1
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Fricke-Galindo I, García-Carmona S, Bautista-Becerril B, Pérez-Rubio G, Buendia-Roldan I, Chávez-Galán L, Nava-Quiroz KJ, Alanis-Ponce J, Reséndiz-Hernández JM, Blanco-Aguilar E, Erives-Sedano JI, Méndez-Velasco Y, Osuna-Espinoza GE, Salvador-Hernández F, Segura-Castañeda R, Solano-Candia UN, Falfán-Valencia R. Genetic Variants in Genes Related to Lung Function and Interstitial Lung Diseases Are Associated with Worse Outcomes in Severe COVID-19 and Lung Performance in the Post-COVID-19 Condition. Int J Mol Sci 2025; 26:2046. [PMID: 40076669 PMCID: PMC11900979 DOI: 10.3390/ijms26052046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic variants related to susceptibility to chronic respiratory conditions such as interstitial lung disease (ILD) could share critical pathways in the pathogenesis of COVID-19 and be implicated in COVID-19 outcomes and post-COVID-19. We aimed to identify the participation of genetic variants in lung function and ILD genes in severe COVID-19 outcomes and post-COVID-19 condition. We studied 936 hospitalized patients with COVID-19. The requirement of invasive mechanical ventilation (IMV) and the acute respiratory distress syndrome (ARDS) classification were considered. The mortality was assessed as the in-hospital death. The post-COVID-19 group included 102 patients evaluated for pulmonary function tests four times during the year after discharge. Five variants (FAM13A rs2609255, DSP rs2076295, TOLLIP rs111521887, TERT rs2736100, and THSD4 rs872471) were genotyped using TaqMan assays. A multifactor dimensionality reduction method (MDR) was performed for epistasis estimation. The TERT rs2736100 and THSD4 rs872471 variants were associated with differential risk for ARDS severity (moderate vs. severe, CC + CA, p = 0.044, OR = 0.66, 95% CI = 0.44-0.99; and GG p = 0.034, OR = 2.22, 95% CI = 1.04-4.72, respectively). These variants and FAM13A rs2609255 were also related to pulmonary function post-COVID-19. The MDR analysis showed differential epistasis and correlation of the genetic variants included in this study. The well-known variants in recognized genes related to pulmonary function worsening and interstitial disorders are related to the severity and mortality of COVID-19 and lung performance in the post-COVID-19 condition.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Juan M. Reséndiz-Hernández
- Laboratorio Clínico, Centro Especializado de Atención a Personas con Discapacidad Visual, Instituto de Salud del Estado de México, Naucalpan 53000, Mexico State, Mexico;
| | - Esther Blanco-Aguilar
- Facultad de Medicina Benemérita, Universidad Autónoma de Puebla, Puebla de Zaragoza 72420, Puebla, Mexico;
| | - Jessica I. Erives-Sedano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Yashohara Méndez-Velasco
- Unidad Académica Profesional Chimalhuacán, Universidad Autónoma del Estado de México, Nezahualcóyotl 56353, Mexico State, Mexico;
| | - Grecia E. Osuna-Espinoza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Fidel Salvador-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Rubén Segura-Castañeda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Hermosillo Sonora 83000, Sonora, Mexico;
| | - Uriel N. Solano-Candia
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| |
Collapse
|
3
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
4
|
Murphy SL, Balzer NR, Ranheim T, Sagen EL, Huse C, Bjerkeli V, Michelsen AE, Finbråten AK, Heggelund L, Dyrhol-Riise AM, Tveita A, Holten AR, Trøseid M, Ueland T, Ulas T, Aukrust P, Barratt-Due A, Halvorsen B, Dahl TB. Extracellular matrix remodelling pathway in peripheral blood mononuclear cells from severe COVID-19 patients: an explorative study. Front Immunol 2024; 15:1379570. [PMID: 38957465 PMCID: PMC11217192 DOI: 10.3389/fimmu.2024.1379570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells. Inflammatory mediators in plasma were measured by ELISA and MSD, and clinical information from hospitalised COVID-19 patients (N=15) at admission was included in the analysis. Further, we reanalysed two publicly available datasets: (1) lung tissue RNA-sequencing dataset (N=5) and (2) proteomics dataset from PBCM. ECM remodelling pathways were enriched in PBMC from COVID-19 patients compared to healthy controls. Patients treated at the intensive care unit (ICU) expressed distinct ECM remodelling gene profiles compared to patients in the hospital ward. Several markers were strongly correlated to immune cell subsets, and the dysregulation in the ICU patients was positively associated with plasma levels of inflammatory cytokines and negatively associated with B-cell activating factors. Finally, our analysis of publicly accessible datasets revealed (i) an augmented ECM remodelling signature in inflamed lung tissue compared to non-inflamed tissue and (ii) proteomics analysis of PBMC from severe COVID-19 patients demonstrated an up-regulation in an ECM remodelling pathway. Our results may suggest the presence of an interaction between ECM remodelling, inflammation, and immune cells, potentially initiating or perpetuating pulmonary pathology in severe COVID-19.
