1
|
Tellai AD, Haghnejad V, Antoine J, Merouani B, Bronowicki JP, Dreumont N. The complex Post-transcriptional Regulation of Genes coding for Methionine Adenosyl Transferase: New insights for liver cancer. Biochimie 2025:S0300-9084(25)00082-3. [PMID: 40348354 DOI: 10.1016/j.biochi.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Methionine adenosyltransferases (MATs) catalyze the synthesis of S-adenosylmethionine (SAM), the universal methyl donor involved in methylation reactions, redox balance, and polyamine synthesis. In mammals, three MAT genes, MAT1A, MAT2A, and MAT2B, exhibit tissue-specific expression, with MAT1A predominating in healthy liver and MAT2A/MAT2B upregulated during liver injury and malignancy. A shift from MAT1A to MAT2A/MAT2B expression is a hallmark of hepatocellular carcinoma (HCC), contributing to decreased SAM levels and promoting tumorigenesis. Recent findings highlight the pivotal role of post-transcriptional regulation in controlling MAT gene expression. N6-methyladenosine (m6A) modification, the most prevalent internal mRNA modification, plays a dynamic role in determining the fate of MAT2A mRNA. m6A marks regulate MAT2A mRNA splicing and stability in response to stress and metabolic changes. Additionally, RNA-binding proteins (RBPs) such as ELAVL1 and hnRNPD bind to MAT mRNAs, modulating their stability and translation. Dysregulation of these RBPs in liver disease alters MAT expression profiles. Non-coding RNAs, including microRNAs such as miR-29, miR-21, and miR-485, and long non-coding RNAs such as LINC00662 and SNGH6, modulate MAT expression post-transcriptionally by targeting MAT transcripts directly or influencing RNA-binding proteins (RBPs) and m6A writers/readers. Together, these mechanisms form a complex and intricate post-transcriptional regulatory network that governs MAT activity in physiological and pathological states. This review examines emerging insights into MAT post-transcriptional regulation, focusing on its implications for liver cancer, and opens new avenues for developing therapies that target these regulatory mechanisms.
Collapse
Affiliation(s)
| | - Vincent Haghnejad
- Université de Lorraine, INSERM, NGERE, F-54000, Nancy, France; Université de Lorraine, Department of Hepatology and Gastroenterology, F54000, France
| | - Justine Antoine
- Université de Lorraine, INSERM, NGERE, F-54000, Nancy, France
| | - Basma Merouani
- Université de Lorraine, INSERM, NGERE, F-54000, Nancy, France
| | - Jean-Pierre Bronowicki
- Université de Lorraine, INSERM, NGERE, F-54000, Nancy, France; Université de Lorraine, Department of Hepatology and Gastroenterology, F54000, France
| | | |
Collapse
|
2
|
Pajares MÁ. Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism. Int J Mol Sci 2025; 26:2488. [PMID: 40141131 PMCID: PMC11942099 DOI: 10.3390/ijms26062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Zhu X, Zhang T, Tang C, Wang Z, Guo L, Wang P, Zhang S, Wu J. Methionine adenosyltransferase MAT3 positively regulates pear pollen tube growth, possibly through interaction with pectin lyase-like protein PLL1. PHYSIOLOGIA PLANTARUM 2025; 177:e70122. [PMID: 39956916 DOI: 10.1111/ppl.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 02/18/2025]
Abstract
Methionine adenosyltransferase (MAT) is the only enzyme that synthesises S-adenosylmethionine (SAM) from ATP and methionine in organisms. While MAT has been extensively studied in plant development and responses to abiotic stress, its role in plant fertilization, particularly in pear pollen tube growth, has been scarcely researched. Here, we demonstrate that the homologous gene of AtMAT3 in pear, PbrMAT3, is positively involved in pear pollen tube elongation. PbrMAT3 is predominantly expressed in pear pollen. Transient knockdown of PbrMAT3 inhibits pollen tube growth. Ethionine, a toxic methionine analogue, suppressed pollen tube growth in control samples but had no inhibitory effect on PbrMAT3-knockdown pollen tubes, suggesting increased methionine accumulation in the latter. However, this accumulation is not responsible for the observed growth inhibition. PbrMAT3 interacts with a pectin lyase-like protein, PbrPLL1, both in vivo and in vitro. Transient knockdown of PbrPLL1 promotes pollen tube growth, suggesting its negative role in pear pollen tube elongation. Additionally, the pectate lyase activity of the pear pollen tube was increased when PbrMAT3 was knocked down. Thus, the inhibition of pollen tube growth due to PbrMAT3 knockdown is not caused by methionine accumulation but may be mediated by PbrPLL1. This study provides new insight into the relationship between S-adenosylmethionine synthesis and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhiqi Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Lin Guo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Perlinska AP, Sikora M, Sulkowska JI. Everything AlphaFold tells us about protein knots. J Mol Biol 2024; 436:168715. [PMID: 39029890 DOI: 10.1016/j.jmb.2024.168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in Machine Learning methods in structural biology opened up new perspectives for protein analysis. Utilizing these methods allows us to go beyond the limitations of empirical research, and take advantage of the vast amount of generated data. We use a complete set of potentially knotted protein models identified in all high-quality predictions from the AlphaFold Database to search for any common trends that describe them. We show that the vast majority of knotted proteins have 31 knot and that the presence of knots is preferred in neither Bacteria, Eukaryota, or Archaea domains. On the contrary, the percentage of knotted proteins in any given proteome is around 0.4%, regardless of the taxonomical group. We also verified that the organism's living conditions do not impact the number of knotted proteins in its proteome, as previously expected. We did not encounter an organism without a single knotted protein. What is more, we found four universally present families of knotted proteins in Bacteria, consisting of SAM synthase, and TrmD, TrmH, and RsmE methyltransferases.
