1
|
Qin P, Zhou P, Huang Y, Long B, Gao R, Zhang S, Zhu B, Li YQ, Li Q. Upregulation of rate-limiting enzymes in cholesterol metabolism by PKCδ mediates endothelial apoptosis in diabetic wound healing. Cell Death Discov 2024; 10:263. [PMID: 38811564 PMCID: PMC11137154 DOI: 10.1038/s41420-024-02030-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a prevalent complication of diabetes that poses significant challenges in terms of treatment and management. It is characterized by heightened endothelial apoptosis and impaired angiogenesis. In this study, we aimed to investigate the role of protein kinase Cδ (PKCδ) in regulating endothelial apoptosis in diabetic wounds by promoting cholesterol biosynthesis. The expression of PKCδ was increased in human umbilical vascular endothelial cells (HUVECs) cultivated in high glucose medium and skin tissue isolated from diabetic mice. High glucose-induced HUVECs apoptosis was reduced by PKCδ inhibition with siRNA or rottlerin. RNA-seq identified two enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), as the downstream of PKCδ. PKCδ knockdown or inhibition suppressed the expression of HMGCS1 and HMGCR and lowered free cholesterol (FC) levels. Cholesterol restored high glucose-induced apoptosis in siRNA- or rottlerin-treated HUVECs. In vivo use of rosuvastatin calcium, an inhibitor of HMGCR, downregulated free cholesterol levels and accelerated the wound healing process. In conclusion, PKCδ expression in endothelial cells was activated by high glucose, which subsequently upregulates the expression of two enzymes catalyzing cholesterol biosynthesis, HMGCS1 and HMGCR. Enhanced cholesterol biosynthesis raises free cholesterol levels, promotes endothelial apoptosis, and finally delays wound healing.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Huang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binbin Long
- General Surgery Department, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruikang Gao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingjie Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Hu P, Zhu C. Betulinic Acid Exerts Anti-inflammatory Activity in Human Periodontal Ligament Cells Stimulated with Lipopolysaccharide and/or High Glucose. Endocr Metab Immune Disord Drug Targets 2023; 23:95-104. [PMID: 35538811 DOI: 10.2174/1871530322666220509231119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic patients have weakened periodontal ligaments and an increased risk of periodontitis due to uncontrolled glycemia. Betulinic acid (BA), a hypoglycemic drug, has anti-inflammatory activities. OBJECTIVES The current study aimed to explore the protective effect of BA on the inflammation in human periodontal ligament cells (PDLCs) stimulated with lipopolysaccharide (LPS) and/or high glucose (HG) status and its mechanisms of action. METHODS Human PDLCs were exposed to LPS and/or HG, with or without BA intervention. The production of nitrite oxide (NO) and prostaglandin E2 (PGE2) were quantified by Griess reaction and enzyme-linked immunosorbent assay, respectively. Immunoblotting analyses were employed to detect the expression of inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX- 2), as well as the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa- B (NF-κB) in human PDLCs. RESULTS The increased production of iNOS/NO and COX-2/PGE2 and increased phosphorylated levels of IκBα, JNK, and p38 can be detected in human PDLCs with LPS and/or HG situations, while increased phosphorylated ERK can be seen in cells under only LPS condition. Furthermore, the non-toxic concentration of BA (10 μM) prevented NF-κB and MAPKs activation and partly but significantly reversed the induction of COX-2/ PGE2 and iNOS/NO in human PDLCs with LPS and/or HG loaded. CONCLUSION BA was proved for the first time to protect human PDLCs from the LPS-induced and/or HG-induced inflammation, which works through the mechanism involving the action of MAPKs and NF-κB. signaling pathways. Thus, BA could be used to alleviate diabetic complications of periodontitis.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Yasuda Y, Aoki H, Fujita W, Fujibayashi K, Wakasa M, Kawai Y, Nakanishi H, Saito K, Takeuchi M, Kajinami K. Glyceraldehyde-derived advanced glycation end-products are associated with left ventricular ejection fraction and brain natriuretic peptide in patients with diabetic adverse cardiac remodeling. SCAND CARDIOVASC J 2022; 56:208-216. [PMID: 35792728 DOI: 10.1080/14017431.2022.2095013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: Glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs) have a strong binding affinity for their cognate receptor and elicit oxidative stress and inflammation. However, it remains unknown whether the levels of Glycer-AGEs correlate with the severity of cardiac function and heart failure in patients with diabetic adverse cardiac remodeling (DbCR). Fourteen heart failure patients with type 2 diabetes mellitus (DM) without other cardiac disorders (DbCR group) were enrolled. Another 14 patients with idiopathic dilated cardiomyopathy (DCM) without DM were served as a control (DCM group). All patients were assessed for serum Glycer-AGEs, nitrotyrosine (NT), and tumor necrosis factor alpha (TNFα) and for plasma brain natriuretic peptide (BNP). The left ventricular ejection fraction (LVEF) was evaluated by echocardiography. Results: The mean serum levels of Glycer-AGEs, NT, and TNFα in the DbCR group were significantly higher than those in the DCM group (for Glycer-AGEs, p = .0073; for NT, p = .005; for TNFα, p < .0001, respectively). In the patients with DbCR, the levels of serum Glycer-AGEs and TNFα were closely associated with LVEF and BNP values. Conclusions: Both Glycer-AGEs and TNFα showed close associations with LVEF and the levels of BNP in patients with DbCR. Glycer-AGEs and TNFα may play a pathological role in the development of DbCR.