Collapse
Affiliation(s)
- Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Reka Balzer
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anders Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Rygh Holten
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Zhu M, Yi Y, Jiang K, Liang Y, Li L, Zhang F, Zheng X, Yin H. Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis. J Cell Mol Med 2024; 28:e18499. [PMID: 38887981 PMCID: PMC11184282 DOI: 10.1111/jcmm.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common, chronic, and progressive lung disease that severely impacts human health and survival. However, the intricate molecular underpinnings of IPF remains elusive. This study aims to delve into the nuanced molecular interplay of cellular interactions in IPF, thereby laying the groundwork for innovative therapeutic approaches in the clinical field of IPF. Sophisticated bioinformatics methods were employed to identify crucial biomarkers essential for the progression of IPF. The GSE122960 single-cell dataset was obtained from the Gene Expression Omnibus (GEO) compendium, and intercellular communication potentialities were scrutinized via CellChat. The random survival forest paradigm was established using the GSE70866 dataset. Quintessential genes were selected through Kaplan-Meier (KM) curves, while immune infiltration examinations, functional enrichment critiques and nomogram paradigms were inaugurated. Analysis of intercellular communication revealed an intimate potential connections between macrophages and various cell types, pinpointing five cardinal genes influencing the trajectory and prognosis of IPF. The nomogram paradigm, sculpted from these seminal genes, exhibits superior predictive prowess. Our research meticulously identified five critical genes, confirming their intimate association with the prognosis, immune infiltration and transcriptional governance of IPF. Interestingly, we discerned these genes' engagement with the EPITHELIAL_MESENCHYMAL_TRANSITION signalling pathway, which may enhance our understanding of the molecular complexity of IPF.
Collapse
Affiliation(s)
- Minggao Zhu
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhu Yi
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Kui Jiang
- Department of NephrologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yongzhi Liang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Lijun Li
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Feng Zhang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Xinglong Zheng
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Haiyan Yin
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Viode A, Smolen KK, van Zalm P, Stevenson D, Jha M, Parker K, Levy O, Steen JA, Steen H. Longitudinal plasma proteomic analysis of 1117 hospitalized patients with COVID-19 identifies features associated with severity and outcomes. SCIENCE ADVANCES 2024; 10:eadl5762. [PMID: 38787940 PMCID: PMC11122669 DOI: 10.1126/sciadv.adl5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by highly heterogeneous manifestations ranging from asymptomatic cases to death for still incompletely understood reasons. As part of the IMmunoPhenotyping Assessment in a COVID-19 Cohort study, we mapped the plasma proteomes of 1117 hospitalized patients with COVID-19 from 15 hospitals across the United States. Up to six samples were collected within ~28 days of hospitalization resulting in one of the largest COVID-19 plasma proteomics cohorts with 2934 samples. Using perchloric acid to deplete the most abundant plasma proteins allowed for detecting 2910 proteins. Our findings show that increased levels of neutrophil extracellular trap and heart damage markers are associated with fatal outcomes. Our analysis also identified prognostic biomarkers for worsening severity and death. Our comprehensive longitudinal plasma proteomics study, involving 1117 participants and 2934 samples, allowed for testing the generalizability of the findings of many previous COVID-19 plasma proteomics studies using much smaller cohorts.
