1
|
Zhou Q, Zhou X, Li J, Wang R, Xie F. Research progress on the relationship between neutrophil extra-cellular traps and autogenous arteriovenous fistula thrombosis. J Vasc Access 2025:11297298251317298. [PMID: 39935409 DOI: 10.1177/11297298251317298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Autogenous arteriovenous fistula (AVF) is the preferred vascular access for long-term hemodialysis, and thrombosis is one of the most common complications. In recent years, it has been found that neutrophil extra-cellular traps (NETs) play an important role in thrombosis. NETs are a kind of network structure with DNA as a skeleton and intercalated with a variety of granule proteins, proteolytic enzymes, antimicrobial peptides and histone proteins, which are released into the extracellular space by neutrophils after stimulation. In this paper, the NETs in the role of AVF thrombus formation and NETs in the value of prevention and cure of AVF thrombus complications were reviewed.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuhua Zhou
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junlin Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Runxiu Wang
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Nakayama M, Watanabe K, Sato E, Ito Y, Kadota N, Konishi K, Aizawa C, Maruyama Y, Fujimaru T, Nagahama M, Taki F, Suzuki M. Hemodialysis employing molecular hydrogen (H 2) enriched dialysis solution may improve dialysis related fatigue through impact on energy metabolism. Sci Rep 2025; 15:5039. [PMID: 39934143 PMCID: PMC11814270 DOI: 10.1038/s41598-025-88827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Hemodialysis employing molecular hydrogen (H2)-enriched dialysis solution rendered by water electrolysis (E-HD), has been reported to alleviate dialysis-related fatigue, but its association with metabolic profiles remains unclear. Eighty-one patients undergoing standard HD were classified into 3 groups [Group A (n = 25, 30.9%): fatigue with activity reduction-subgroups A1: chronic persistent fatigue (n = 11), A2: fatigue only on dialysis days (n = 14); Group B: fatigue without activity reduction (n = 24, 29.6%); Group C (n = 32, 39.5%): no fatigue], and their changes in fatigue, body composition, and metabolic profiles were studied following 12 months of E-HD. There were no significant differences in baseline characteristics among the groups. Over the 12 months after E-HD initiation, fatigue in Group A significantly decreased, while no changes in Group-B and C. Bio-impedance analysis revealed no significant changes in A1, but significant reductions in body fat and increases in skeletal muscle mass were observed despite no significant weight change in A2. Enrichment analysis suggested significant differences in metabolic pathways such as fatty acid metabolism, citric acid cycle, and glycolysis between Groups A and C at baseline, and these differences were mitigated by E-HD. E-HD could suppress dialysis-related fatigue, through possible involvement of altered energy metabolism of patients. E-HD may represent a new paradigm for uremia treatment beyond traditional solute removal-based dialysis therapies.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan.
- Department of Research Management, St Luke's International University, Tokyo, Japan.
- Head Office for Open Innovation Business Development Strategy, Tohoku University, Sendai, Japan.
| | - Kimio Watanabe
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yugo Ito
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Nozomi Kadota
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Kasumi Konishi
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Chiharu Aizawa
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Yukio Maruyama
- Department of Kidney and Hypertension, The Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Takuya Fujimaru
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Masahiko Nagahama
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Fumika Taki
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Michiko Suzuki
- Kidney Center, St Luke's International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| |
Collapse
|
3
|
Diao X, Zhan C, Ye H, Wu H, Yi C, Lin J, Mao H, Chen W, Yang X. Single-cell transcriptomic reveals the peritoneal microenvironmental change in long-term peritoneal dialysis patients with ultrafiltration failure. iScience 2024; 27:111383. [PMID: 39687014 PMCID: PMC11647153 DOI: 10.1016/j.isci.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
The microenvironmental changes in peritoneal dialysis effluent (PDE) after long-term vintage (LV) of PD in patients with ultrafiltration failure (LV_UF) are unclear. Single-cell sequencing revealed that peritoneal neutrophils were elevated in LV_UF patients, while MRC1-macrophage subcluster decreased compared with PD patients with short vintage (SV) and LV without ultrafiltration failure (LV_NOT_UF). Compared with the LV_NOT_UF group, the upregulated differentially expressed genes (DEGs) of monocytes/macrophages in the LV_UF group were involved in inflammatory response and EMT progress. LV_UF patients had a higher proportion of epithelial-like mesothelial cells (E-MCs), which were characterized by autophagy activation, inflammation, and upregulation of neutrophil- and autophagy-related DEGs compared to the LV_NOT_UF group. Additionally, mesenchymal-like MCs and AQP1 expression were reduced in the LV_UF group compared with the other groups. Both neutrophils and monocytes/macrophages interacted with MCs. Our study provides insights into the roles of peritoneal mesothelial cells and inflammatory cells in PD patients with UF.