Collapse
Affiliation(s)
- Yuushi Yasuda
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Hirofumi Aoki
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Wataru Fujita
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | | | - Minoru Wakasa
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
4
|
Romero-Pinedo S, Barros DIR, Ruiz-Magaña MJ, Maganto-García E, Moreno de Lara L, Abadía-Molina F, Terhorst C, Abadía-Molina AC. SLAMF8 Downregulates Mouse Macrophage Microbicidal Mechanisms via PI3K Pathways. Front Immunol 2022; 13:910112. [PMID: 35837407 PMCID: PMC9273976 DOI: 10.3389/fimmu.2022.910112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling lymphocytic activation molecule family 8 (SLAMF8) is involved in the negative modulation of NADPH oxidase activation. However, the impact of SLAMF8 downregulation on macrophage functionality and the microbicide mechanism remains elusive. To study this in depth, we first analyzed NADPH oxidase activation pathways in wild-type and SLAMF8-deficient macrophages upon different stimulus. Herein, we describe increased phosphorylation of the Erk1/2 and p38 MAP kinases, as well as increased phosphorylation of NADPH oxidase subunits in SLAMF8-deficient macrophages. Furthermore, using specific inhibitors, we observed that specific PI3K inhibition decreased the differences observed between wild-type and SLAMF8-deficient macrophages, stimulated with either PMA, LPS, or Salmonella typhimurium infection. Consequently, SLAMF8-deficient macrophages also showed increased recruitment of small GTPases such as Rab5 and Rab7, and the p47phox subunit to cytoplasmic Salmonella, suggesting an impairment of Salmonella-containing vacuole (SCV) progression in SLAMF8-deficient macrophages. Enhanced iNOS activation, NO production, and IL-6 expression were also observed in the absence of SLAMF8 upon Salmonella infection, either in vivo or in vitro, while overexpression of SLAMF8 in RAW264.7 macrophages showed the opposite phenotype. In addition, SLAMF8-deficient macrophages showed increased activation of Src kinases and reduced SHP-1 phosphate levels upon IFNγ and Salmonella stimuli in comparison to wild-type macrophages. In agreement with in vitro results, Salmonella clearance was augmented in SLAMF8-deficient mice compared to that in wild-type mice. Therefore, in conclusion, SLAMF8 intervention upon bacterial infection downregulates mouse macrophage activation, and confirmed that SLAMF8 receptor could be a potential therapeutic target for the treatment of severe or unresolved inflammatory conditions.
Collapse
Affiliation(s)
- Salvador Romero-Pinedo
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Domingo I Rojas Barros
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - María José Ruiz-Magaña
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Elena Maganto-García
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Laura Moreno de Lara
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Francisco Abadía-Molina
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Instituto de Nutrición Y Tecnología de los Alimentos "José Mataix", (INYTIA), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ana C Abadía-Molina
- Unidad de Inmunología, Instituto de Biopatología y Medicina Regenerativa (IBIMER), Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Departamento de Bioqu´ımica y Biolog´ıa Molecular III e Inmunolog´ıa, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
5
|
Lee A, Gu H, Gwon MH, Yun JM. Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells. Nutr Res Pract 2021; 15:591-603. [PMID: 34603607 PMCID: PMC8446685 DOI: 10.4162/nrp.2021.15.5.591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions. MATERIALS/METHODS THP-1 cells differentiated by PMA (1 μM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. RESULTS Hesperetin (0-100 μM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. CONCLUSIONS Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.
Collapse
Affiliation(s)
- Aeri Lee
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - HyunJi Gu
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Min-Hee Gwon
- Department of Education, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Suzuki T, Yamashita S, Hattori K, Matsuda N, Hattori Y. Impact of a long-term high-glucose environment on pro-inflammatory responses in macrophages stimulated with lipopolysaccharide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2129-2139. [PMID: 34402957 DOI: 10.1007/s00210-021-02137-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Cumulative evidence has established that macrophages orchestrate inflammatory responses that crucially contribute to the pathogenesis of insulin-resistant obesity and type 2 diabetes. In the present study, we examined the impact of hyperglycemia on macrophage pro-inflammatory responses under an inflammatory stimulus. To conduct this study, RAW264.7 macrophages were cultured under normal- (5.5 mM) or high-glucose (22 or 40 mM) conditions for 7 days and stimulated with lipopolysaccharide (LPS). Long-term exposure to high glucose significantly enhanced the increase in the production of pro-inflammatory cytokines, including tumor necrosis-α, interleukin (IL)-1β, and IL-6, when macrophages were stimulated with LPS. The LPS-induced increases in inducible nitric oxide (NO) synthase (iNOS) expression and NO production were also significantly enhanced by long-term exposure of macrophages to high glucose. Treatment with N-acetyl-L-cysteine, a widely used thiol-containing antioxidant, blunted the enhancement of the LPS-induced upregulation of pro-inflammatory cytokine production, iNOS expression, and NO production in macrophages. When intracellular reactive oxygen species (ROS) were visualized using the fluorescence dye 5-(and-6)-chloromethyl-2',7'-dichlorofluorescein diacetate, acetyl ester, a significant increase in ROS generation was found after stimulation of macrophages with LPS, and this increased ROS generation was exacerbated under long-term high-glucose conditions. LPS-induced translocation of phosphorylated nuclear factor-κB (NF-κB), a transcription factor regulating many pro-inflammatory genes, into the nucleus was promoted under long-term high-glucose conditions. Altogether, the present results indicate that a long-term high-glucose environment can enhance activation of NF-κB in LPS-stimulated macrophages possibly due to excessive ROS production, thereby leading to increased macrophage pro-inflammatory responses.
