1
|
Xu Z, Wang H. Targeting the chemokines in acute graft-versus-host disease. Front Immunol 2025; 15:1525244. [PMID: 39840040 PMCID: PMC11747407 DOI: 10.3389/fimmu.2024.1525244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) constitutes a critical therapeutic approach for patients with malignant hematological disorders. Nevertheless, acute graft-versus-host disease (GVHD), one of the most prevalent complications associated with HSCT, remains a leading contributor to non-relapse mortality. In recent years, there has been an increasing focus on the interplay between chemokines and their receptors in the context of acute GVHD. Chemokines exert substantial effects across various pathological conditions, including autoimmune diseases, inflammatory processes, tumorigenesis, and metastatic dissemination. In this review, we aim to elucidate the role of chemokines in the pathogenesis of acute GVHD and further understand their potential as diagnostic biomarkers. We also present both preclinical and clinical insights into the application of chemokines in preventing and treating acute GVHD. The objective of this review is to offer novel perspectives on the clinical diagnosis and management strategies for acute GVHD.
Collapse
Affiliation(s)
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Tang B, Qin C, Liu H, Miao S, Xue C, Wang Z, Zhang Y, Dong Y, Liu W, Ren H. Blockade of CCR5 and CXCR3 attenuates murine acute graft-versus-host disease through modulating donor-derived T-cell distribution and function. Int Immunol 2024; 36:541-552. [PMID: 38778574 PMCID: PMC11385202 DOI: 10.1093/intimm/dxae033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lymphocyte trafficking via chemokine receptors such as C-C chemokine receptor 5 (CCR5) and CXCR3 plays a critical role in the pathogenesis of acute graft-versus-host disease (aGVHD). Our previous studies showed that the addition of CCR5 or CXCR3 antagonists could only slightly alleviate the development of aGVHD. Given the specificity of T lymphocytes bearing CXCR3 and CCR5, we investigated whether combined CCR5 and CXCR3 blockade could further attenuate murine aGVHD. A mouse model of aGVHD was established to assess the efficacy of CCR5 and/or CXCR3 blockade on the development of aGVHD. The distribution of lymphocytes was calculated by quantification of immunostaining cells. The immunomodulatory effect on T cells was assessed by evaluating T-cell proliferation, viability, and differentiation. Using the murine allogeneic hematopoietic stem cell transplantation model, we demonstrated that blockade of both CCR5 and CXCR3 could efficiently alleviate the development of aGVHD. Further investigation on the immune mechanisms for this prophylactic effect showed that more T cells were detained into secondary lymphoid organs (SLOs), which may lead to reduced infiltration of T cells into GVHD target organs. Our study also showed that T cells detained in SLOs dampened the activation, suppressed the polarization toward T helper type 1 (Th1) and T cytotoxic type 1 (Tc1) cells, and induced the production of Treg cells. These data suggest that concurrent blockade of CCR5 and CXCR3 attenuates murine aGVHD through modulating donor-derived T-cell distribution and function, and this might be applicable for aGVHD prophylaxis in clinical settings.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Chenchen Qin
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shengchao Miao
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Chao Xue
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zhenhua Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Yuan J, Ren H. C-C chemokine receptor 5 and acute graft-versus-host disease. Immun Inflamm Dis 2022; 10:e687. [PMID: 36039647 PMCID: PMC9382859 DOI: 10.1002/iid3.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The C-C chemokine receptor 5 (CCR5) is mainly expressed in a variety of immune cells. It interacts with multiple chemokine ligands that mediate the trafficking and recruitment of effector cells toward sites of inflammation. CCR5 not only plays a critical role in cell growth, activation, differentiation, adhesion, and migration but also participates in the development of acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation. METHODS This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on CCR5 and acute GVHD. Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS CCR5 is a marker of GVHD effector cells, and CCR5 expression is elevated when acute GVHD occurs. CCR5 blockade with maraviroc in clinical trials results in a low incidence of acute GVHD. The immune mechanism includes that CCR5 blockade inhibits donor T cell migration and recruitment toward target organs, reduces the absolute numbers of donor T cells, is capable of slightly suppressing dendritic cell maturation, and reduces the percentage of Th1 and Th17 subsets. CCR5 blockade also inhibits internalization and activation of chemokines, inhibits proliferation and chemotaxis of T cells, and decreases the production of TNF-α and IFN-γ. In addition, there may be a form of crosstalk between CCR5 and CCR2. Inconsistently, infusion of CCR5-/- Tregs into lethally irradiated mice significantly increased the infiltration of CD4+ and CD8+ T cells into the liver, resulting in earlier and more severe GVHD. CONCLUSION This review indicates that CCR5 plays an important role in pathogenesis and development of acute GVHD. Elucidating its role in different immune cells will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Jing Yuan
- Department of HematologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Han‐yun Ren
- Department of HematologyPeking University First HospitalBeijingChina
| |
Collapse
|
4
|
Wang Y. Mesenchymal stem cells (MSC) delays the occurrence of graft-versus-host disease(GVHD) in the inhibition of hematopoietic stem cells in major histocompatibility complex semi-consistent mice by regulating the expression of IFN-γ/IL-6. Bioengineered 2021; 12:4500-4507. [PMID: 34308757 PMCID: PMC8806439 DOI: 10.1080/21655979.2021.1955549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, because of its low immunogenicity and immunosuppression, mesenchymal stem cells (MSCs) have become a potential cell therapy for Graft-versus-host disease (GVHD). However, many experiments now focus on the interference of MSCs on T-cell proliferation in vitro and the prevention of GVHD in vivo. However, whether MSCs can effectively treat GVHD, the timing and conditions of treatment are not systematically studied. In order to clarify the therapeutic effect of MSC on GVHD, In this paper, mice were selected to build a model for study, and group control method was used. Experimental research proved that four mice died after transplantation with allogeneic hematopoietic stem cells treated by IFN- γ, and their white blood cell number remained basically unchanged, and their weight changed slightly. In addition, three groups of mice after allogeneic hematopoietic stem cell transplantation were used the incidence of GVHD was X2 = 20.6, indicating that the incidence of GVHD was significantly reduced and the survival rate of mice was significantly increased.