Collapse
Affiliation(s)
- Arthur Viode
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kinga K. Smolen
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Stevenson
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Meenakshi Jha
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Kenneth Parker
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - IMPACC Network‡
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Judith A. Steen
- Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Wong M, Gain C, Sharma MB, Fotooh Abadi L, Hugo C, Vassilopoulos H, Daskou M, Fishbein GA, Kelesidis T. Severe Acute Respiratory Syndrome Coronavirus 2 Infection Alters Mediators of Lung Tissue Remodeling In Vitro and In Vivo. J Infect Dis 2024; 229:1372-1381. [PMID: 38109685 DOI: 10.1093/infdis/jiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.
Collapse
Affiliation(s)
- Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Madhav B Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Leila Fotooh Abadi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| | - Cristelle Hugo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Hariclea Vassilopoulos
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| |
Collapse
|
8
|
Kjellberg S, Holm A, Berguerand N, Sandén H, Schiöler L, Olsén MF, Olin A. Impaired function in the lung periphery following COVID-19 is associated with lingering breathing difficulties. Physiol Rep 2024; 12:e15918. [PMID: 38253977 PMCID: PMC10803222 DOI: 10.14814/phy2.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lingering breathing difficulties are common after COVID-19. However, the underlying causes remains unclear, with spirometry often being normal. We hypothesized that small airway dysfunction (SAD) can partly explain these symptoms. We examined 48 individuals (32 women, 4 hospitalized in the acute phase) who experienced dyspnea and/or cough in the acute phase and/or aftermath of COVID-19, and 22 non-COVID-19 controls. Time since acute infection was, median (range), 65 (10-131) weeks. We assessed SAD using multiple breath washout (MBW) and impulse oscillometry (IOS) and included spirometry and diffusing-capacity test (DLCO). One-minute-sit-to-stand test estimated physical function, and breathing difficulties were defined as answering "yes" to the question "do you experience lingering breathing difficulties?" Spirometry, DLCO, and IOS were normal in almost all cases (spirometry: 90%, DLCO: 98%, IOS: 88%), while MBW identified ventilation inhomogeneity in 50%. Breathing difficulties (n = 21) was associated with increased MBW-derived Sacin . However, physical function did not correlate with SAD. Among individuals with breathing difficulties, 25% had reduced physical function, 25% had SAD, 35% had both, and 15% had normal lung function and physical function. Despite spirometry and DLCO being normal in almost all post-COVID-19 individuals, SAD was present in a high proportion and was associated with lingering breathing difficulties.
Collapse
Affiliation(s)
- Sanna Kjellberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexander Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Respiratory Medicine and AllergologySahlgrenska University HospitalGothenburgSweden
| | - Nicolas Berguerand
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Helena Sandén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Monika Fagevik Olsén
- Department of Health and Rehabilitation/PhysiotherapyInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Anna‐Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Palermo A, Li S, Ten Hoeve J, Chellappa A, Morris A, Dillon B, Ma F, Wang Y, Cao E, Shabane B, Acín-Perez R, Petcherski A, Lusis AJ, Hazen S, Shirihai OS, Pellegrini M, Arumugaswami V, Graeber TG, Deb A. A ketogenic diet can mitigate SARS-CoV-2 induced systemic reprogramming and inflammation. Commun Biol 2023; 6:1115. [PMID: 37923961 PMCID: PMC10624922 DOI: 10.1038/s42003-023-05478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal models of disease in modulating the immune response and promoting a systemic anti-inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces weight loss with overall improved animal survival. Muted multi-organ transcriptional reprogramming and metabolism rewiring suggest that a KD initiates and mitigates systemic changes induced by the virus. We observed reduced metalloproteases and increased inflammatory homeostatic protein transcription in the heart, with decreased serum pro-inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers of inflammation (i.e., kynurenine/tryptophane ratio), and inflammatory prostaglandins, indicative of reduced systemic inflammation in animals infected under a KD. Taken together, these data suggest that a KD can alter the transcriptional and metabolic response in animals following SARS-CoV-2 infection with improved mice health, reduced inflammation, and restored amino acid, nucleotide, lipid, and energy currency metabolism.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Johanna Ten Hoeve
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA
| | - Akshay Chellappa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alexandra Morris
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Barbara Dillon
