yuan R, Peters LL, Paigen B. Mice as a mammalian model for research on the genetics of aging. ILAR J 2011; 52:4-15. [PMID: 21411853 DOI: 10.1093/ilar.52.1.4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|