Collapse
Affiliation(s)
- Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- J-Pharma Co., Ltd., Yokohama, 230-0046, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, 061-0293, Japan.
| |
Collapse
|
7
|
Alomar SY, M Barakat B, Eldosoky M, Atef H, Mohamed AS, Elhawary R, El-Shafey M, Youssef AM, Elkazaz AY, Gabr AM, Elaskary AA, Salih MAK, Alolayan SO, Zaitone SA. Protective effect of metformin on rat diabetic retinopathy involves suppression of toll-like receptor 4/nuclear factor-k B expression and glutamate excitotoxicity. Int Immunopharmacol 2021; 90:107193. [PMID: 33246827 DOI: 10.1016/j.intimp.2020.107193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 01/27/2023]
Abstract
Microvascular complications of diabetes mellitus are progressively significant reasons for mortality. Metformin (MET) is considered as the first-line therapy for type 2 diabetes patients, and may be especially beneficial in cases of diabetic retinopathy although the precise mechanisms of MET action are not fully elucidated. The current study was designed to inspect the antioxidant and modulatory actions of MET on DRET in streptozotocin-induced diabetic rats. The effect of MET on the toll-like receptor 4/nuclear factor kappa B (TLR4/NFkB), inflammatory burden and glutamate excitotoxicity was assessed. Twenty-four male rats were assigned to four experimental groups: (1) Vehicle group, (2) Diabetic control: developed diabetes by injection of streptozotocin (60 mg/kg, i.p.). (3&4) Diabetic + MET group: diabetic rats were left for 9 weeks without treatment and then received oral MET 100 and 200 mg/kg for 6 weeks. Retinal samples were utilized in biochemical, histological, immunohistochemical and electron microscopic studies. MET administration significantly decreased retinal level of insulin growth factor and significantly suppressed the diabetic induced increase of malondialdehyde, glutamate, tumor necrosis factor-α and vascular endothelial growth factor (VEGF). Further, MET decreased the retinal mRNA expression of NFkB, tumor necrosis factor-α and TLR4 in diabetic rats. The current findings shed the light on MET's efficacy as an adjuvant therapy to hinder the development of diabetic retinopathy, at least partly, via inhibition of oxidative stress-induced NFkB/TLR4 pathway and suppression of glutamate excitotoxicity.
Collapse
Affiliation(s)
- Suliman Y Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia.
| | - Bassant M Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Clinical Pharmacy, College of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed Eldosoky
- Department of Neuroscience Technology, College of Applied Sciences, Jubail Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Basic Medical Sciences Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Reda Elhawary
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany Y Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| | - Attia M Gabr
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | | | - Mohamed A K Salih
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Sultan Othman Alolayan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
8
|
Balzer MS, Helmke A, Ackermann M, Casper J, Dong L, Hiss M, Kiyan Y, Rong S, Timrott K, von Vietinghoff S, Wang L, Haller H, Shushakova N. Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha. Nephrol Dial Transplant 2020; 34:947-960. [PMID: 30247663 DOI: 10.1093/ndt/gfy282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)-induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. METHODS In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. RESULTS We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ-/- MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ-/- animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ-/- mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. CONCLUSIONS PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alexandra Helmke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martina Ackermann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| | - Janis Casper
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Lei Dong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Marcus Hiss
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Timrott
- Department for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | | | - Le Wang
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology, Tongji Medical College, Wuhan, China
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| |
Collapse
|
9
|