Collapse
Affiliation(s)
- Xiangwen Diao
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Cuixia Zhan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Jianxiong Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| |
Collapse
|
4
|
Canaud B, Stenvinkel P, Scheiwe R, Steppan S, Bowry S, Castellano G. The Janus-faced nature of complement in hemodialysis: interplay between complement, inflammation, and bioincompatibility unveiling a self-amplifying loop contributing to organ damage. FRONTIERS IN NEPHROLOGY 2024; 4:1455321. [PMID: 39691704 PMCID: PMC11649546 DOI: 10.3389/fneph.2024.1455321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
In hemodialysis (HD), complement activation, bioincompatibility, and inflammation are intricately intertwined. In the 1970s, as HD became a routine therapy, the observation of complement pathway activation and transient leukopenia by cellulosic dialysis membranes triggered the bioincompatibility debate and its clinical relevance. Extensive deliberations have covered definitions, assessment markers, scope, and long-term clinical consequences of membrane-dependent bioincompatibility reactions. While complement pathways' interplay with coagulation and inflammation has been delineated, HD's focus has primarily been on developing more biocompatible membranes using advanced technologies. Recent advances and understanding of the current HD delivery mode (4-hour sessions, thrice weekly) suggest that factors beyond membrane characteristics play a significant role, and a more complex, multifactorial picture of bioincompatibility is emerging. Chronic activation of the complement system and persistent low-grade "uremic inflammation" in chronic kidney disease (CKD) and HD lead to premature inflammaging of the kidney, resembling aging in the general population. Cellular senescence, modulated by complement activation and the uremic milieu, contributes to chronic inflammaging. Additionally, the formation of neutrophil extracellular traps (NETs, process of NETosis) during HD and their biological activity in the interdialytic period can lead to dialysis-induced systemic stress. Thus, complement-inflammation manifestations in HD therapies extend beyond traditional membrane-related bioincompatibility consequences. Recent scientific knowledge is reshaping strategies to mitigate detrimental consequences of bioincompatibility, both technologically and in HD therapy delivery modes, to improve dialysis patient outcomes.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
| | - Peter Stenvinkel
- Dept of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Sudhir Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | - Giuseppe Castellano
- Center for Hemolytic Uremic Syndrome (HUS) Prevention, Control, and Management at the Nephrology and Dialysis Unit, Fondazione Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Hornig C, Bowry SK, Kircelli F, Kendzia D, Apel C, Canaud B. Hemoincompatibility in Hemodialysis-Related Therapies and Their Health Economic Perspectives. J Clin Med 2024; 13:6165. [PMID: 39458115 PMCID: PMC11509023 DOI: 10.3390/jcm13206165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Hemobiologic reactions associated with the hemoincompatibility of extracorporeal circuit material are an undesirable and inevitable consequence of all blood-contacting medical devices, typically considered only from a clinical perspective. In hemodialysis (HD), the blood of patients undergoes repetitive (at least thrice weekly for 4 h and lifelong) exposure to different polymeric materials that activate plasmatic pathways and blood cells. There is a general agreement that hemoincompatibility reactions, although unavoidable during extracorporeal therapies, are unphysiological contributors to non-hemodynamic dialysis-induced systemic stress and need to be curtailed. Strategies to lessen the periodic and direct effects of blood interacting with artificial surfaces to stimulate numerous biological pathways have focused mainly on the development of 'more passive' materials to decrease intradialytic morbidity. The indirect implications of this phenomenon, such as its impact on the overall delivery of care, have not been considered in detail. In this article, we explore, for the first time, the potential clinical and economic consequences of hemoincompatibility from a value-based healthcare (VBHC) perspective. As the fundamental tenet of VBHC is achieving the best clinical outcomes at the lowest cost, we examine the equation from the individual perspectives of the three key stakeholders of the dialysis care delivery processes: the patient, the provider, and the payer. For the patient, sub-optimal therapy caused by hemoincompatibility results in poor quality of life and various dialysis-associated conditions involving cost-impacting adjustments to lifestyles. For the provider, the decrease in income is attributed to factors such as an increase in workload and use of resources, dissatisfaction of the patient from the services provided, loss of reimbursement and direct revenue, or an increase in doctor-nurse turnover due to the complexity of managing care (nephrology encounters a chronic workforce shortage). The payer and healthcare system incur additional costs, e.g., increased hospitalization rates, including intensive care unit admissions, and increased medications and diagnostics to counteract adverse events and complications. Thus, hemoincompatibility reactions may be relevant from a socioeconomic perspective and may need to be addressed beyond just its clinical relevance to streamline the delivery of HD in terms of payability, future sustainability, and societal repercussions. Strategies to mitigate the economic impact and address the cost-effectiveness of the hemoincompatibility of extracorporeal kidney replacement therapy are proposed to conclude this comprehensive approach.
Collapse
Affiliation(s)
- Carsten Hornig
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Sudhir K. Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Wilhelmstraße 9, 61231 Bad Nauheim, Germany;
| | - Fatih Kircelli
- Fresenius Medical Care Deutschland GmbH, Global Medical Office, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany;
| | - Dana Kendzia
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Christian Apel
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Bernard Canaud
- School of Medicine, Montpellier University, 34090 Montpellier, France
- MTX Consulting, 34090 Montpellier, France
| |
Collapse
|
6
|
Cristol JP, Thierry AR, Bargnoux AS, Morena-Carrere M, Canaud B. What is the role of the neutrophil extracellular traps in the cardiovascular disease burden associated with hemodialysis bioincompatibility? Front Med (Lausanne) 2023; 10:1268748. [PMID: 38034546 PMCID: PMC10684960 DOI: 10.3389/fmed.2023.1268748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways. A few examples may serve to illustrate the case. Cytokine release during dialysis sessions may be underestimated due to their removal using high-flux dialysis or hemodiafiltration modalities. Complement activation is recognized as a key event of bioincompatibility. However, it appears as an early and transient event with anaphylatoxin level normalization at the end of the dialysis session. Complement activation is generally assumed to trigger leukocyte stimulation leading to proinflammatory mediators' secretion and oxidative burst. In addition to being part of the innate immune response involved in eliminating physically and enzymatically microbes, the formation of Neutrophil Extracellular Traps (NETs), known as NETosis, has been recently identified as a major harmful component in a wide range of pathologies associated with inflammatory processes. NETs result from the neutrophil degranulation induced by reactive oxygen species overproduction via NADPH oxidase and consist of modified chromatin decorated with serine proteases, elastase, bactericidal proteins, and myeloperoxidase (MPO) that produces hypochlorite anion. Currently, NETosis remains poorly investigated as a sensitive and integrated marker of bioincompatibility in dialysis. Only scarce data could be found in the literature. Oxidative burst and NADPH oxidase activation are well-known events in the bioincompatibility phenomenon. NET byproducts such as elastase, MPO, and circulating DNA have been reported to be increased in dialysis patients more specifically during dialysis sessions, and were identified as predictors of poor outcomes. As NETs and MPO could be taken up by endothelium, NETs could be considered as a vascular memory of intermittent bioincompatibility phenomenon. In this working hypothesis article, we summarized the puzzle pieces showing the involvement of NET formation during hemodialysis and postulated that NETosis may act as a disease modifier and may contribute to the comorbid burden associated with dialysis bioincompatibility.