- Department of Environment, Health and Safety, University of California, Los Angeles, CA, 90095, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yijie Wang
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Edward Cao
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Genetics, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acín-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - A Jake Lusis
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Stanley Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Orian S Shirihai
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
| | - Arjun Deb
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- UCLA Cardiovascular Research Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, CA, 90095, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Ge R, Wang F, Peng Z. Advances in Biomarkers for Diagnosis and Treatment of ARDS. Diagnostics (Basel) 2023; 13:3296. [PMID: 37958192 PMCID: PMC10649435 DOI: 10.3390/diagnostics13213296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 11/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and fatal disease, characterized by lung inflammation, edema, poor oxygenation, and the need for mechanical ventilation, or even extracorporeal membrane oxygenation if the patient is unresponsive to routine treatment. In this review, we aim to explore advances in biomarkers for the diagnosis and treatment of ARDS. In viewing the distinct characteristics of each biomarker, we classified the biomarkers into the following six categories: inflammatory, alveolar epithelial injury, endothelial injury, coagulation/fibrinolysis, extracellular matrix turnover, and oxidative stress biomarkers. In addition, we discussed the potential role of machine learning in identifying and utilizing these biomarkers and reviewed its clinical application. Despite the tremendous progress in biomarker research, there remain nonnegligible gaps between biomarker discovery and clinical utility. The challenges and future directions in ARDS research concern investigators as well as clinicians, underscoring the essentiality of continued investigation to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Ruiqi Ge
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China;
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| |
Collapse
|
11
|
Alrajhi NN. Post-COVID-19 pulmonary fibrosis: An ongoing concern. Ann Thorac Med 2023; 18:173-181. [PMID: 38058790 PMCID: PMC10697304 DOI: 10.4103/atm.atm_7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 07/10/2023] [Indexed: 12/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 rapidly spread across the globe causing over 6 million deaths and major compromization of health facilities. The vast majority of survivors post-COVID-19 are left with variable degrees of health sequelae including pulmonary, neurological, psychological, and cardiovascular complications. Post-COVID-19 pulmonary fibrosis is one of the major concerns arising after the recovery from this pandemic. Risk factors for post-COVID-19 pulmonary fibrosis include age, male sex, and the severity of COVID-19 disease. High-resolution computed tomography provides diagnostic utility to diagnose pulmonary fibrosis as it provides more details regarding the pattern and the extent of pulmonary fibrosis. Emerging data showing similarities between post-COVID-19 pulmonary fibrosis and idiopathic pulmonary fibrosis, finding that needs further exploration. The management of post-COVID-19 pulmonary fibrosis depends on many factors but largely relies on excluding other causes of pulmonary fibrosis, the extent of fibrosis, and physiological impairment. Treatment includes immunosuppressants versus antifibrotics or both.
Collapse
Affiliation(s)
- Nuha Nasser Alrajhi
- Department of Medicine, Pulmonary Unit, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Tziolos NR, Ioannou P, Baliou S, Kofteridis DP. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023; 11:2458. [PMID: 37894116 PMCID: PMC10609046 DOI: 10.3390/microorganisms11102458] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Long COVID-19 is a recognized entity that affects millions of people worldwide. Its broad clinical symptoms include thrombotic events, brain fog, myocarditis, shortness of breath, fatigue, muscle pains, and others. Due to the binding of the virus with ACE-2 receptors, expressed in many organs, it can potentially affect any system; however, it most often affects the cardiovascular, central nervous, respiratory, and immune systems. Age, high body mass index, female sex, previous hospitalization, and smoking are some of its risk factors. Despite great efforts to define its pathophysiology, gaps remain to be explained. The main mechanisms described in the literature involve viral persistence, hypercoagulopathy, immune dysregulation, autoimmunity, hyperinflammation, or a combination of these. The exact mechanisms may differ from system to system, but some share the same pathways. This review aims to describe the most prevalent pathophysiological pathways explaining this syndrome.
Collapse
Affiliation(s)
- Nikolaos-Renatos Tziolos
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece (D.P.K.)