Collapse
Affiliation(s)
- Ying Wang
- Department of Hematology, the Seventh Affiliated Hopital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
The Potential Genes Mediate the Pathogenicity of Allogeneic CD4 +T Cell in aGVHD Mouse Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9958745. [PMID: 34036106 PMCID: PMC8121574 DOI: 10.1155/2021/9958745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Acute graft-versus-host disease (aGVHD) remains a significant and severe complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Due to the occurrence of aGVHD, allo-HSCT significantly increases the mortality rate compared with autologous hematopoietic stem cell transplantation (auto-HSCT). In this study, auto-HSCT and allo-HSCT aGVHD mouse models were built to detect the difference in CD4+ lymphocyte in different tissues based on ribonucleic acid sequencing (RNA-Seq) analysis. Clustering analysis, functional annotation, and pathway enrichment analysis were performed on differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was used to find hub genes. CD4+T cells were activated by MLR and cytokine stimulation. Cells were sorted out by a flow cell sorter. The selected genes were verified by qRT-PCR, histology, and immunofluorescence staining. The GSE126518 GEO dataset was used to verify the hub genes. Enrichment analysis revealed four immune-related pathways that play an important role in aGVHD, including immunoregulatory interactions between a lymphoid and a nonlymphoid cell, chemokine receptors binding chemokines, cytokine and cytokine receptor interaction, and the chemokine signaling pathway. At the same time, with the PPI network, 11 novel hub genes that were most likely to participate in immunoregulation in aGVHD were identified, which were further validated by qRT-PCR and the GSE126518 dataset. Besides, the protein expression level of Cxcl7 was consistent with the sequencing results. In summary, this study revealed that immunoregulation-related DEGs and pathways played a vital role in the onset of aGVHD. These findings may provide some new clues for probing the pathogenesis and treatment of aGVHD.
Collapse
|
6
|
Chemokine Receptor 5 Antagonism Causes Reduction in Joint Inflammation in a Collagen-Induced Arthritis Mouse Model. Molecules 2021; 26:molecules26071839. [PMID: 33805933 PMCID: PMC8036613 DOI: 10.3390/molecules26071839] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease mainly affecting the synovial joints. A highly potent antagonist of C-C chemokine receptor 5 (CCR5), maraviroc (MVC), plays an essential role in treating several infectious diseases but has not yet been evaluated for its potential effects on RA development. This study focused on evaluating the therapeutic potential of MVC on collagen-induced arthritis (CIA) in DBA/1J mice. Following CIA induction, animals were treated intraperitoneally with MVC (50 mg/kg) daily from day 21 until day 35 and evaluated for clinical score and histopathological changes in arthritic inflammation. We further investigated the effect of MVC on Th9 (IL-9, IRF-4, and GATA3) and Th17 (IL-21R, IL-17A, and RORγT) cells, TNF-α, and RANTES in CD8+ T cells in the spleen using flow cytometry. We also assessed the effect of MVC on mRNA and protein levels of IL-9, IL-17A, RORγT, and GATA3 in knee tissues using RT-PCR and western blot analysis. MVC treatment in CIA mice attenuated the clinical and histological severity of inflammatory arthritis, and it substantially decreased IL-9, IRF4, IL-21R, IL-17A, RORγT, TNF-α, and RANTES production but increased GATA3 production in CD8+ T cells. We further observed that MVC treatment decreased IL-9, IL-17A, and RORγt mRNA and protein levels and increased those of GATA3. This study elucidates the capacity of MVC to ameliorate the clinical and histological signs of CIA by reducing pro-inflammatory responses, suggesting that MVC may have novel therapeutic uses in the treatment of RA.
