1
|
Matera A, Dulak K, Sordon S, Waśniewski K, Huszcza E, Popłoński J. Evaluation of double expression system for co-expression and co-immobilization of flavonoid glucosylation cascade. Appl Microbiol Biotechnol 2022; 106:7763-7778. [PMID: 36334126 PMCID: PMC9668961 DOI: 10.1007/s00253-022-12259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Glucosylation cascade consisting of Leloir glycosyltransferase and sucrose synthase with in situ regeneration system of expensive and low available nucleotide sugars is a game-changing strategy for enzyme-based production of glycoconjugates of relevant natural products. We designed a stepwise approach including co-expression and one-step purification and co-immobilization on glass-based EziG resins of sucrose synthase from Glycine max (GmSuSy) with promiscuous glucosyltransferase YjiC from Bacillus licheniformis to produce efficient, robust, and versatile biocatalyst suited for preparative scale flavonoid glucosylation. The undertaken investigations identified optimal reaction conditions (30 °C, pH 7.5, and 10 mM Mg2+) and the best-suited carrier (EziG Opal). The prepared catalyst exhibited excellent reusability, retaining up to 96% of initial activity after 12 cycles of reactions. The semi-preparative glucosylation of poorly soluble isoflavone Biochanin A resulted in the production of 73 mg Sissotrin (Biochanin A 7-O-glucoside). Additionally, the evaluation of the designed double-controlled, monocistronic expression system with two independently induced promoters (rhaBAD and trc) brought beneficial information for dual-expression plasmid design. KEY POINTS: • Simultaneous and titratable expression from two independent promoters is possible, although full control over the expression is limited. • Designed catalyst managed to glucosylate poorly soluble isoflavone. • The STY of Sissotrin using the designed catalyst reached 0.26 g/L∙h∙g of the resin.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kacper Waśniewski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
2
|
Gauttam R, Desiderato CK, Radoš D, Link H, Seibold GM, Eikmanns BJ. Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Front Bioeng Biotechnol 2021; 9:748510. [PMID: 34631687 PMCID: PMC8495162 DOI: 10.3389/fbioe.2021.748510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is an acetylated amino sugar nucleotide that naturally serves as precursor in bacterial cell wall synthesis and is involved in prokaryotic and eukaryotic glycosylation reactions. UDP-GlcNAc finds application in various fields including the production of oligosaccharides and glycoproteins with therapeutic benefits. At present, nucleotide sugars are produced either chemically or in vitro by enzyme cascades. However, chemical synthesis is complex and non-economical, and in vitro synthesis requires costly substrates and often purified enzymes. A promising alternative is the microbial production of nucleotide sugars from cheap substrates. In this study, we aimed to engineer the non-pathogenic, Gram-positive soil bacterium Corynebacterium glutamicum as a host for UDP-GlcNAc production. The native glmS, glmU, and glmM genes and glmM of Escherichia coli, encoding the enzymes for UDP-GlcNAc synthesis from fructose-6-phosphate, were over-expressed in different combinations and from different plasmids in C. glutamicum GRS43, which lacks the glucosamine-6-phosphate deaminase gene (nagB) for glucosamine degradation. Over-expression of glmS, glmU and glmM, encoding glucosamine-6-phosphate synthase, the bifunctional glucosamine-1-phosphate acetyltransferase/N-acetyl glucosamine-1-phosphate uridyltransferase and phosphoglucosamine mutase, respectively, was confirmed using activity assays or immunoblot analysis. While the reference strain C. glutamicum GlcNCg1 with an empty plasmid in the exponential growth phase contained intracellularly only about 0.25 mM UDP-GlcNAc, the best engineered strain GlcNCg4 accumulated about 14 mM UDP-GlcNAc. The extracellular UDP-GlcNAc concentrations in the exponential growth phase did not exceed 2 mg/L. In the stationary phase, about 60 mg UDP-GlcNAc/L was observed extracellularly with strain GlcNCg4, indicating the potential of C. glutamicum to produce and to release the activated sugar into the culture medium. To our knowledge, the observed UDP-GlcNAc levels are the highest obtained with microbial hosts, emphasizing the potential of C. glutamicum as a suitable platform for activated sugar production.