Silva JF, Olivon VC, Mestriner FLAC, Zanotto CZ, Ferreira RG, Ferreira NS, Silva CAA, Luiz JPM, Alves JV, Fazan R, Cunha FQ, Alves-Filho JC, Tostes RC. Acute Increase in O-GlcNAc Improves Survival in Mice With LPS-Induced Systemic Inflammatory Response Syndrome. Front Physiol 2020; 10:1614. [PMID: 32038294 PMCID: PMC6985589 DOI: 10.3389/fphys.2019.01614] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome (SIRS) resulting from a severe infection that is characterized by immune dysregulation, cardiovascular derangements, and end-organ dysfunction. The modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation) influences many of the key processes that are altered during sepsis, including the production of inflammatory mediators and vascular contractility. Here, we investigated whether O-GlcNAc affects the inflammatory response and cardiovascular dysfunction associated with sepsis. Mice received an intraperitoneal injection of lipopolysaccharide (LPS, 20 mg/Kg) to induce endotoxic shock and systemic inflammation, resembling sepsis-induced SIRS. The effects of an acute increase in O-GlcNAcylation, by treatment of mice with glucosamine (GlcN, 300 mg/Kg, i.v.) or thiamet-G (ThG, 150 μg/Kg, i.v.), on LPS-associated mortality, production and release of cytokines by macrophages and vascular cells, vascular responsiveness to constrictors and blood pressure were then determined. Mice under LPS-induced SIRS exhibited a systemic and local inflammatory response with increased levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), as well as severe hypotension and vascular hyporesponsiveness, characterized by reduced vasoconstriction to phenylephrine. In addition, LPS increased neutrophil infiltration in lungs and produced significant lethality. Treatment with GlcN and ThG reduced systemic inflammation and attenuated hypotension and the vascular refractoriness to phenylephrine, improving survival. GlcN and ThG also decreased LPS-induced production of inflammatory cytokines by bone marrow-derived macrophages and nuclear transcription factor-kappa B (NF-κB) activation in RAW 264.7 NF-κB promoter macrophages. Treatment of mice with ThG increased O-glycosylation of NF-κB p65 subunit in mesenteric arteries, which was associated with reduced Ser536 phosphorylation of NF-κB p65. Finally, GlcN also increased survival rates in mice submitted to cecal ligation and puncture (CLP), a sepsis model. In conclusion, increased O-GlcNAc reduces systemic inflammation and cardiovascular disfunction in experimental sepsis models, pointing this pathway as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Josiane Fernandes Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Fabiola Leslie A C Mestriner
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Ziliotto Zanotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Gomes Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathanne Santos Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - João Paulo Mesquita Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliano Vilela Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A 2AR Under High Glutamate Concentrations in Mouse Microglia. Neurochem Res 2019; 44:2755-2764. [PMID: 31650360 DOI: 10.1007/s11064-019-02895-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1β messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1β expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1β expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1β expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.
Collapse
|
11
|
Ayala TS, Tessaro FHG, Jannuzzi GP, Bella LM, Ferreira KS, Martins JO. High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Sci Rep 2019; 9:11447. [PMID: 31391499 PMCID: PMC6686006 DOI: 10.1038/s41598-019-47836-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages may be a crucial aspect of diabetic complications associated with the inflammatory response. In this study, we examined how hyperglycaemia, a common aspect of diabetes, modulates bone marrow-derived macrophages (BMDMs) under an inflammatory stimulus. To perform this study, BMDMs from non-diabetic and diabetic (60 mg/kg alloxan, i.v.) male C57BL/6 mice (CEUA/FCF/USP-488) were cultured under normal (5.5 mM) and high glucose (HG, 25 or 40 mM) conditions and stimulated or not stimulated with lipopolysaccharide (LPS, 100 ng/mL). Compared to the BMDMs from the normoglycaemic mice, the LPS-stimulated BMDMs from the diabetic mice presented reduced TLR4 expression on the cell surface, lower phagocytic capacity, and reduced secretion of NO and lactate but greater oxygen consumption and greater phosphorylation of p46 SAPK/JNK, p42 ERK MAPK, pAKT and pPKC-δ. When the BMDMs from the non-diabetic mice were cultured under high-glucose conditions and stimulated with LPS, TLR4 expression was reduced on the cell surface and NO and H2O2 levels were reduced. In contrast, the diabetic BMDMs cultured under high glucose conditions presented increased levels of lactate and reduced phosphorylation of AKT, PKC-δ and p46 SAPK/JNK but enhanced phosphorylation of the p46 subunit of SAPK/JNK after LPS stimulation. High glucose levels appear to modify macrophage behaviour, affecting different aspects of diabetic and healthy BMDMs under the same LPS stimulus. Thus, hyperglycaemia leaves a glucose legacy, altering the basal steady state of macrophages.
Collapse
Affiliation(s)
- Thais Soprani Ayala
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Fernando Henrique Galvão Tessaro
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Grasielle Pereira Jannuzzi
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Leonardo Mendes Bella
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil
| | - Karen Spadari Ferreira
- Laboratory of Cellular Immunology and Biochemistry of Fungus and Protozoa, Department of Pharmaceutical Sciences Analysis, Federal University of São Paulo, São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, Brazil.