Collapse
Affiliation(s)
- Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| | - Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM, IRCM, ICM, University of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
- MTX Consulting Int., Montpellier, France
| |
Collapse
|
7
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
8
|
Tangos M, Budde H, Kolijn D, Sieme M, Zhazykbayeva S, Lódi M, Herwig M, Gömöri K, Hassoun R, Robinson EL, Meister TL, Jaquet K, Kovács Á, Mustroph J, Evert K, Babel N, Fagyas M, Lindner D, Püschel K, Westermann D, Mannherz HG, Paneni F, Pfaender S, Tóth A, Mügge A, Sossalla S, Hamdani N. SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. Int J Cardiol 2022; 362:196-205. [PMID: 35643215 PMCID: PMC9132721 DOI: 10.1016/j.ijcard.2022.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Introduction The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. ‘cytokine storm’) and oxidative stress are likely involved. Methods and results Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. Conclusion This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.
Collapse
Affiliation(s)
- Melina Tangos
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Detmar Kolijn
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Medical Faculty, Bochum, Germany
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Kamilla Gömöri
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Emma Louise Robinson
- School of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Miklós Fagyas
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Germany
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland; University Heart Center, Cardiology, Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, Debrecen, Hungary
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany; Clinic for Cardiology & Pneumology, Georg-August University Goettingen, DZHK (German Centre for Cardiovascular Research), partner site Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany; Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
9
|
de Wit Y, Rethans A, van Mierlo G, Wouters D, ten Brinke A, Bemelman FJ, Zeerleder S. Plasma Exchange Therapy Using Solvent Detergent-Treated Plasma: An Observational Pilot Study on Complement, Neutrophil and Endothelial Cell Activation in a Case Series of Patients Suffering from Atypical Hemolytic Uremic Syndrome. Transfus Med Hemother 2022; 49:288-297. [PMID: 37969865 PMCID: PMC10642533 DOI: 10.1159/000522137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2023] Open
Abstract
Introduction Plasma exchange therapy (PEX) was standard treatment for thrombotic microangiopathy before eculizumab was available and is still widely applied. However, most PEX patients still ultimately progress to end-stage renal disease (ESRD). It has been suggested that infusion of plasma that contains active complement may induce additional complement activation with subsequent activation of neutrophils and endothelial cells, leading to exacerbation of organ damage and deterioration of renal function. Objective This observational pilot study examines the effect of hemodialysis, eculizumab and PEX before and after treatment in plasma of aHUS patients on complement-, neutrophil and endothelial cell activation. Methods Eleven patients were included in this pilot study. Six patients were treated with hemodialysis, 2 patients received regular infusions of eculizumab, and 3 patients were on a regular schedule for PEX. Patients were followed during 3 consecutive treatments. Blood samples were taken before and after patients received their treatment. Results Complement activation products increased in plasma of patients after PEX, as opposed to patients treated with hemodialysis or eculizumab. Increased levels of complement activation products were detected in omniplasma used for PEX. Additionally, activation of neutrophils and endothelial cells was observed in patients after hemodialysis and PEX, but not in patients receiving eculizumab treatment. Conclusion In this pilot study we observed that PEX induced complement and neutrophil activation, and that omniplasma contains significant amounts of complement activation products. Additionally, we demonstrate that hemodialysis induces activation of neutrophils and endothelial cells. Complement activation with subsequent neutrophil activation may contribute to the deterioration of organ function and may result in ESRD. Further randomized controlled studies are warranted to investigate the effect of PEX on complement- and neutrophil activation in patients with thrombotic microangiopathy.
