1
|
Corredor C, Zhao Y, Wu S, Drennen JK, Anderson C. Novel Approach Using Real-Time Dynamic Imaging Analysis to Monitor Cellular Apoptosis, Viability, and Cell Density in CHO Cell-Based Bioprocesses for Monoclonal Antibody Production. Biotechnol J 2025; 20:e70018. [PMID: 40223601 DOI: 10.1002/biot.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
We investigated an analytical method based on dynamic imaging analysis (DIA) for monitoring cellular apoptosis, viability, and cell density. Trypan blue and flow cytometry were used as reference methods. The DIA method showed results comparable to the traditional methods, with clear advantages (label-free and in-line real-time monitoring capability). The DIA method successfully traced the trajectory of cell death progress, detecting the onset of apoptosis earlier than the other methods.
Collapse
Affiliation(s)
- Claudia Corredor
- Integrated Technologies and Engineering, Drug Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Yuxiang Zhao
- Biologics Process Analytics, Biologics Development, Bristol-Myers Squibb, Devens, Massachusetts, USA
| | - Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Carl Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology. Cytotechnology 2014; 68:399-408. [PMID: 25352493 DOI: 10.1007/s10616-014-9791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications.
Collapse
|
3
|
Perani A, Singh RP, Chauhan R, Al-Rubeai M. Variable functions of bcl-2 in mediating bioreactor stress- induced apoptosis in hybridoma cells. Cytotechnology 2011; 28:177-88. [PMID: 19003419 DOI: 10.1023/a:1008002319400] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been demonstrated that the cell lines used for production of biopharmaceuticals are highly susceptible to apoptosis, and that over-expression of the bcl-2 oncogene can protect cells from death. Stress associated with the deprivation of nutrients has been shown to be the main cause of apoptosis in culture. We have extended these studies by investigating the mechanism of cell death under conditions of sub-optimal pH, shear stress and hyperosmolarity, and the protective action of bcl-2 over-expression. At pH 6, there was no clear evidence of protection from cell death. However, at pH 8, the viability of the bcl-2 transfected cells was about 20% higher relative to the control cells. Cultivation of control cells in a flat bottomed bioreactor with a magnetic stirrer bar without a pivot ring resulted in exposure of the cells to a high attrition effect. As a result, cell growth was retarded and a high level of cell death by apoptosis was observed. Under the same conditions, the bcl-2 transfected cell line exhibited a nearly five fold increase in viable cell number. This finding indicates that under apoptosis-suppressed conditions, shear stress can stimulate cell growth. Batch cultivation of both control and bcl-2 transfected cells in 350 and 400 mOsm media resulted in suppression of cell growth, athough the effect was most marked in the control cell line. Adaptation of control cells to 400 mOsm proved to be impossible to achieve. However, the bcl-2 transfected cells exhibited resistance to the osmotic stress resulting in long term adaptation to a high salt environment. Specific productivity of bcl-2 transfected cells grown in high osmolarity medium was 100% higher than that produced by non- adapted bcl-2 transfected cells grown in normal osmolarity medium. These results demonstrate that bcl-2 has a beneficial effect on hybridoma cultivation under a wide range of culture stresses.
Collapse
Affiliation(s)
- A Perani
- Centre for Bioprocess Engineering, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
4
|
Quesney S, Marvel J, Marc A, Gerdil C, Meignier B. Characterization of Vero cell growth and death in bioreactor with serum-containing and serum-free media. Cytotechnology 2011; 35:115-25. [PMID: 19003288 DOI: 10.1023/a:1017589526145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The density of viable cells in a culture results from a balance between cell proliferation and cell death. The aim of this study was to characterize and compare these two phenomena in Vero cell cultures in one serum containing medium (ScA) and one serum free medium (SfB) in bioreactors. Cell growth was evaluated by cell counting(after crystal violet staining) and cell cycle analysis. Necrosis and apoptosis were characterized and quantified by measuring the release of LDH, trypan blue exclusion,annex in V-FITC/PI staining and TUNEL assay. ScA supported a higher maximal viable-cell density(2.3 x 10(6) vs. 1.8 x 10(6) cells ml(-1)). However, cell cycle analysis showed that cell division was more active in SfB than in ScA. LDH release in the supernatant increased much earlier in SfB than in ScA (one vs. five days), but trypan blue counts showed no apparent difference in the viability of the cultures. Apoptosis, evidenced by annexin V-FITC/PI staining, could be detected in the population of suspension cells detached from microcarriers, but not among adherent cells; positivity of the TUNEL assay occurred later than that of the annexin V-FITC/PI staining. Our data indicate that the lower cell yield in SfB,compared with that in ScA, results from a higher cell death rate. Apparently, cells die from apoptosis followed by secondary necrosis.
Collapse
Affiliation(s)
- S Quesney
- Development Department, Aventis Pasteur, Campus Mérieux, 1541 Avenue Marcel Mérieux, F-69280, Marcy L'étoile, France
| | | | | | | | | |
Collapse
|
5
|
Krampe B, Al-Rubeai M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 2010; 62:175-88. [PMID: 20502964 DOI: 10.1007/s10616-010-9274-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/12/2010] [Indexed: 12/15/2022] Open
Abstract
Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.
