1
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
2
|
Briffa JF, Grinfeld E, Poronnik P, McAinch AJ, Hryciw DH. Uptake of leptin and albumin via separate pathways in proximal tubule cells. Int J Biochem Cell Biol 2016; 79:194-198. [PMID: 27594412 DOI: 10.1016/j.biocel.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023]
Abstract
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis.
Collapse
Affiliation(s)
- Jessica F Briffa
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Esther Grinfeld
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia
| | - Philip Poronnik
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Andrew J McAinch
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H Hryciw
- Centre For Chronic Disease, College of Health and Biomedicine, Victoria University, St. Albans, VIC 3021, Australia; Department of Physiology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
4
|
Botta R, Lisi S, Pinchera A, Giorgi F, Marcocci C, Taddei AR, Fausto AM, Bernardini N, Ippolito C, Mattii L, Persani L, de Filippis T, Calebiro D, Madsen P, Petersen CM, Marinò M. Sortilin is a putative postendocytic receptor of thyroglobulin. Endocrinology 2009; 150:509-18. [PMID: 18687776 DOI: 10.1210/en.2008-0953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Vps10p family member sortilin is involved in various cell processes, including protein trafficking. Here we found that sortilin is expressed in thyroid epithelial cells (thyrocytes) in a TSH-dependent manner, that the hormone precursor thyroglobulin (Tg) is a high-affinity sortilin ligand, and that binding to sortilin occurs after Tg endocytosis, resulting in Tg recycling. Sortilin was found to be expressed intracellularly in thyrocytes, as observed in mouse, human, and rat thyroid as well as in FRTL-5 cells. Sortilin expression was demonstrated to be TSH dependent, both in FRTL-5 cells and in mice treated with methimazole and perchlorate. Plasmon resonance binding assays showed that Tg binds to sortilin in a concentration-dependent manner and with high affinity, with Kd values that paralleled the hormone content of Tg. In addition, we found that Tg and sortilin interact in vivo and in cultured cells, as observed by immunoprecipitation, in mouse thyroid extracts and in COS-7 cells transiently cotransfected with sortilin and Tg. After incubation of FRTL-5 cells with exogenous, labeled Tg, sortilin and Tg interacted intracellularly, presumably within the endocytic pathway, as observed by immunofluorescence and immunoelectron microscopy, the latter technique showing some degree of Tg recycling. This was confirmed in FRTL-5 cells in which Tg recycling was reduced by silencing of the sortilin gene and in CHO cells transfected with sortilin in which recycling was increased. Our findings provide a novel pathway of Tg trafficking and a novel function of sortilin in the thyroid gland, the functional impact of which remains to be established.
Collapse
Affiliation(s)
- Roberta Botta
- Department of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lisi S, Botta R, Pinchera A, Collins AB, Marcocci C, Marinò M. Kidney abnormalities in low density lipoprotein receptor associated protein knockout mice. J Endocrinol Invest 2008; 31:57-61. [PMID: 18296906 DOI: 10.1007/bf03345567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mice lacking the LDL receptor associated protein (RAP) have a severe defect of thyroglobulin secretion into the colloid, associated with moderately increased serum TSH levels and histological features of early goiter. RAP is expressed also in renal proximal tubule cells, where it functions as a molecular chaperone for the endocytic receptor megalin, which is responsible for reabsorption of low molecular weight proteins from the glomerular filtrate. Here we investigated whether the thyroid phenotype in RAP knockout (KO) mice is associated with kidney alterations. By immunohistochemistry, we found that in RAP KO mice megalin expression on the apical membrane of renal proximal tubule cells was markedly reduced, with intracellular retention of the receptor. The reduced expression of megalin was associated with its impaired function. Thus, urinary protein concentrations and urinary protein excretion in 24 h were higher in RAP KO than in wild-type mice. Coomassie staining of urine samples revealed an increased intensity of low molecular mass bands in the urine of RAP KO mice, indicating that they had low molecular weight proteinuria. Therefore, we concluded that disruption of the RAP gene determines not only thyroid abnormalities, but also a severe defect of megalin expression and function in the kidney.