Collapse
|
7
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
8
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
9
|
Abstract
The main treatment for pterygium is surgical removal. However, pterygium surgery is concerned with high rates of postoperative recurrence. Predicting factors of recurrence are not fully understood, yet, but they probably depend on a multitude of patient-related, clinical, and/or surgical factors. Several adjuvant treatments have been proposed to reduce postoperative pterygium recurrence, including different antimetabolites, antiangiogenetic factors, and radiation therapy. The purpose of this review is to collect the current evidence regarding application and limits of different therapeutic approaches for preventing postoperative recurrence of pterygium, giving insights and perspectives for better management of this disease. In the light of the current evidence, pterygium surgery cannot disregard wound coverage with conjunctival autografting or rotational flap combined with adjuvant treatments. The rotational flap technique is associated with shorter surgical time rates and prevents graft displacement and necrosis, given its vascular pedicle. Amniotic membrane may still be reserved in case of great conjunctival defects or insufficient conjunctiva. Repeated subconjunctival antivascular endothelial growth factor injections can be considered as an effective and safe adjuvant treatment. Moreover, management of postoperative pain is crucial. Innovative treatment strategies will probably target different molecular pathways, considering recent findings regarding pterygium pathogenesis, to improve better understanding and develop universally shared guidelines. Great importance shall be dedicated to the identification of novel molecular biomarkers and favoring factors of recurrence, in order to achieve a customized surgical treatment for each patient and obtain maximal reduction of postoperative recurrence.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- S.C.U. Ophthalmology Unit, "City of Health and Science" University Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy,
| | - Federico Tridico
- S.C.U. Ophthalmology Unit, "City of Health and Science" University Hospital, Department of Surgical Sciences, University of Turin, Turin, Italy,
| |
Collapse
|
10
|
Adjuvant Use of Cyclosporine A in the Treatment of Primary Pterygium: A Systematic Review and Meta-Analysis. Cornea 2018; 37:1000-1007. [PMID: 29601365 DOI: 10.1097/ico.0000000000001542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the efficacy and tolerability of cyclosporine A (CsA) as an adjuvant treatment for primary pterygium. METHODS A comprehensive literature search from 7 databases (EMBASE, ISI Web of Science, PubMed, and the Cochrane Library for studies published in English and VIP, Wan Fang, and CNKI for studies published in Chinese). For the recurrence rate, pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effects model. Tolerability estimates were measured by OR for adverse events. RESULTS A total of 7 studies meeting the inclusion criteria were included in this meta-analysis. Compared with the group with adjunctive CsA usage, the control group (no adjuvant use of CsA) showed a significantly increased risk of pterygium recurrence (OR = 2.71; 95% CI, 1.62-4.54). No obvious heterogeneity was detected in the included studies. Subgroup analysis showed that adjuvant use of CsA with pterygium excision alone resulted in a significantly lower frequency of recurrence than was seen in the group without adjuvant use of CsA (OR = 3.16; 95% CI, 1.18-8.84). However, there is no significant difference in pterygium recurrence between the subgroup (CsA + pterygium excision + limbal conjunctival autograft or flap rotation) and the subgroup without adjunctive CsA usage (pterygium excision + limbal conjunctival autograft or flap rotation). CONCLUSIONS This meta-analysis suggests that adjuvant use of CsA can significantly reduce the risk of pterygium recurrence compared with pterygium excision alone, whereas adjuvant use of CsA may not reduce the risk of pterygium recurrence in terms of pterygium excision + limbal conjunctival autograft or conjunctival flap rotation.
Collapse
|
11
|
CXCR3 blockade combined with cyclosporine A alleviates acute graft-versus-host disease by inhibiting alloreactive donor T cell responses in a murine model. Mol Immunol 2017; 94:82-90. [PMID: 29288898 DOI: 10.1016/j.molimm.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023]
Abstract
Chemotaxis of T cells to acute graft-versus-host disease (aGvHD) target tissues directed by chemokines and their receptors plays a key role in the pathogenesis of aGvHD. Blockade of lymphocyte migration by targeting chemokine receptors may be a viable strategy for the prevention and treatment of aGvHD, which is quite distinguishable from typical efforts to use immunosuppressive medications that have been associated with some side effects. CXCR3 and its ligands have been reported to be correlated with aGvHD pathogenesis. Using the small-molecule CXCR3 antagonist AMG487, we demonstrated that AMG487 combined with cyclosporine A (CsA) effectively alleviated aGvHD with a prolonged mean survival time and significantly inhibited the infiltration of inflammatory cells in aGvHD target tissues in a murine aGvHD model. In addition, AMG487 combined with CsA inhibited the activation, proliferation and differentiation of donor-derived T cells in the spleens. Further results showed that the concentrations of Th1 cells associated with pro-inflammatory cytokines such as IFN-γ and TNFα in serum were decreased. In addition, AMG487 treatment did not alter CXCR3 and CCR5 expression in donor-derived T cells but elevated the serum CXCL9 and CXCL10 levels. This novel and effective approach has the potential to develop a new clinical method to prevent and treat aGvHD.
Collapse
|