Collapse
Affiliation(s)
- Britta Krampe
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | |
Collapse
|
6
|
Detzel CJ, Mason DJ, Davis WC, van Wie BJ. Kinetic simulation of a centrifugal bioreactor for high population density hybridoma culture. Biotechnol Prog 2009; 25:1650-9. [PMID: 19806634 DOI: 10.1002/btpr.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Demand for increasingly complex post-translationally modified proteins, such as monoclonal antibodies (mAbs), necessitates the use of mammalian hosts for production. The focus of this article is a continuous centrifugal bioreactor (CCBR) capable of increasing volumetric productivity for mAb production through high density hybridoma culture, exceeding 10(8) cells/mL. At these extreme densities, environmental conditions such as substrate and inhibitor concentrations rapidly change dramatically affecting the growth rate. The development of a kinetic model predicting glucose, mAb, lactate, and ammonium concentrations based on dilution rate and cell density is shown in this article. Additionally, it is found that pH affects both growth rate and viability, and a range of 6.9-7.4 is needed to maintain growth rate above 90% of the maximum. Modeling shows that operating an 11.4 mL CCBR inoculated with 2.0 x 10(7) cells/mL at a dilution rate of 1.3 h(-1), results in a predicted growth rate 82% of the maximum value. At the same dilution rate increasing density to 6.0 x 10(7) cells/mL decreases the predicted growth rate to 60% of the maximum; however, by increasing dilution rate to 6.1 h(-1) the growth rate can be increased to 86% of the maximum. Using the kinetic model developed in this research, the concentration of glucose, mAb, lactate, and ammonium are all predicted within 13% of experimental results. This model and an understanding of how RPM impacts cell retention serve as valuable tools for maintaining high density CCBR cultures, ensuring maximum growth associated mAb production rates.
Collapse
Affiliation(s)
- Christopher J Detzel
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
7
|
Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production—Flow cytometry and mathematical modeling. Vaccine 2009; 27:2712-22. [DOI: 10.1016/j.vaccine.2009.02.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/01/2009] [Accepted: 02/05/2009] [Indexed: 11/24/2022]
|
8
|
Arden N, Betenbaugh MJ. Regulating apoptosis in mammalian cell cultures. Cytotechnology 2006; 50:77-92. [PMID: 19003072 DOI: 10.1007/s10616-006-9008-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 12/19/2022] Open
Abstract
Cell culture technology has become a widely accepted method used to derive therapeutic and diagnostic protein products. Mammalian cells adapted to grow in bioreactors now play an integral role in the development of these biologicals. A major limiting factor determining the output efficiency of mammalian cell cultures however, is apoptosis or programmed cell death. Methods to delay apoptosis and increase the longevity of cell cultures can lead to more economical processes. Researchers have shown that both genetic and chemical strategies to block apoptotic signals can increase cell culture productivity. Here, we discuss various strategies which have been implemented to improve cellular viabilities and productivities in batch cultures.
Collapse
Affiliation(s)
- Nilou Arden
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | | |
Collapse
|
9
|
Mendonça RZ, Arrózio SJ, Antoniazzi MM, Ferreira JMC, Pereira CA. Metabolic active-high density VERO cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding. J Biotechnol 2002; 97:13-22. [PMID: 12052679 DOI: 10.1016/s0168-1656(02)00048-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.
Collapse
Affiliation(s)
- Ronaldo Z Mendonça
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M. Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 2000; 68:31-43. [PMID: 10699869 DOI: 10.1002/(sici)1097-0290(20000405)68:1<31::aid-bit4>3.0.co;2-l] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The influence of Bcl-2 expression on the robustness of a CHO cell line (22H11) developed for the industrial production of a chimeric antibody was evaluated. Western blot analysis following transfection with the expression vector unexpectedly revealed upregulation of endogenous Bcl-2 expression in the control (Neo) cell line in response to exposure to the selection drug G418. This indicated that geneticin may function by inducing apoptosis in cells not carrying the control plasmid or expressing very low levels of survival genes. Thus, exposure to the drug enriched the culture for a population of cells which expressed enhanced levels of endogenous Bcl-2. In batch cultures, ectopic bcl-2 expression resulted in a 75% increase in maximum viable cell density over control cultures. Moreover, the rate of decrease in viability in the Bcl-2 cultures was significantly lower than that in the control cultures. After 18 days, the Bcl-2 viability was around 90%, compared to 20% in the control cultures. Evaluation of the mechanism of cell death revealed very few cells with classical apoptotic morphology. Around 10% were clearly necrotic, but the majority of dead cells were seen as chromatin free but otherwise relatively intact structures. Because of the relatively low rate of cell death in both cell lines, few cells were observed in the transitional, easily identifiable early stages of apoptosis. However, DNA gel electrophoresis revealed a clear ladder-pattern, but only in the control cultures, thus confirming high levels of apoptotic death. Antibody concentrations during both sets of cultures were very similar, both during the growth and death phases, with a maximum titer of around 40 microgram/ml. Analysis of Bcl-2 expression by flow cytometry revealed that the cultures contained two populations of cells: a large population which expressed high levels of Bcl-2 and a relatively smaller low-expressing population. During the course of the batch, the smaller, low-expressing population declined in frequency, suggesting that these cells were more sensitive to cell death. In addition, the mean level of Bcl-2 expression in the overexpressing population also declined significantly, presumably reflecting the exhaustion of precursors for protein synthesis following nutrient depletion. Importantly, when cells were taken from day 40 of the significantly extended Bcl-2 batch cultures, they immediately proliferated, confirming that they had retained their replicative potential. Cultivation of the cells in basal medium lacking (individually) serum, all amino acids, glutamate/asparagine, and, finally, glucose, resulted in relatively lower viable cell numbers and viability in the control cell line compared to the Bcl-2 cell line. Exposure of cells to ammonia toxicity also revealed the relative robustness of the bcl-2 transfected cells. When growth was arrested by treatment with 4 mM thymidine, Bcl-2 overexpressing cells exhibit a viability of over 80% after 5 days in culture, compared to only 40% in the control cell line. However, under growth-arrested conditions, there was no major difference in antibody titer between the two cell lines.
Collapse
Affiliation(s)
- B T Tey
- Animal Cell Technology Group, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|