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
13
|
Das A, Meng W, Liu Z, Hasib MM, Galloway H, Ramos da Silva S, Chen L, Sica GL, Paniz-Mondolfi A, Bryce C, Grimes Z, Mia Sordillo E, Cordon-Cardo C, Paniagua Rivera K, Flores M, Chiu YC, Huang Y, Gao SJ. Molecular and immune signatures, and pathological trajectories of fatal COVID-19 lungs defined by in situ spatial single-cell transcriptome analysis. J Med Virol 2023; 95:e29009. [PMID: 37563850 PMCID: PMC10442191 DOI: 10.1002/jmv.29009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-β-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.
Collapse
Affiliation(s)
- Arun Das
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Md Musaddaqul Hasib
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hugh Galloway
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel L Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Clare Bryce
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary Grimes
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karla Paniagua Rivera
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yu-Chiao Chiu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Petersen E, Chudakova D, Erdyneeva D, Zorigt D, Shabalina E, Gudkov D, Karalkin P, Reshetov I, Mynbaev OA. COVID-19-The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. Int J Mol Sci 2023; 24:ijms24108579. [PMID: 37239926 DOI: 10.3390/ijms24108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus remains a global public health concern due to the systemic nature of the infection and its long-term consequences, many of which remain to be elucidated. SARS-CoV-2 targets endothelial cells and blood vessels, altering the tissue microenvironment, its secretion, immune-cell subpopulations, the extracellular matrix, and the molecular composition and mechanical properties. The female reproductive system has high regenerative potential, but can accumulate damage, including due to SARS-CoV-2. COVID-19 is profibrotic and can change the tissue microenvironment toward an oncogenic niche. This makes COVID-19 and its consequences one of the potential regulators of a homeostasis shift toward oncopathology and fibrosis in the tissues of the female reproductive system. We are looking at SARS-CoV-2-induced changes at all levels in the female reproductive system.
Collapse
Affiliation(s)
- Elena Petersen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daria Chudakova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daiana Erdyneeva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dulamsuren Zorigt
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Denis Gudkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel Karalkin
- P.A. Herzen Moscow Research Institute of Oncology, 125284 Moscow, Russia
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor Reshetov
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ospan A Mynbaev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
15
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
16
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
17
|
COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int J Mol Sci 2023; 24:ijms24021147. [PMID: 36674665 PMCID: PMC9866514 DOI: 10.3390/ijms24021147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In the beginning of COVID-19, the proportion of confirmed cases in the pediatric population was relatively small and there was an opinion that children often had a mild or asymptomatic course of infection. Our understanding of the immune response, diagnosis and treatment of COVID-19 is highly oriented towards the adult population. At the same time, despite the fact that COVID-19 in children usually occurs in a mild form, there is an incomplete understanding of the course as an acute infection and its subsequent manifestations such as Long-COVID-19 or Post-COVID-19, PASC in the pediatric population, correlations with comorbidities and immunological changes. In mild COVID-19 in childhood, some authors explain the absence of population decreasing T and B lymphocytes. Regardless of the patient's condition, they can have the second phase, related to the exacerbation of inflammation in the heart tissue even if the viral infection was completely eliminated-post infectious myocarditis. Mechanism of myocardial dysfunction development in MIS-C are not fully understood. It is known that various immunocompetent cells, including both resident inflammatory cells of peripheral tissues (for example macrophages, dendritic cells, resident memory T-lymphocytes and so on) and also circulating in the peripheral blood immune cells play an important role in the immunopathogenesis of myocarditis. It is expected that hyperproduction of interferons and the enhanced cytokine response of T cells 1 and 2 types contribute to dysfunction of the myocardium. However, the role of Th1 in the pathogenesis of myocarditis remains highly controversial. At the same time, the clinical manifestations and mechanisms of damage, including the heart, both against the background and after COVID-19, in children differ from adults. Further studies are needed to evaluate whether transient or persistent cardiac complications are associated with long-term adverse cardiac events.