Collapse
Affiliation(s)
- Yasmin de Wit
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Amsterdam, The Netherlands
| | - Arne Rethans
- Department of Nephrology, UMC-AMC, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Amsterdam, The Netherlands
| | - Diana Wouters
- Centre for Infectious Disease Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Amsterdam, The Netherlands
| | | | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Blood Supply, Division Research, Amsterdam, The Netherlands
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Frydlova J, Zednikova I, Satrapova V, Pazourkova E, Santorova S, Hruskova Z, Tesar V, Vokurka M, Prikryl P, Korabecna M. Analysis of microRNAs in Small Urinary Extracellular Vesicles and Their Potential Roles in Pathogenesis of Renal ANCA-Associated Vasculitis. Int J Mol Sci 2022; 23:ijms23084344. [PMID: 35457163 PMCID: PMC9028884 DOI: 10.3390/ijms23084344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) represents an autoimmunity disease characterized by high mortality. For successful treatment, the detailed knowledge of its complex pathogenesis and the set of biomarkers for differential diagnostics are desired. Analysis of molecular content of small urinary extracellular vesicles (uEV) offers the possibility to find markers in the form of microRNAs (miRNAs) and study the pathways involved in pathogenesis. We used next-generation sequencing in the first preliminary study to detect the miRNAs with altered expression in uEVs of patients with AAV in comparison with age-matched controls. We confirmed the results using single-target quantitative polymerase chain reaction tests on different sets of samples and found five miRNAs (miR-30a-5p, miR-31-3p, miR-99a-5p, miR-106b-5p, miR-182-5p) with highly elevated levels in uEVs of patients. We performed the comparison of their targets with the differentially expressed proteins in uEVs of patients included in the first phase. We realized that upregulated miRNAs and proteins in uEVs in AAV patients target different biological pathways. The only overlap was detected in pathways regulating the actin cytoskeleton assembly and thus potentially affecting the glomerular functions. The associations of upregulated miRNAs with pathways that were neglected as components of complex AAV pathogenesis, e.g., the epidermal growth factor receptor signaling pathway, were found.
Collapse
Affiliation(s)
- Jana Frydlova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
| | - Iveta Zednikova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
| | - Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Eva Pazourkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Sarka Santorova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
| | - Petr Prikryl
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
- Correspondence: (P.P.); (M.K.)
| | - Marie Korabecna
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
- Correspondence: (P.P.); (M.K.)
| |
Collapse
|
11
|
Chmielecki A, Bortnik K, Galczynski S, Padula G, Jerczynska H, Stawski R, Nowak D. Exhaustive Exercise Increases Spontaneous but Not fMLP-Induced Production of Reactive Oxygen Species by Circulating Phagocytes in Amateur Sportsmen. BIOLOGY 2022; 11:103. [PMID: 35053101 PMCID: PMC8773189 DOI: 10.3390/biology11010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Strenuous exercise alters the oxidative response of blood phagocytes to various agonists. However, little is known about spontaneous post exercise oxidant production by these cells. In this cross-over trial, we tested whether an exhaustive treadmill run at a speed corresponding to 70% of VO2max affects spontaneous and fMLP-provoked oxidant production by phagocytes in 18 amateur sportsmen. Blood was collected before, just after, and 1, 3, 5 and 24 h post exercise for determination of absolute and normalized per phagocyte count spontaneous (a-rLBCL, rLBCL) and fMLP-induced luminol-enhanced whole blood chemiluminescence (a-fMLP-LBCL, fMLP-LBCL). a-rLBCL and rLBCL increased by 2.5- and 1.5-times just after exercise (p < 0.05) and then returned to baseline or decreased by about 2-times at the remaining time-points, respectively. a-fMLP-LBCL increased 1.7- and 1.6-times just after and at 3 h post-exercise (p < 0.05), respectively, while fMLP-LBCL was suppressed by 1.5- to 2.3-times at 1, 3, 5 and 24 h post-exercise. No correlations were found between elevated post-exercise a-rLBCL, a-fMLP-LBCL and run distance to exhaustion. No changes of oxidants production were observed in the control arm (1 h resting instead of exercise). Exhaustive exercise decreased the blood phagocyte-specific oxidative response to fMLP while increasing transiently spontaneous oxidant generation, which could be a factor inducing secondary rise in antioxidant enzymes activity.
Collapse
Affiliation(s)
- Adam Chmielecki
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Krzysztof Bortnik
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
12
|
Vega-Roman C, Leal-Cortes C, Portilla-de Buen E, Gomez-Navarro B, Melo Z, Franco-Acevedo A, Medina-Perez M, Jalomo-Martinez B, Martinez-Martinez P, Evangelista-Carrillo LA, Cerrillos-Gutierrez JI, Andrade-Sierra J, Nieves JJ, Gone-Vazquez I, Escobedo-Ruiz A, Jave-Suarez LF, Luquin S, Echavarria R. Impact of transplantation on neutrophil extracellular trap formation in patients with end-stage renal disease: A single-center, prospective cohort study. Medicine (Baltimore) 2021; 100:e26595. [PMID: 34232209 PMCID: PMC8270590 DOI: 10.1097/md.0000000000026595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Increased neutrophil extracellular trap (NET) formation associates with high cardiovascular risk and mortality in patients with end-stage renal disease (ESRD). However, the effect of transplantation on NETs and its associated markers remains unclear. This study aimed to characterize circulating citrullinated Histone H3 (H3cit) and Peptidyl Arginase Deiminase 4 (PAD4) in ESRD patients undergoing transplantation and evaluate the ability of their neutrophils to release NETs.This prospective cohort study included 80 healthy donors and 105 ESRD patients, out of which 95 received a transplant. H3cit and PAD4 circulating concentration was determined by enzyme-linked immunosorbent assay in healthy donors and ESRD patients at the time of enrollment. An additional measurement was carried out within the first 6 months after transplant surgery. In vitro NET formation assays were performed in neutrophils isolated from healthy donors, ESRD patients, and transplant recipients.H3cit and PAD4 levels were significantly higher in ESRD patients (H3cit, 14.38 ng/mL [5.78-27.13]; PAD4, 3.22 ng/mL [1.21-6.82]) than healthy donors (H3cit, 6.45 ng/mL [3.30-11.65], P < .0001; PAD4, 2.0 ng/mL [0.90-3.18], P = .0076). H3cit, but not PAD4, increased after transplantation, with 44.2% of post-transplant patients exhibiting high levels (≥ 27.1 ng/mL). In contrast, NET release triggered by phorbol 12-myristate 13-acetate was higher in neutrophils from ESRD patients (70.0% [52.7-94.6]) than healthy donors (32.2% [24.9-54.9], P < .001) and transplant recipients (19.5% [3.5-65.7], P < .05).The restoration of renal function due to transplantation could not reduce circulating levels of H3cit and PAD4 in ESRD patients. Furthermore, circulating H3cit levels were significantly increased after transplantation. Neutrophils from transplant recipients exhibit a reduced ability to form NETs.