Collapse
Affiliation(s)
- S Lisi
- Department of Endocrinology, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Maritzen T, Lisi S, Botta R, Pinchera A, Fanelli G, Viacava P, Marcocci C, Marinò M. ClC-5 does not affect megalin expression and function in the thyroid. Thyroid 2006; 16:725-30. [PMID: 16910872 DOI: 10.1089/thy.2006.16.725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Megalin is an endocytic receptor responsible for thyroglobulin (Tg) transcytosis, a process that favors hormone release. Accordingly, megalin KO mice have primary hypothyroidism. In the kidney, megalin expression is reduced when the gene encoding the chloride transporter ClC-5 is mutated. We investigated whether megalin expression and function in the thyroid are affected by ClC-5 using a ClC-5 KO mouse model. By Western blotting, ClC-5 was found in thyroid tissue extracts of WT, but not of ClC-5 KO mice. In addition, ClC-5 was found to be expressed by cultured thyroid cells (FRTL-5). The thyroid size, weight, and histology were similar in ClC- 5 KO and WT mice, as were the amounts of megalin in thyroid extracts. Accordingly, serum Tg, a measure of megalin-mediated transcytosis, was similar in WT and ClC-5 KO mice, suggesting that megalin function was unaffected. Thus, unlike in megalin KO mice, in ClC-5 KO mice thyroid function was unchanged, as indicated by the normal serum FT4 and TSH. We concluded that in the thyroid, unlike in the kidney, ClC-5 does not affect megalin expression and function, suggesting that megalin is differentially regulated in these two organs.
Collapse
Affiliation(s)
- Tanja Maritzen
- Molecular Biology Center, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lisi S, Menconi F, Altea MA, Agate L, Molinaro E, Castagna MG, Taddei D, Grasso L, Pinchera A, Elisei R, Marinò M. Failure to use measurement of megalin secretory components complexed with serum thyroglobulin as a tool to identify metastases after surgery in papillary thyroid cancer. J Endocrinol Invest 2004; 27:636-42. [PMID: 15505986 DOI: 10.1007/bf03347495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When thyroid follicles are intact, some colloidal thyroglobulin (Tg) reaches the circulation by megalin-mediated transcytosis and is to various extents complexed with megalin secretory components. In contrast, in papillary thyroid cancer (PTC), serum Tg is not complexed with megalin because it is directly secreted by tumor cells. Here we attempted to use measurement of megalin secretory components to distinguish PTC patients with thyroid remnant plus metastases from those with thyroid remnant only, after thyroidectomy and before 131I ablation. Tg values in anti-Tg antibodies (TgAb)-free sera from 5 PTC patients with thyroid remnant plus metastases and 12 PTC patients with thyroid remnant only were measured following pre-adsorption with uncoupled protein A beads or with protein A beads coupled with antimegalin antibodies. The degree of Tg pre-adsorption with antimegalin antibodies was minimal, with no substantial differences between the two groups. Thus, we concluded that measurement of megalin secretory components is unlikely to be useful to identify the origin of serum Tg in PTC patients after thyroidectomy.
Collapse
Affiliation(s)
- S Lisi
- Department of Endocrinology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lisi S, Pinchera A, McCluskey RT, Willnow TE, Refetoff S, Marcocci C, Vitti P, Menconi F, Grasso L, Luchetti F, Collins AB, Marino M. Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release. Proc Natl Acad Sci U S A 2003; 100:14858-63. [PMID: 14657389 PMCID: PMC299828 DOI: 10.1073/pnas.2432267100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hormone secretion by thyrocytes occurs by fluid phase uptake and lysosomal degradation of the prohormone thyroglobulin (Tg). However, some Tg internalized by megalin bypasses lysosomes and is transcytosed across cells and released into the bloodstream. Because the hormone content of Tg is variable, we investigated whether this affects transcytosis. We found that rat Tg with a low hormone content [low-hormonogenic rat Tg (low-horm-rTg)] is transcytosed by megalin across thyroid FRTL-5 cells to a greater extent than rat Tg with a high hormone content [hormonogenic rat Tg (horm-rTg)]. In immunoprecipitation experiments, the Tg sequence Arg-2489-Lys-2503 (required for binding to megalin and heparan sulfate proteoglycans) was found to be more exposed in low-horm-rTg, which accounted for its preferential transcytosis. Thus, removal of surface heparan sulfate proteoglycans from FRTL-5 cells or blocking of 2489-2503 reduced transcytosis of low-horm-rTg to a greater extent than that of horm-rTg. Preferential transcytosis of low-horm-rTg affected hormone release. Thus, the increase in hormone release from horm-rTg in FRTL-5 cells determined by megalin blocking (due to reduced transcytosis and enhanced Tg degradation) was rescued by low-horm-rTg, suggesting that megalin is required for effective hormone release. This finding was confirmed in a small number of megalin-deficient mice, which had serological features resembling mild hypothyroidism. Reduced hormone formation within Tg in vivo, due to treatment of rats with aminotriazole or of patients with Graves' disease with methimazole, resulted in increased Tg transcytosis via megalin, in confirmation of results with FRTL-5 cells. Our study points to a major role of megalin in thyroid homeostasis with possible implications in thyroid diseases.
Collapse
Affiliation(s)
- Simonetta Lisi
- Department of Endocrinology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|