Collapse
|
18
|
Saifi MA, Bansod S, Godugu C. COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discov Today 2022; 27:103345. [PMID: 36075378 PMCID: PMC9444298 DOI: 10.1016/j.drudis.2022.103345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had significant impacts worldwide since its emergence in December, 2019. Despite a high recovery rate, there is a growing concern over its residual, long-term effects. However, because of a lack of long-term data, we are still far from establishing a consensus on post-COVID-19 complications. The deposition of excessive extracellular matrix (ECM), known as fibrosis, has been observed in numerous survivors of COVID-19. Given the exceptionally high number of individuals affected, there is an urgent need to address the emergence of fibrosis post-COVID-19. In this review, we discuss the clinical relevance of COVID-19-associated fibrosis, the current status of antifibrotic agents, novel antifibrotic targets, and challenges to its management.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India
| | - Sapana Bansod
- Department of Internal Medicine, Oncology Division, Washington University, School of Medicine, St Louis, MO 63110, USA
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India.
| |
Collapse
|
19
|
Haunhorst S, Bloch W, Wagner H, Ellert C, Krüger K, Vilser DC, Finke K, Reuken P, Pletz MW, Stallmach A, Puta C. Long COVID: a narrative review of the clinical aftermaths of COVID-19 with a focus on the putative pathophysiology and aspects of physical activity. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac006. [PMID: 36846561 PMCID: PMC9494493 DOI: 10.1093/oxfimm/iqac006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
The pandemic coronavirus disease 2019 (COVID-19) can cause multi-systemic symptoms that can persist beyond the acute symptomatic phase. The post-acute sequelae of COVID-19 (PASC), also referred to as long COVID, describe the persistence of symptoms and/or long-term complications beyond 4 weeks from the onset of the acute symptoms and are estimated to affect at least 20% of the individuals infected with SARS-CoV-2 regardless of their acute disease severity. The multi-faceted clinical picture of long COVID encompasses a plethora of undulating clinical manifestations impacting various body systems such as fatigue, headache, attention disorder, hair loss and exercise intolerance. The physiological response to exercise testing is characterized by a reduced aerobic capacity, cardiocirculatory limitations, dysfunctional breathing patterns and an impaired ability to extract and use oxygen. Still, to this day, the causative pathophysiological mechanisms of long COVID remain to be elucidated, with long-term organ damage, immune system dysregulation and endotheliopathy being among the hypotheses discussed. Likewise, there is still a paucity of treatment options and evidence-based strategies for the management of the symptoms. In sum, this review explores different aspects of long COVID and maps the literature on what is known about its clinical manifestations, potential pathophysiological mechanisms, and treatment options.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena 07749, Germany
- Department of Movement Science, University of Münster, Münster 48149, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne 50933, Germany
| | - Heiko Wagner
- Department of Movement Science, University of Münster, Münster 48149, Germany
| | - Claudia Ellert
- Department for Vascular Surgery, Lahn-Dill Clinics Wetzlar, Wetzlar 35578, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen 35394, Germany
| | - Daniel C Vilser
- Hospital for Pediatrics and Adolescent Medicine, Jena University Hospital, Jena 07747, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Philipp Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena 07747, Germany
| | - Andreas Stallmach
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena 07749, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Jena 07749, Germany
| |
Collapse
|
20
|
Timpau AS, Miftode RS, Leca D, Timpau R, Miftode IL, Petris AO, Costache II, Mitu O, Nicolae A, Oancea A, Jigoranu A, Tuchilus CG, Miftode EG. A Real Pandora's Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071085. [PMID: 35888173 PMCID: PMC9318707 DOI: 10.3390/life12071085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
The intricate relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the cardiovascular system is an extensively studied pandemic topic, as there is an ever-increasing amount of evidence that reports a high prevalence of acute cardiac injury in the context of viral infection. In patients with Coronavirus disease 2019, COVID-19, a significant increase in serum levels of cardiac troponin or other various biomarkers was observed, suggesting acute cardiac injury, thus predicting both a severe course of the disease and a poor outcome. Pathogenesis of acute cardiac injury is not yet completely elucidated, though several mechanisms are allegedly involved, such as a direct cardiomyocyte injury, oxygen supply-demand inequity caused by hypoxia, several active myocardial depressant factors during sepsis, and endothelial dysfunction due to the hyperinflammatory status. Moreover, the increased levels of plasma cytokines and catecholamines and a significantly enhanced prothrombotic environment may lead to the destabilization and rupture of atheroma plaques, subsequently triggering an acute coronary syndrome. In the present review, we focus on describing the epidemiology, pathogenesis, and role of biomarkers in the diagnosis and prognosis of patients with acute cardiac injury in the setting of the COVID-19 pandemic. We also explore some novel therapeutic strategies involving immunomodulatory therapy, as well as their role in preventing a severe form of the disease, with both the short-term outcome and the long-term cardiovascular sequelae being equally important in patients with SARS-CoV-2 induced acute cardiac injury.