| |
Collapse
|
12
|
Zhang QM, Ouyang WX, Chai XQ, Deng FT. Expression of Lung Surfactant Proteins SP-B and SP-C and Their Regulatory Factors in Fetal Lung of GDM Rats. Curr Med Sci 2018; 38:847-852. [PMID: 30341519 DOI: 10.1007/s11596-018-1952-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Indexed: 12/29/2022]
Abstract
This study investigated the expression of lung surfactant proteins (SP-B and SP-C), and regulatory factors [forkhead box A2 (FOXA2) and nitrolyogenic FOXA2 (N-FOXA2)] in the fetal lung of rats with gestational diabetes mellitus (GDM) in order to study the mechanism of pulmonary dysplasia. The rat GDM model was established by using streptozotocin intraperitoneally in the first stage of pregnancy. There were 10 rats in the GDM group, and 10 healthy rats in normal control group without any treatment. Fetal lungs of two groups were taken at day 21 of pregnancy. Blood glucose levels of maternal rats and fetal rats were measured by Roche blood glucose meter. The histological changes in the fetal lung were observed under the light microscope in both groups. The SP-B, SP-C and FOXA2 were determined in the fetal lung of two groups immunohistochemically. The expression levels of SP-B, SP-C, total FOXA2, FOXA2 in nucleus (n-FOXA2), N-FOXA2 proteins were detected by Western blotting, and the relative expression levels of SP-B, SP-C, FOXA2 mRNA in the fetal lung of two groups were detected by RTPCR. The results showed that blood glucose levels of maternal rats and fetal rats in GDM group were higher than those in control group. The light microscope revealed fetal lung development retardation in GDM group. The expression of SP-B and SP-C in GDM group was significantly reduced as compared with control group (P<0.05). As compared with control group, the n-FOXA2 expression was significantly decreased in the fetal lung tissue, and N-FOXA2 was significantly increased in control group (P<0.05), but there was no significant changes in the total FOXA2 (P>0.05). It was concluded that GDM can cause fetal lung development and maturation disorders, and FOXA2 in fetal lung tissue decreases while nitrocellulose FOXA2 increases.
Collapse
Affiliation(s)
- Qing-Miao Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei-Xiang Ouyang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Qun Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei-Tao Deng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Improvement of hyperglycemia in a murine model of insulin resistance and high glucose- and inflammasome-mediated IL-1β expressions in macrophages by silymarin. Chem Biol Interact 2018; 290:12-18. [DOI: 10.1016/j.cbi.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/09/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
|
14
|
The effects of glucose concentrations associated with lipopolysaccharide and interferon-gamma stimulus on mediators' production of RAW 264.7 cells. Cytokine 2018; 107:18-25. [PMID: 29398279 DOI: 10.1016/j.cyto.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that results in the impairment of the metabolism of carbohydrates, proteins and lipids. It can give rise to various complications, mainly caused by chronic exposure of cells to high glucose concentrations, including changes in the immune response processes. The aim of this study was to verify the chemokine and cytokines production profile in the presence of different glucose concentrations and infection/inflammatory stimuli. To this end, cell viability and the production of chemokines, cytokines and nitric oxide (NO) were analyzed in RAW 264.7 cell culture. Results demonstrated that there was no change in cell viability after 6, 24 and 72 h. Different stimuli were unable to modify the monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α production. Groups stimulated with lipopolysaccharides (LPS) and LPS and recombinant interferon (rIFN)-γ down-regulated interleukin (IL)-1α, IL-10 and IL-12 and up-regulated IL-6 production. NO production maintained a pattern of increase, according to the increase in glucose concentrations, reaching its peak at 72 h. In summary, the results demonstrated that high glucose concentrations alone may be sufficient to alter the in vitro mediators' production of RAW 264.7 cells.
Collapse
|
15
|
A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice. Sci Rep 2017; 7:6315. [PMID: 28740170 PMCID: PMC5524719 DOI: 10.1038/s41598-017-06647-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/15/2017] [Indexed: 01/27/2023] Open
Abstract
A GalNAc/Gal-specific lectin (CGL) from the edible mussel Crenomytilus grayanus has been demonstrated to exhibit antibacterial properties. However, the mechanism of immune modulation by CGL in mammalian cells remains unclear. Here, we demonstrated that CGL can activate immune responses in macrophages and in mice. In the in vitro cell models, CGL induced tumour necrosis factor-α and interleukin-6 secretion in mouse RAW264.7 macrophages, mouse bone marrow-derived macrophages, human THP-1 macrophages, human peripheral blood mononuclear cells and human blood monocyte-derived macrophages. The CGL-mediated cytokine production was regulated by reactive oxygen species, mitogen-activated protein kinases, protein kinase C-α/δ and NF-κB. Interestingly, in lipopolysaccharide-activated macrophages, CGL induced endotoxin tolerance (characterized by the downregulation of nitric oxide, inducible nitric oxide synthase, interleukin-6 and cyclooxygenase II) via the downregulation of IRAK2 expression, JNK1/2 phosphorylation and NF-κB activation. CGL also slightly increased the bactericidal activity of macrophages and induced cytokine production in mouse models. Overall, our data indicate that CGL has the potential to be used as an immune modulator in mammals.
Collapse
|
16
|
Simon F, Tapia P, Armisen R, Echeverria C, Gatica S, Vallejos A, Pacheco A, Sanhueza ME, Alvo M, Segovia E, Torres R. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca 2+ and Na + Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways. Front Physiol 2017; 8:379. [PMID: 28659813 PMCID: PMC5468383 DOI: 10.3389/fphys.2017.00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.