Collapse
Affiliation(s)
- Citlalin Vega-Roman
- Physiology Department, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Caridad Leal-Cortes
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Eliseo Portilla-de Buen
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Benjamín Gomez-Navarro
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | - Miguel Medina-Perez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Basilio Jalomo-Martinez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Petra Martinez-Martinez
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | | | | - Jorge Andrade-Sierra
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Juan J. Nieves
- Transplantation Unit, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Isis Gone-Vazquez
- Clinical Laboratory, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Araceli Escobedo-Ruiz
- Clinical Laboratory, UMAE-Hospital de Especialidades CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suarez
- Immunology Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Sonia Luquin
- Neuroscience Department, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
13
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Antibody-mediated soluble CD14 stabilization prevents agitation-induced increases in presepsin levels in blood component specimens. Biotechniques 2021; 70:160-166. [PMID: 33512240 DOI: 10.2144/btn-2020-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Presepsin is a 13-kDa N-terminal glycoprotein of CD14. Previously, agitation-induced increases in presepsin levels have been reported; however, the mechanism remains poorly understood. In this study, we aimed to reveal the mechanism of presepsin increase. The agitated plasma or serum was separated using gel exclusion chromatography and analyzed by ELISA. The effect of an anti-CD14 antibody (F1024-1-3) was examined. We observed elevated presepsin levels in the agitated plasma and aggregated soluble CD14 (sCD14). However, treatment with F1024-1-3 before agitation prevented the aggregation and the increase in presepsin levels. Depletion of aggregated sCD14 decreased the presepsin levels. Our findings indicate that agitation induces the aggregation of sCD14 and triggers an increase in presepsin. Anti-CD14 antibody prevents an increases in presepsin.
Collapse
|
15
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
16
|
Goligorsky MS. NET Formation in Dialysis: A Valuable, albeit Mysterious and Enticing Predictor of Mortality. Am J Nephrol 2020; 51:849-851. [PMID: 33105137 DOI: 10.1159/000510772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022]
|
17
|
Einbinder Y, Shnaider A, Ghanayem K, Basok A, Rogachev B, Lior Y, Haviv YS, Cohen-Hagai K, Nacasch N, Rozenberg I, Benchetrit S, Zitman-Gal T, Douvdevani A. Elevated Circulating Cell-Free DNA in Hemodialysis-Treated Patients Is Associated with Increased Mortality. Am J Nephrol 2020; 51:852-860. [PMID: 33105130 DOI: 10.1159/000510771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Predicting the mortality risk of patients un-dergoing hemodialysis (HD) is challenging. Cell-free DNA (cfDNA) is released into circulation from dying cells, and its elevation is predictive of unfavorable outcome. In a pilot study, we found post-HD cfDNA level to be a predictor of all-cause mortality. Thus, the aim of this study was to confirm the prognostic power of cfDNA in a larger prospective cohort study conducted at 2 medical centers. METHODS CfDNA levels were measured by a rapid fluorometric assay on sera obtained before and after 1 HD session. One hundred fifty-three patients were followed up to 46 months for mortality during which time 47 patients died. We compared the predictive value of cfDNA to age, comorbidities, and standard blood tests. RESULTS Examining standard blood tests, only post-HD cfDNA levels were elevated in the non-survivor group compared to survivors (959 vs. 803 ng/mL, p = 0.04). Pre- and post-HD cfDNA levels correlated with age and diabetes. Patients with elevated cfDNA (>850 ng/mL) showed lower survival than those with normal levels. A Cox proportional hazard regression model demonstrated a significant hazard ratio of 1.92 for post-HD cfDNA levels. Logistic regression models showed that post-HD cfDNA was a significant predictor of mortality at 1-3 years with odd ratios of 4.61, 4.36, and 6.22, respectively. CONCLUSIONS Post-HD cfDNA level was superior to standard blood tests and could serve as a biomarker to assist in decision-making for HD-treated patients.