Collapse
Affiliation(s)
- Amalia-Stefana Timpau
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Radu-Stefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
- Correspondence: (R.-S.M.); (I.I.C.)
| | - Daniela Leca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| | - Razvan Timpau
- Department of Radiology and Medical Imaging, St. Spiridon Emergency Hospital, 700115 Iasi, Romania;
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| | - Antoniu Octavian Petris
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Irina Iuliana Costache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
- Correspondence: (R.-S.M.); (I.I.C.)
| | - Ovidiu Mitu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Ana Nicolae
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Alexandru Oancea
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Alexandru Jigoranu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Cristina Gabriela Tuchilus
- Department of Preventive Medicine and Interdisciplinarity (Microbiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Egidia-Gabriela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| |
Collapse
|
21
|
Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Ignacio-Cortés S, Gómez-García IA, Rodríguez-Reyna TS, Choreño-Parra JA, Zúñiga J. Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. J Interferon Cytokine Res 2022; 42:352-368. [PMID: 35647937 PMCID: PMC9422783 DOI: 10.1089/jir.2021.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-β) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.
Collapse
Affiliation(s)
- Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Tatiana Sofia Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
22
|
Fernandez-Patron C, Hardy E. Matrix Metalloproteinases in Health and Disease in the Times of COVID-19. Biomolecules 2022; 12:692. [PMID: 35625620 PMCID: PMC9138430 DOI: 10.3390/biom12050692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Much has been written about matrix metalloproteinases (MMPs) in health and disease conditions, but their roles in the setting of COVID-19 and associated illnesses remain understudied [...].
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| |
Collapse
|
23
|
Hussein MAA, Hussein HAM, Thabet AA, Selim KM, Dawood MA, El-Adly AM, Wardany AA, Sobhy A, Magdeldin S, Osama A, Anwar AM, Abdel-Wahab M, Askar H, Bakhiet EK, Sultan S, Ezzat AA, Abdel Raouf U, Afifi MM. Human Wharton's Jelly Mesenchymal Stem Cells Secretome Inhibits Human SARS-CoV-2 and Avian Infectious Bronchitis Coronaviruses. Cells 2022; 11:1408. [PMID: 35563714 PMCID: PMC9101656 DOI: 10.3390/cells11091408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton’s jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.
Collapse
Affiliation(s)
- Mohamed A. A. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Hosni A. M. Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Mervat A. Dawood
- Clinical Pathology, Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Ahmed M. El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ahmed A. Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Ali M. Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital, (CCHE-57357), Cairo 57357, Egypt; (S.M.); (A.O.); (A.M.A.)
| | - Mohammed Abdel-Wahab
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Hussam Askar
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.T.); (M.A.-W.); (H.A.)
| | - Elsayed K. Bakhiet
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Amgad A. Ezzat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Usama Abdel Raouf
- Department of Botany and Microbiology, Faculty of Science, Aswan University, Aswan 81528, Egypt;
| | - Magdy M. Afifi
- Department of Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (M.A.A.H.); (A.M.E.-A.); (A.A.W.); (E.K.B.); (M.M.A.)