Collapse
Affiliation(s)
- Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile.,Millennium Institute on Immunology and ImmunotherapySantiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Critico, Hospital Clínico Metropolitano de La FloridaSantiago, Chile
| | - Ricardo Armisen
- Centro de Investigación y Tratamiento del Cancer, Facultad de Medicina, Universidad de ChileSantiago, Chile.,Center for Excellence in Precision Medicine Pfizer, Pfizer ChileSantiago, Chile
| | - Cesar Echeverria
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo OHigginsSantiago, Chile
| | - Sebastian Gatica
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile
| | - Alejandro Vallejos
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres BelloSantiago, Chile
| | - Alejandro Pacheco
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Maria E Sanhueza
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Miriam Alvo
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Erico Segovia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo OHigginsSantiago, Chile
| | - Rubén Torres
- Sección de Nefrología, Departamento de Medicina, Hospital Clínico Universidad de ChileSantiago, Chile.,Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile
| |
Collapse
|
17
|
Hwang JS, Kwon MY, Kim KH, Lee Y, Lyoo IK, Kim JE, Oh ES, Han IO. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol Chem 2016; 292:1724-1736. [PMID: 27927986 DOI: 10.1074/jbc.m116.737940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Mi-Youn Kwon
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyung-Hong Kim
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yunkyoung Lee
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jieun E Kim
- the Department of Brain and Cognitive Sciences, Ewha Brain Institute, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eok-Soo Oh
- the Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Inn-Oc Han
- From the Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
18
|
Watanabe M, Kawai Y, Kitayama M, Akao H, Motoyama A, Wakasa M, Saito R, Aoki H, Fujibayashi K, Tsuchiya T, Nakanishi H, Saito K, Takeuchi M, Kajinami K. Diurnal glycemic fluctuation is associated with severity of coronary artery disease in prediabetic patients: Possible role of nitrotyrosine and glyceraldehyde-derived advanced glycation end products. J Cardiol 2016; 69:625-631. [PMID: 27470137 DOI: 10.1016/j.jjcc.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glucose fluctuation (GF) is a risk factor for coronary artery disease (CAD). However, it remains unknown whether specific indices of GF are risk factors for CAD. Therefore, we evaluated the relationship between GF, as determined by a continuous glucose monitoring system (CGMS) or the glucose level at 2h after a 75-g oral glucose tolerance test (75g OGTT 120), and the severity of CAD in prediabetic patients. We also evaluated whether nitrotyrosine (NT) and glyceraldehyde-derived advanced glycation end-products (Glycer-AGE) were induced by GF. METHODS Twenty-eight prediabetic patients underwent coronary angiography (CAG), and the Gensini score and the SYNTAX score were evaluated as the severity of CAD, while the mean amplitude of glycemic excursions (MAGE) by CGMS and 75g OGTT 120 were evaluated. Serum NT and Glycer-AGE were measured. RESULTS The MAGE was closely associated with the Gensini score (r=0.742, p<0.001) and the SYNTAX score (r=0.776, p<0.001), respectively. The 75g OGTT 120 was not associated with the Gensini score (r=0.36, p=0.06), but it was significantly associated with the SYNTAX score (r=0.413, p=0.036). Multiple linear regression analysis showed that the MAGE was the only independent determinant for the severity of CAD. The levels of NT and Glycer-AGE were significantly higher in the high MAGE group than in the low MAGE group. CONCLUSIONS Diurnal GF is associated with the severity of CAD, even in prediabetic patients. GF, NT, and Glycer-AGE may play a pathological role in the progression of CAD.
Collapse
Affiliation(s)
- Makoto Watanabe
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan.
| | | | - Hironubu Akao
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Atsushi Motoyama
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Minoru Wakasa
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Ryuhei Saito
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | - Hirofumi Aoki
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| | | | | | - Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
19
|
Chiu HC, Fu MMJ, Yang TS, Fu E, Chiang CY, Tu HP, Chin YT, Lin FG, Shih KC. Effect of high glucose,Porphyromonas gingivalislipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts. J Periodontal Res 2016; 52:268-276. [DOI: 10.1111/jre.12391] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/10/2023]
Affiliation(s)
- H-C. Chiu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - M. M-J. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - T-S. Yang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - E. Fu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - C-Y. Chiang
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Institute of Dental Sciences; National Defense Medical Center; Taipei Taiwan
| | - H-P. Tu
- Department of Periodontology; School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Y-T. Chin
- Institutes for Cancer Biology and Drug Discovery; Taipei Medical University; Taipei Taiwan
| | - F-G. Lin
- School of Public Health; National Defense Medical Center; Taipei Taiwan
| | - K-C. Shih
- Division of Endocrinology & Metabolism; Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Division of Endocrinology & Metabolism; Taipei-Veteran General Hospital; Taipei Taiwan
| |
Collapse
|
20
|
Ka SM, Kuoping Chao L, Lin JC, Chen ST, Li WT, Lin CN, Cheng JC, Jheng HL, Chen A, Hua KF. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways. Free Radic Biol Med 2016; 91:10-24. [PMID: 26675345 DOI: 10.1016/j.freeradbiomed.2015.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
Uncontrolled inflammation is a leading cause of various chronic diseases. Cinnamaldehyde (CA) is a major bioactive compound isolated from the essential oil of the leaves of Cinnamomum osmophloeum kaneh that exhibits anti-inflammatory activity; however, the use of CA is limited by its cytotoxicity. Here, we synthesized three CA derivatives and identified 4-hydroxycinnamaldehyde-galactosamine (HCAG) as a low toxicity anti-inflammatory compound in vitro (HCAG IC50 ≫ 1600 µM; CA IC50=40 µM) and in vivo. HCAG reduced pro-inflammatory mediator expression in LPS-activated macrophages by inhibiting MAPK and PKC-α/δ phosphorylation, decreasing ROS generation and reducing NF-κB activation. HCAG also reduced NLRP3 inflammasome-derived IL-1β secretion by inhibiting the ATP-mediated phosphorylation of AKT and PKC-α/δ. In a mouse model of LPS-induced renal inflammation, we observed reduced albuminuria and a mild degree of glomerular proliferation, glomerular sclerosis and periglomerular inflammation in the HCAG-treated mice compared with the vehicle-treated mice. The underlying mechanisms for these renoprotective effects involved: (1) inhibited NLRP3 inflammasome activation; (2) decreased superoxide anion levels and apoptosis; and (3) suppressed activation of NF-κB and related downstream inflammatory mediators.