Collapse
Affiliation(s)
- Rahul Gauttam
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | - Dušica Radoš
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
3
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
4
|
Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B. Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 2017; 12. [PMID: 28429856 DOI: 10.1002/biot.201600557] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023]
Abstract
Natural product glycosylations by Leloir glycosyltransferases (GTs) require expensive nucleotide-activated sugars as substrates. Sucrose synthase (SuSy) converts sucrose and uridine 5'-diphosphate (UDP) into UDP-glucose. Coupling of SuSy and GT reactions in one-pot cascade transformations creates a UDP cycle, which regenerates the UDP-glucose continuously and so makes it an expedient donor for glucoside production. Here we compare SuSys with divergent kinetic characteristics for UDP-glucose recycling in the synthesis of the natural C-glucoside nothofagin. Development of a fast reversed-phase ion-pairing HPLC method, quantifying all relevant reactants from the coupled conversion in a single run, was key to dissect the main factors of recycling efficiency. Limitations due to high KM , both for UDP and sucrose, were revealed for the bacterial SuSy from Acidithiobacillus caldus. The L637M-T640V double mutant of this SuSy with a 60-fold reduced KM for UDP substantially improved UDP-glucose recycling. The SuSy from Glycine max (soybean) was nevertheless the most active enzyme at the UDP (≤ 0.5 mM) and sucrose (≤ 1 M) concentrations used. It was also unexpectedly stable at up to 50°C where spontaneous decomposition of UDP-glucose started to become problematic. The herein gained in-depth understanding of requirements for UDP-glucose regeneration supports development of efficient GT-SuSy cascades.
Collapse
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
5
|
Gutmann A, Nidetzky B. Unlocking the Potential of Leloir Glycosyltransferases for Applied Biocatalysis: Efficient Synthesis of Uridine 5′-Diphosphate-Glucose by Sucrose Synthase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
6
|
Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 2015; 34:88-111. [PMID: 26657050 DOI: 10.1016/j.biotechadv.2015.11.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/24/2023]
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
7
|
Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
|
9
|
Bae J, Kim KH, Kim D, Choi Y, Kim JS, Koh S, Hong SI, Lee DS. A practical enzymatic synthesis of UDP sugars and NDP glucoses. Chembiochem 2006; 6:1963-6. [PMID: 16206230 DOI: 10.1002/cbic.200500183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jungdon Bae
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Elling L, Rupprath C, Günther N, Römer U, Verseck S, Weingarten P, Dräger G, Kirschning A, Piepersberg W. An enzyme module system for the synthesis of dTDP-activated deoxysugars from dTMP and sucrose. Chembiochem 2005; 6:1423-30. [PMID: 15977277 DOI: 10.1002/cbic.200500037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A flexible enzyme module system is presented that allows preparative access to important dTDP-activated deoxyhexoses from dTMP and sucrose. The strategic combination of the recombinant enzymes dTMP-kinase and sucrose synthase (SuSy), and the enzymes RmlB (4,6-dehydratase), RmlC (3,5-epimerase) and RmlD (4-ketoreductase) from the biosynthetic pathway of dTDP-beta-L-rhamnose was optimized. The SuSy module (dTMP-kinase, SuSy, +/-RmlB) yielded the precursor dTDP-alpha-D-glucose (2) or the biosynthetic intermediate dTDP-6-deoxy-4-keto-alpha-D-glucose (3) on a 0.2-0.6 g scale with overall yields of 62 % and 72 %, respectively. A two-step strategy in which the SuSy module was followed by the deoxysugar module (RmlC and RmlD) resulted in the synthesis of dTDP-beta-L-rhamnose (4; 24.1 micromol, overall yield: 35.9 %). Substitution of RmlC by DnmU from the dTDP-beta-L-daunosamine pathway of Streptomyces peucetius in this module demonstrated that DnmU acts in vitro as a 3,5-epimerase with 3 as substrate to yield 4 (32.2 mumol, overall yield: 44.7 %). Chemical reduction of 3 with NaBH4 gave a mixture of the C-4 epimers dTDP-alpha-D-quinovose (6) and dTDP-alpha-D-fucose (7) in a ratio of 2:1. In summary, the modular character of the presented enzyme system provides valuable compounds for the biochemical characterization of deoxysugar pathways playing a major role in microbial producers of antibiotic and antitumour agents.