Collapse
Affiliation(s)
- Yael Einbinder
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alla Shnaider
- Department of Nephrology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Khaled Ghanayem
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Basok
- Department of Nephrology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Boris Rogachev
- Department of Nephrology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Clinical Research Center, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yosef Shmuel Haviv
- Department of Nephrology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Keren Cohen-Hagai
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Nacasch
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Ilan Rozenberg
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Sydney Benchetrit
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Zitman-Gal
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos Douvdevani
- Department of Nephrology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel,
- Department of Clinical Biochemistry and Pharmacology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer-Sheva, Israel,
| |
Collapse
|
18
|
Korabecna M, Zinkova A, Brynychova I, Chylikova B, Prikryl P, Sedova L, Neuzil P, Seda O. Cell-free DNA in plasma as an essential immune system regulator. Sci Rep 2020; 10:17478. [PMID: 33060738 PMCID: PMC7566599 DOI: 10.1038/s41598-020-74288-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
The cell-free DNA (cfDNA) is always present in plasma, and it is biomarker of growing interest in prenatal diagnostics as well as in oncology and transplantology for therapy efficiency monitoring. But does this cfDNA have a physiological role? Here we show that cfDNA presence and clearance in plasma of healthy individuals plays an indispensable role in immune system regulation. We exposed THP1 cells to healthy individuals' plasma with (NP) and without (TP) cfDNA. In cells treated with NP, we found elevated expression of genes whose products maintain immune system homeostasis. Exposure of cells to TP triggered an innate immune response (IIR), documented particularly by elevated expression of pro-inflammatory interleukin 8. The results of mass spectrometry showed a higher abundance of proteins associated with IIR activation due to the regulation of complement cascade in cells cultivated with TP. These expression profiles provide evidence that the presence of cfDNA and its clearance in plasma of healthy individuals regulate fundamental mechanisms of the inflammation process and tissue homeostasis. The detailed understanding how neutrophil extracellular traps and their naturally occurring degradation products affect the performance of immune system is of crucial interest for future medical applications.
Collapse
Affiliation(s)
- M Korabecna
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| | - A Zinkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - I Brynychova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Chylikova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - P Prikryl
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - L Sedova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - P Neuzil
- Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
- CEITEC, Brno University of Technology, Brno, Czech Republic
| | - O Seda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| |
Collapse
|
19
|
Coimbra S, Rocha S, Nascimento H, Valente MJ, Catarino C, Rocha-Pereira P, Sameiro-Faria M, Oliveira JG, Madureira J, Fernandes JC, Miranda V, Belo L, Bronze-da-Rocha E, Santos-Silva A. Cell-free DNA as a marker for the outcome of end-stage renal disease patients on haemodialysis. Clin Kidney J 2020; 14:1371-1378. [PMID: 33959266 PMCID: PMC8087124 DOI: 10.1093/ckj/sfaa115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/04/2020] [Indexed: 01/24/2023] Open
Abstract
Background DNA damage and inflammation are common in end-stage renal disease (ESRD). Our aim was to evaluate the levels of circulating cell-free DNA (cfDNA) and the relationship with inflammation, anaemia, oxidative stress and haemostatic disturbances in ESRD patients on dialysis. By performing a 1-year follow-up study, we also aimed to evaluate the predictive value of cfDNA for the outcome of ESRD patients. Methods A total of 289 ESRD patients on dialysis were enrolled in the study: we evaluated cfDNA, haemogram, serum iron, hepcidin, inflammatory and oxidative stress markers, and haemostasis. Events and causes of deaths were recorded throughout the follow-up period. Results ESRD patients, as compared with controls, presented significantly higher levels of cfDNA, hepcidin, and inflammatory and oxidative stress markers, and significantly lower values of iron and anaemia-related haemogram parameters. The all-cause mortality rate was 9.7%; compared with alive patients, deceased patients (n = 28) were older and presented significantly higher values of inflammatory markers and of cfDNA, which was almost 2-fold higher. Furthermore, cfDNA was the best predictor of all-cause mortality and cardiovascular mortality in ESRD patients, in both unadjusted and adjusted models for basic confounding factors in dialysis. Conclusions Our data show cfDNA to be a valuable predictive marker of prognosis in ESRD patients on dialysis treatment; high levels of cfDNA were associated with a poor outcome.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO/REQUIMTE, Porto, Portugal.,CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Gandra-Paredes, Portugal
| | - Susana Rocha
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Henrique Nascimento
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Neurology Service, University Hospital Centre, Porto, Portugal
| | - Maria João Valente
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina Catarino
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Petronila Rocha-Pereira
- UCIBIO/REQUIMTE, Porto, Portugal.,Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria Sameiro-Faria
- UCIBIO/REQUIMTE, Porto, Portugal.,Hemodialysis Clinic Hospital Agostinho Ribeiro, Felgueiras, Portugal
| | - José Gerardo Oliveira
- Hemodialysis Clinic of Porto (CHP), Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Madureira
- NefroServe, Hemodialysis Clinic of Barcelos, Barcelos, Portugal
| | | | | | - Luís Belo
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Abstract
Cardiovascular disease and infections are major causes for the high incidence of morbidity and mortality of patients with chronic kidney disease. Both complications are directly or indirectly associated with disturbed functions or altered apoptotic rates of polymorphonuclear leukocytes, monocytes, lymphocytes, and dendritic cells. Normal responses of immune cells can be reduced, leading to infectious diseases or pre-activated/primed, giving rise to inflammation and subsequently to cardiovascular disease. This review summarizes the impact of kidney dysfunction on the immune system. Renal failure results in disturbed renal metabolic activities with reduced renin, erythropoietin, and vitamin D production, which adversely affects the immune system. Decreased kidney function also leads to reduced glomerular filtration and the retention of uremic toxins. A large number of uremic toxins with detrimental effects on immune cells have been identified. Besides small water-soluble and protein-bound compounds originating from the intestinal microbiome, several molecules in the middle molecular range, e.g., immunoglobulin light chains, retinol-binding protein, the neuropeptides Met-enkephalin and neuropeptide Y, endothelin-1, and the adipokines leptin and resistin, adversely affect immune cells. Posttranslational modifications such as carbamoylation, advanced glycation products, and oxidative modifications contribute to uremic toxicity. Furthermore, high-density lipoprotein from uremic patients has an altered protein profile and thereby loses its anti-inflammatory properties.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