Collapse
Affiliation(s)
- Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | | - Jung-Chen Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Tai Li
- National Research institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Nan Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Jen-Che Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Huei-Ling Jheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
| |
Collapse
|
21
|
Wang L, Wang J, Fang J, Zhou H, Liu X, Su SB. High glucose induces and activates Toll-like receptor 4 in endothelial cells of diabetic retinopathy. Diabetol Metab Syndr 2015; 7:89. [PMID: 26468333 PMCID: PMC4604707 DOI: 10.1186/s13098-015-0086-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia-induced inflammation causes the dysfunction of blood vessels, and Toll-like receptor 4 (TLR4) plays a key role in inflammation-induced angiogenesis. However, the impact of TLR4 on the pathogenesis of diabetic retinopathy (DR) is poorly understood. In this study, we examined the expression of TLR4 in retinal vascular endothelial cells of patients with DR and diabetic mice, and explored the role of TLR4 in mediating inflammatory responses by human microvascular endothelial cells (HMEC-1) under high-glucose condition. METHODS The expression of TLR4 in retinal vascular endothelial cells of patients with proliferative diabetic retinopathy and diabetic mice induced by streptozotocin was examined using immunofluorescence. HMEC-1 cells were cultured and the expression of TLR4, MyD88 and Interleukin-1β (IL-1β) was examined under high-glucose condition. Endothelial cells with TLR4 silencing and antagonist of TLR4 as well as endothelial cells from TLR4 deficient mice were used to study the effect of activated TLR4 on inflammation induced by high-glucose treatment. RESULTS We observed that TLR4 was detected in CD31-labled human retinal vascular endothelia and its expression was markedly increased in fibrovascular membranes from DR patients and in retinal vascular endothelial cells of diabetic mice. The expression of TLR4, MyD88 and IL-1β was enhanced by high glucose in cultured HMEC-1 and the expression of TLR4 and IL-1β was inhibited by TLR4 siRNA knock-down and TLR4 antagonist. The expression of IL-1β by endothelial cells from TLR4 deficient mice under high glucose condition was decreased. CONCLUSIONS Our results revealed that hyperglycemia induced overexpression and activation of TLR4 in endothelial cells. This effect may lead to inflammatory responses contribute to the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Lu Wang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
- />Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, 510120 China
| | - Jing Wang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Jiazhu Fang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Hongyan Zhou
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Xialin Liu
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Shao Bo Su
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| |
Collapse
|
22
|
Wu C, Li J, Bo L, Gao Q, Zhu Z, Li D, Li S, Sun M, Mao C, Xu Z. High-sucrose diets in pregnancy alter angiotensin II-mediated pressor response and microvessel tone via the PKC/Cav1.2 pathway in rat offspring. Hypertens Res 2014; 37:818-23. [DOI: 10.1038/hr.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 11/09/2022]
|
23
|
Baudoin L, Issad T. O-GlcNAcylation and Inflammation: A Vast Territory to Explore. Front Endocrinol (Lausanne) 2014; 5:235. [PMID: 25620956 PMCID: PMC4288382 DOI: 10.3389/fendo.2014.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/18/2014] [Indexed: 01/04/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification that regulates the activities of cytosolic and nuclear proteins according to glucose availability. This modification appears to participate in several hyperglycemia-associated complications. An important feature of metabolic diseases such as diabetes and obesity is the presence of a low-grade chronic inflammation that causes numerous complications. Hyperglycemia associated with the metabolic syndrome is known to promote inflammatory processes through different mechanisms including oxidative stress and abnormally elevated protein O-GlcNAcylation. However, the role of O-GlcNAcylation on inflammation remains contradictory. O-GlcNAcylation associated with hyperglycemia has been shown to increase nuclear factor κB (NFκB) transcriptional activity through different mechanisms. This could contribute in inflammation-associated diabetic complications. However, in other conditions such as acute vascular injury, O-linked N-acetyl glucosamine (O-GlcNAc) also exerts anti-inflammatory effects via inhibition of the NFκB pathway, suggesting a complex regulation of inflammation by O-GlcNAc. Moreover, whereas macrophages and monocytes exposed to high glucose for a long-term period developed a pro-inflammatory phenotype, the impact of O-GlcNAcylation in these cells remains unclear. A future challenge will be to clearly establish the role of O-GlcNAcylation in pro- and anti-inflammatory functions in macrophages.