Collapse
Affiliation(s)
- Lothar Elling
- Department of Biotechnology/Biomaterial Sciences and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Römer U, Schrader H, Günther N, Nettelstroth N, Frommer WB, Elling L. Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 2004; 107:135-49. [PMID: 14711497 DOI: 10.1016/j.jbiotec.2003.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene sus1 from Solanum tuberosum L. encoding for sucrose synthase 1 was cloned into the plasmid pDR195 under the control of the PMA1 promotor. After transformation of Saccharomyces cerevisiae strain 22574d sus1 was constitutively expressed giving a specific activity of 0.3Umg(-1) protein in the crude extract. A one-step purification by Q-Sepharose resulted in an 14-fold purified enzyme preparation in 74% yield. SuSy1 was subsequently purified by immobilized metal ion affinity chromatography and characterized for its utilization in synthesizing different nucleotide sugars and sucrose analogues. The kinetic constants for the cleavage and synthesis reaction were determined: K(m) (UDP) 4microM; K(iS) (UDP) 0.11mM; K(m) (sucrose) 91.6mM; K(m) (UDP-Glc) 0.5mM; K(iS) (UDP-Glc) 2.3mM; K(m) (D-fructose) 2.1mM; K(iS) (D-fructose) 35.9mM. Different nucleoside diphosphates as well as different donor substrate were accepted as follows: UDP>dTDP>ADP>CDP>GDP in the cleavage reaction and UDP-Glc>dTDP-Glc>ADP-Glc>CDP-Glc in the synthesis reaction. SuSy1 shows also a broad acceptance of D- and L-ketoses and D- and L-aldoses. The acceptance of aldoses was deduced from the binding of the inhibitor 5-deoxy-D-fructose (K(i) 0.3mM), an analogue of the natural substrate D-fructopyranoside. The broad substrate spectrum renders SuSy1 from potato a versatile biocatalyst for carbohydrate engineering.
Collapse
Affiliation(s)
- Ulrike Römer
- Department of Biotechnology/Biomaterial Sciences, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Altenbach-Rehm J, Nell C, Arnold M, Weuster-Botz D. Parallel Bubble Columns with Fed-Batch Technique for Microbial Process Development on a Small Scale. Chem Eng Technol 1999. [DOI: 10.1002/(sici)1521-4125(199912)22:12<1051::aid-ceat1051>3.0.co;2-c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Abstract
The present review gives a survey on the biosynthetic pathways of nucleotide sugars which are important for the in vitro synthesis of mammalian glycoconjugates. With respect to the use of these enzymes in glycotechnology the availability as recombinant enzymes from different sources, the large-scale synthesis of nucleotide sugars and their in situ regeneration in combination with glycosyltransferases are summarized and evaluated.
Collapse
Affiliation(s)
- T Bülter
- Institute of Enzyme Technology, University of Düsseldorf, Research Center, Jülich, Germany
| | | |
Collapse
|
15
|
Malissard M, Zeng S, Berger EG. The yeast expression system for recombinant glycosyltransferases. Glycoconj J 1999; 16:125-39. [PMID: 10612412 DOI: 10.1023/a:1007055525789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycosyltransferases are increasingly being used for in vitro synthesis of oligosaccharides. Since these enzymes are difficult to purify from natural sources, expression systems for soluble forms of the recombinant enzymes have been developed. This review focuses on the current state of development of yeast expression systems. Two yeast species have mainly been used, i.e. Saccharomyces cerevisiae and Pichia pastoris. Safety and ease of fermentation are well recognized for S. cerevisiae as a biotechnological expression system; however, even soluble forms of recombinant glycosyltransferases are not secreted. In some cases, hyperglycosylation may occur. P. pastoris, by contrast, secrete soluble orthoglycosylated forms to the supernatant where they can be recovered in a highly purified form. The review also covers some basic features of yeast fermentation and describes in some detail those glycosyltransferases that have successfully been expressed in yeasts. These include beta1,4galactosyltransferase, alpha2,6sialyltransferase, alpha2,3sialyltransferase, alpha1,3fucosyltransferase III and VI and alpha1,2mannosyltransferase. Current efforts in introducing glycosylation systems of higher eukaryotes into yeasts are briefly addressed.
Collapse
Affiliation(s)
- M Malissard
- Institute of Physiology, University Zurich, Zürich, Switzerland
| | | | | |
Collapse
|