21
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
22
|
UVA and UVB radiation induce the formation of neutrophil extracellular traps by human polymorphonuclear cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111511. [PMID: 31129510 DOI: 10.1016/j.jphotobiol.2019.111511] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
Abstract
Prolonged exposure of the skin to ultraviolet radiation (UV) leads to its damage and loss of protective properties. This condition called photoaging of the skin is caused by a number of destructive factors, such as reactive oxygen species (ROS) and proteolytic enzymes that cause damage to the extracellular matrix, e.g. collagen fibers. Many cells of the immune system, including neutrophils, are involved in the photoaging process. The presence of neutrophils in the skin exposed to UV irradiation is known; however, the mechanism of neutrophil activity at these conditions remains unclear. In our study, we focused on the ability of neutrophils to release neutrophil extracellular traps (NETs) and the role of these structures in the photoaging process. NET release occurs in response to various stimuli; however, we hereby showed that the UVA and UVB radiation that reaches the Earth's surface could activate the mechanism of netosis. UV-induced netosis was much faster than that activated by chemical or biological factors; however, it also occurred due to the production of ROS, known signal mediators in netosis. In this work, we also identified the probable netosis signaling pathway involved in the neutrophil response to UV. The participation of NET components may explain the ongoing process of skin photoaging, but it is also important to indicate netosis as a potential target for skin protection therapy. Antioxidants tested in this work, such as N-acetylcysteine, ethamsylate, as well as vitamin B1 (thiamine), can successfully inhibit UV-induced netosis, and thus be used as protective components against the negative effects of solar radiation.
Collapse
|
23
|
Brynychova I, Zinkova A, Hoffmanova I, Korabecna M, Dankova P. Immunoregulatory properties of cell-free DNA in plasma of celiac disease patients - A pilot study. Autoimmunity 2019; 52:88-94. [PMID: 31056951 DOI: 10.1080/08916934.2019.1608965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elevated plasma cell-free DNA (cfDNA) concentrations were repeatedly reported in association with the process of inflammation. The qualitative and quantitative characteristics of plasma cfDNA in active (newly diagnosed) celiac disease patients (CD) have not yet been studied despite the fact that cfDNA of healthy individuals is able to regulate immune response. We determined the total cfDNA concentration and relative content of telomeric sequences in plasma cfDNA in CD (n = 10) and healthy age- and sex-matched controls (HC, n = 10) by quantitative PCR. To obtain the evidence that the observed biological effects are caused solely by cfDNA molecules, we applied the treatment of paired plasma samples with DNase. Using paired samples of plasma (non-treated/native and treated by DNase), we analyzed the contribution of cfDNA to the activation of TLR9 and TNF-α mRNA expression in THP1 monocytic cell line. There were no significant differences in the quantities of plasma cfDNA and relative contents of telomeric sequences in their pools. When we compared the levels of TNF-α mRNA expression in THP1 cells achieved after stimulation with native CD and HC plasma samples, we found significantly (p = .031) higher expression after stimulation with CD samples. We documented also the ability of cfDNA contained in CD plasma samples to stimulate the production of TLR9 mRNA. The TLR9 mRNA expression levels were significantly (p = .014) lowered after cfDNA removal from CD plasma samples. The design of our experiments allowed us to study the effects of cfDNA without its isolation from plasma. cfDNA contained in CD plasma samples differs significantly in its immunoregulatory capacity from cfDNA in HC plasma. The differences are caused neither by different concentrations of cfDNA in plasma samples nor by different relative abundance of telomeric sequences. Further studies are needed to elucidate the role of plasma cfDNA in celiac disease pathogenesis.
Collapse
Affiliation(s)
- Iva Brynychova
- a Department of Anthropology and Human Genetics, Faculty of Science , Charles University , Prague , Czech Republic
| | - Alzbeta Zinkova
- b Department of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Iva Hoffmanova
- c Second Department of Internal Medicine, Third Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Marie Korabecna
- b Department of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Pavlina Dankova
- a Department of Anthropology and Human Genetics, Faculty of Science , Charles University , Prague , Czech Republic
| |
Collapse
|
24
|
Jin W, Xu HX, Zhang SR, Li H, Wang WQ, Gao HL, Wu CT, Xu JZ, Qi ZH, Li S, Ni QX, Liu L, Yu XJ. Tumor-Infiltrating NETs Predict Postsurgical Survival in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2019; 26:635-643. [PMID: 30374923 DOI: 10.1245/s10434-018-6941-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor-infiltrating neutrophils (TINs) indicate poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC). Activated neutrophils can generate neutrophil extracellular traps (NETs). Little is known about the presence and prognostic significance of tumor-infiltrating NETs in PDAC. METHODS This study enrolled 317 patients, in two independent sets (training and validation), who underwent curative pancreatectomy for PDAC in Shanghai Cancer Center. TINs and NETs were identified by immunohistochemical staining for CD15 and citrullinated histone H3, respectively. The relationship between clinicopathological features and outcomes was analyzed. Accuracy of prognostic prediction models was evaluated using concordance index (C-index) and Akaike information criterion (AIC). RESULTS NETs were associated with OS (both, P < 0.001) and RFS (both, P < 0.001) in the training and validation sets. Tumor-infiltrating NETs predicted poor postsurgical survival of patients with PDAC. Moreover, multivariate analysis identified NETs and AJCC TNM stage as two independent prognostic factors for OS and RFS. Combination of NETs with the 8th edition TNM staging system (C-index, 0.6994 and 0.6669, respectively; AIC, 1067 and 1126, respectively) generated a novel model that improved the predictive accuracy for survival in both sets (C-index, 0.7254 and 0.7117, respectively; AIC, 1047 and 1102, respectively). The model combining presence of NETs with the 7th edition AJCC TNM staging system also had improved predictive accuracy. CONCLUSIONS NETs were an independent prognostic factor in PDAC and incorporation of NETs along with the standard TNM stating system refined risk-stratification and predicted survival in PDAC with improved accuracy.