Collapse
Affiliation(s)
- Léa Baudoin
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
| | - Tarik Issad
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
- *Correspondence: Tarik Issad, Department of Endocrinology, Metabolism and Diabetes, Institute Cochin, 22 rue Méchain, Paris 75014, France e-mail:
| |
Collapse
|
24
|
Schmohl JU, Daub K, von Ungern-Sternberg SNI, Lindemann S, Schönberger T, Geisler T, Gawaz M, Seizer P. Differential MMP-9 activity in CD34⁺progenitor cell-derived foam cells from diabetic and normoglycemic patients. Herz 2013; 40 Suppl 3:269-76. [PMID: 24305990 DOI: 10.1007/s00059-013-4012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Upon coincubation with platelet aggregates, CD34(+) progenitor cells have the potential to differentiate into foam cells. There is evidence that progenitor cells from diabetic and nondiabetic patients have different properties, which may affect the patients' prognosis. In this study we investigated an in vitro model of foam cell formation based on patient-derived CD34(+) progenitor cells. We analyzed the growth characteristics as well as the M-CSF-release and matrix metalloproteinase (MMP) synthesis from CD34(+) progenitor cell-derived foam cells originating from diabetic and nondiabetic patients. METHODS AND RESULTS Bone marrow samples were obtained from 38 patients who were elected for thoracic surgery. CD34(+) progenitor cells from diabetic and nondiabetic patients were isolated and incubated with platelets from healthy volunteers. Foam cell formation was confirmed by immunostaining (CD68) and quantified by light microscopy. Whereas the absolute number of foam cells was not affected, the negative slope in the growth curve was seen significantly later in the diabetic group. In supernatants derived from"diabetic" CD34(+) progenitor cells, MMP-9 was significantly enhanced, whereas MMP-2 activity or M-CSF-release was not affected significantly. CONCLUSION In a coculture model of CD34(+) progenitor cells with platelets, we show for the first time that"diabetic" CD34(+) progenitor cells exhibit functional differences in their differentiation to foam cells concerning growth characteristics and release of MMP-9.
Collapse
Affiliation(s)
- J U Schmohl
- Medizinische Klinik II, Hämatologie, Onkologie, Immunologie, Rheumatologie und Pulmologie, Eberhard Karls University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hua KF, Yang SM, Kao TY, Chang JM, Chen HL, Tsai YJ, Chen A, Yang SS, Chao LK, Ka SM. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PLoS One 2013; 8:e77794. [PMID: 24204969 PMCID: PMC3810132 DOI: 10.1371/journal.pone.0077794] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Shun-Min Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tzu-Yang Kao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Jia-Ming Chang
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Hui-Ling Chen
- IND Core Team, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yung-Jen Tsai
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, Republic of China
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
26
|
Ho CL, Lin CY, Ka SM, Chen A, Tasi YL, Liu ML, Chiu YC, Hua KF. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. PLoS One 2013; 8:e75738. [PMID: 24124509 PMCID: PMC3790849 DOI: 10.1371/journal.pone.0075738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome.
Collapse
Affiliation(s)
- Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Chai-Yi Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tasi
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi, Taiwan
| | - Yi-Chich Chiu
- Department of Biomechatronic Engineering, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Hua KF, Liao PC, Fang Z, Yang FL, Yang YL, Chen YL, Chiu YC, Liu ML, Lam Y, Wu SH. Generation of reactive oxygen species by polyenylpyrroles derivatives causes DNA damage leading to G2/M arrest and apoptosis in human oral squamous cell carcinoma cells. PLoS One 2013; 8:e67603. [PMID: 23840748 PMCID: PMC3695893 DOI: 10.1371/journal.pone.0067603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study we have investigated the efficacy and associated mechanisms of polyenylpyrroles and their analogs in both in vitro cell culture and in vivo nude mice xenografts. Auxarconjugatin B (compound 1a) resulted in cell cycle arrest in the G2/M phase and caspase-dependent apoptosis in OEC-M1 and HSC-3 cells by activating DNA damage and mitochondria dysfunction through the loss of mitochondrial membrane potential, release of cytochrome c, increase in B-cell lymphoma-2-associated X protein level, and decrease in B-cell lymphoma-2 level. Compound 1a-induced generation of intracellular reactive oxygen species through cytochrome P450 1A1 was identified as a major mechanism of its effect for DNA damage, mitochondria dysfunction and apoptosis, which was reversed by antioxidant N-acetylcysteine as well as cytochrome P450 1A1 inhibitor and specific siRNA. Furthermore, compound 1a-treated nude mice showed a reduction in the OEC-M1 xenograft tumor growth and an increase in the caspase-3 activation in xenograft tissue. These results provide promising insights as to how compound 1a mediates cytotoxicity and may prove to be a molecular rationale for its translation into a potential therapeutic against OSCC.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- * E-mail: (KFH); (YL); (SHW)
| | - Pei-Chun Liao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Zhanxiong Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Lin Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Yi-Chich Chiu
- Department of Biomechatronic Engineering, National Ilan University, Ilan, Taiwan
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi, Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- * E-mail: (KFH); (YL); (SHW)
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (KFH); (YL); (SHW)
| |
Collapse
|