| |
Collapse
|
24
|
Maldonado F, Morales D, Díaz-Papapietro C, Valdés C, Fernandez C, Valls N, Lazo M, Espinoza C, González R, Gutiérrez R, Jara Á, Romero C, Cerda O, Cáceres M. Relationship Between Endothelial and Angiogenesis Biomarkers Envisage Mortality in a Prospective Cohort of COVID-19 Patients Requiring Respiratory Support. Front Med (Lausanne) 2022; 9:826218. [PMID: 35372407 PMCID: PMC8966493 DOI: 10.3389/fmed.2022.826218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose Endothelial damage and angiogenesis are fundamental elements of neovascularisation and fibrosis observed in patients with coronavirus disease 2019 (COVID-19). Here, we aimed to evaluate whether early endothelial and angiogenic biomarkers detection predicts mortality and major cardiovascular events in patients with COVID-19 requiring respiratory support. Methods Changes in serum syndecan-1, thrombomodulin, and angiogenic factor concentrations were analysed during the first 24 h and 10 days after COVID-19 hospitalisation in patients with high-flow nasal oxygen or mechanical ventilation. Also, we performed an exploratory evaluation of the endothelial migration process induced by COVID-19 in the patients' serum using an endothelial cell culture model. Results In 43 patients, mean syndecan-1 concentration was 40.96 ± 106.9 ng/mL with a 33.9% increase (49.96 ± 58.1 ng/mL) at day 10. Both increases were significant compared to healthy controls (Kruskal–Wallis p < 0.0001). We observed an increase in thrombomodulin, Angiopoietin-2, human vascular endothelial growth factor (VEGF), and human hepatocyte growth factor (HGF) concentrations during the first 24 h, with a decrease in human tissue inhibitor of metalloproteinases-2 (TIMP-2) that remained after 10 days. An increase in human Interleukin-8 (IL-8) on the 10th day accompanied by high HGF was also noted. The incidence of myocardial injury and pulmonary thromboembolism was 55.8 and 20%, respectively. The incidence of in-hospital deaths was 16.3%. Biomarkers showed differences in severity of COVID-19. Syndecan-1, human platelet-derived growth factor (PDGF), VEGF, and Ang-2 predicted mortality. A multiple logistic regression model with TIMP-2 and PDGF had positive and negative predictive powers of 80.9 and 70%, respectively, for mortality. None of the biomarkers predicted myocardial injury or pulmonary thromboembolism. A proteome profiler array found changes in concentration in a large number of biomarkers of angiogenesis and chemoattractants. Finally, the serum samples from COVID-19 patients increased cell migration compared to that from healthy individuals. Conclusion We observed that early endothelial and angiogenic biomarkers predicted mortality in patients with COVID-19. Chemoattractants from patients with COVID-19 increase the migration of endothelial cells. Trials are needed for confirmation, as this poses a therapeutic target for SARS-CoV-2.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Valdés
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nicolas Valls
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Marioli Lazo
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Espinoza
- Emergency Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Rodrigo Gutiérrez
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Álvaro Jara
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Carlos Romero
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
25
|
Rommasi F, Nasiri MJ, Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol Cell Biochem 2022; 477:711-726. [PMID: 35013850 PMCID: PMC8747854 DOI: 10.1007/s11010-021-04325-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Department of Pulmonary and Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
26
|
Exploring Toxins for Hunting SARS-CoV-2 Main Protease Inhibitors: Molecular Docking, Molecular Dynamics, Pharmacokinetic Properties, and Reactome Study. Pharmaceuticals (Basel) 2022; 15:ph15020153. [PMID: 35215266 PMCID: PMC8875976 DOI: 10.3390/ph15020153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
The main protease (Mpro) is a potential druggable target in SARS-CoV-2 replication. Herein, an in silico study was conducted to mine for Mpro inhibitors from toxin sources. A toxin and toxin-target database (T3DB) was virtually screened for inhibitor activity towards the Mpro enzyme utilizing molecular docking calculations. Promising toxins were subsequently characterized using a combination of molecular dynamics (MD) simulations and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. According to the MM-GBSA binding energies over 200 ns MD simulations, three toxins—namely philanthotoxin (T3D2489), azaspiracid (T3D2672), and taziprinone (T3D2378)—demonstrated higher binding affinities against SARS-CoV-2 Mpro than the co-crystalized inhibitor XF7 with MM-GBSA binding energies of −58.9, −55.9, −50.1, and −43.7 kcal/mol, respectively. The molecular network analyses showed that philanthotoxin provides a ligand lead using the STRING database, which includes the biochemical top 20 signaling genes CTSB, CTSL, and CTSK. Ultimately, pathway enrichment analysis (PEA) and Reactome mining results revealed that philanthotoxin could prevent severe lung injury in COVID-19 patients through the remodeling of interleukins (IL-4 and IL-13) and the matrix metalloproteinases (MMPs). These findings have identified that philanthotoxin—a venom of the Egyptian solitary wasp—holds promise as a potential Mpro inhibitor and warrants further in vitro/in vivo validation.
Collapse
|