Collapse
Affiliation(s)
- Wei Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Shi-Rong Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Jin-Zhi Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Zi-Hao Qi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Quan-Xing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
25
|
Sperling C, Fischer M, Maitz MF, Werner C. Neutrophil extracellular trap formation upon exposure of hydrophobic materials to human whole blood causes thrombogenic reactions. Biomater Sci 2018; 5:1998-2008. [PMID: 28745733 DOI: 10.1039/c7bm00458c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neutrophil extracellular trap (NET) formation, a reaction of the innate immune system to fight pathogens, was shown to be involved in thrombus formation. In the present study blood-contacting biomaterials with graded surface characteristics were investigated as a potential cause of NET formation on medical devices. Surface properties are known to govern protein adsorption, cell adhesion and ultimately the activation of several other host defense pathways - potentially also the formation of NETs. Model materials of defined hydrophilic or hydrophobic properties (glass, and thin films of poly(ethylene-alt-maleic anhydride), self-assembled monolayers of methyl terminated alkanethiols, and Teflon AF™) were incubated either with isolated human granulocytes after pre-adsorption with plasma proteins or with human whole blood. NET formation - detected as extracellular DNA, citrullinated histones, elastase and reactive oxygen species (ROS) - was observed on hydrophobic surfaces. Furthermore, NET formation on the hydrophobic surface Teflon AF™ resulted in elevated thrombin generation in hirudin-anticoagulated whole blood, but not in heparinized whole blood. Disintegration of surface-bound NETs by DNase treatment resulted in significantly lower pro-coagulant effects. Thus, NET formation can contribute to the thrombogenicity of clinically applied hydrophobic materials, suggesting NETosis as well as NET surface anchorage as new targets of anticoagulation strategies.
Collapse
Affiliation(s)
- Claudia Sperling
- Institute of Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany.
| | | | | | | |
Collapse
|
26
|
Zinkova A, Brynychova I, Svacina A, Jirkovska M, Korabecna M. Cell-free DNA from human plasma and serum differs in content of telomeric sequences and its ability to promote immune response. Sci Rep 2017; 7:2591. [PMID: 28572683 PMCID: PMC5453964 DOI: 10.1038/s41598-017-02905-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) may be involved in immune response regulation. We studied the variations in abundance of telomeric sequences in plasma and serum in young healthy volunteers and the ability of cfDNA contained in these samples to co-activate the TNF-α m RNA expression in monocytes. We performed qPCR to determine relative telomere length (T/S ratios) in plasma, serum and whole blood of 36 volunteers. Using paired samples of plasma and serum and DNase treatment, we analysed the contribution of cfDNA to the co-activation of TNF-α mRNA expression in THP1 monocytic cell line. We found significant differences between paired plasma and serum samples in relative T/S ratios (median 1.38 ± 1.1 vs. 0.86 ± 0.25, respectively) and in total amounts of cfDNA and in estimated total amounts of telomeres which were significantly higher in serum than in plasma. TNF-α mRNA expression in THP1 cells increased significantly after DNase treatment of all samples used for stimulation. The highest TNF-α mRNA expressions were observed after stimulation with DNase treated serum samples. Our results suggest that the different content of telomeric sequences in plasma and serum may contribute to the tuning of immune response. Further studies of this interesting phenomenon are needed.
Collapse
Affiliation(s)
- Alzbeta Zinkova
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Iva Brynychova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Vinicna 7, 128 43, Prague, Czech Republic
| | - Alexander Svacina
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Marie Jirkovska
- Department of Histology and Embryology, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Marie Korabecna
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
27
|
High Neutrophil-to-Lymphocyte Ratio Predicts Cardiovascular Mortality in Chronic Hemodialysis Patients. Mediators Inflamm 2017; 2017:9327136. [PMID: 28316378 PMCID: PMC5339486 DOI: 10.1155/2017/9327136] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is a novel simple biomarker of inflammation. It has emerged as a predictor of poor prognosis in cancer and cardiovascular disease in general population. But little was known of its prognostic value in chronic hemodialysis (HD) patients. Here we investigated the association between NLR and cardiovascular risk markers, including increased pulse pressure (PP), left ventricular mass index (LVMI) and intima-media thickness (IMT), and mortality in HD patients. Two hundred and sixty-eight HD patients were enrolled in this study and were followed for 36 months. The primary end point was all-cause mortality and cardiovascular mortality. Multivariable Cox regression was used to calculate the adjusted hazard ratios for NLR on all-cause and cardiovascular survival. We pinpointed that higher NLR in HD patients was a predictor of increased PP, LVMI, and IMT; HD patients with higher NLR had a lower survival at the end of the study; furthermore, high NLR was an independent predictor of all-cause and cardiovascular mortality when adjusted for other risk factors. In conclusion, higher NLR in HD patients was associated with cardiovascular risk factors and mortality.
Collapse
|