Collapse
Affiliation(s)
- Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Maciej Sikora
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland.
| |
Collapse
|
5
|
Barone S, Cerchia C, Summa V, Brindisi M. Methyl-Transferase-Like Protein 16 (METTL16): The Intriguing Journey of a Key Epitranscriptomic Player Becoming an Emerging Biological Target. J Med Chem 2024; 67:14786-14806. [PMID: 39150226 DOI: 10.1021/acs.jmedchem.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Key epitranscriptomic players have been increasingly characterized for their structural features and their involvement in several diseases. Accordingly, the design and synthesis of novel epitranscriptomic modulators have started opening a glimmer for drug discovery. m6A is a reversible modification occurring on a specific site and is catalyzed by three sets of proteins responsible for opposite functions. Writers (e.g., methyl-transferase-like protein (METTL) 3/METTL14 complex and METTL16) introduce the methyl group on adenosine N-6, by transferring the methyl group from the methyl donor S-adenosyl-methionine (SAM) to the substrate. Despite the rapidly advancing drug discovery progress on METTL3/METTL14, the METTL16 m6A writer has been marginally explored so far. We herein provide the first comprehensive overview of structural and biological features of METTL16, highlighting the state of the art in the field of its biological and structural characterization. We also showcase initial efforts in the identification of structural templates and preliminary structure-activity relationships for METTL16 modulators.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
6
|
Fang N, Liu B, Pan Q, Gong T, Zhan M, Zhao J, Wang Q, Tang Y, Li Y, He J, Xiang T, Sun F, Lu L, Xia J. SMG5 Inhibition Restrains Hepatocellular Carcinoma Growth and Enhances Sorafenib Sensitivity. Mol Cancer Ther 2024; 23:1188-1200. [PMID: 38647536 DOI: 10.1158/1535-7163.mct-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma (HCC) has a pathogenesis that remains elusive with restricted therapeutic strategies and efficacy. This study aimed to investigate the role of SMG5, a crucial component in nonsense-mediated mRNA decay (NMD) that degrades mRNA containing a premature termination codon, in HCC pathogenesis and therapeutic resistance. We demonstrated an elevated expression of SMG5 in HCC and scrutinized its potential as a therapeutic target. Our findings revealed that SMG5 knockdown not only inhibited the migration, invasion, and proliferation of HCC cells but also influenced sorafenib resistance. Differential gene expression analysis between the control and SMG5 knockdown groups showed an upregulation of methionine adenosyltransferase 1A in the latter. High expression of methionine adenosyltransferase 1A, a catalyst for S-adenosylmethionine (SAM) production, as suggested by The Cancer Genome Atlas data, was indicative of a better prognosis for HCC. Further, an ELISA showed a higher concentration of SAM in SMG5 knockdown cell supernatants. Furthermore, we found that exogenous SAM supplementation enhanced the sensitivity of HCC cells to sorafenib alongside changes in the expression of Bax and Bcl-2, apoptosis-related proteins. Our findings underscore the important role of SMG5 in HCC development and its involvement in sorafenib resistance, highlighting it as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nan Fang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Qiuzhong Pan
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tingting Gong
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qijing Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jia He
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Fengze Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jianchuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
7
|
Wang Q, Lin W, Ni Y, Zhou J, Xu G, Han R. Engineering of Methionine Adenosyltransferase toward Mitigated Product Inhibition for Efficient Production of S-Adenosylmethionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16900-16910. [PMID: 39016109 DOI: 10.1021/acs.jafc.4c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
S-Adenosylmethionine (SAM) is a crucial metabolic intermediate playing irreplaceable roles in organismal activities. However, the synthesis of SAM by methionine adenosyltransferase (MAT) is hindered by low conversion due to severe product inhibition. Herein structure-guided semirational engineering was conducted on MAT from Escherichia coli (EcMAT) to mitigate the product inhibitory effect. Compared with the wild-type EcMAT, the best variant E56Q/Q105R exhibited an 8.13-fold increase in half maximal inhibitory concentration and a 4.46-fold increase in conversion (150 mM ATP and l-methionine), leading to a SAM titer of 47.02 g/L. Another variant, E56N/Q105R, showed superior thermostability with an impressive 85.30-fold increase in half-life (50 °C) value. Furthermore, molecular dynamics (MD) simulation results demonstrate that the alleviation in product inhibitory effect could be attributed to facilitated product release. This study offers molecular insights into the mitigated product inhibition, and provides valuable guidance for engineering MAT toward enhanced catalytic performance.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weibin Lin
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinghui Zhou
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
- National Research Center of Engineering and Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xu
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
| | - Ruizhi Han
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Čeksterytė V, Kaupinis A, Aleliūnas A, Navakauskienė R, Jaškūnė K. Composition of Proteins Associated with Red Clover ( Trifolium pratense) and the Microbiota Identified in Honey. Life (Basel) 2024; 14:862. [PMID: 39063616 PMCID: PMC11278118 DOI: 10.3390/life14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The nutritional composition of honey is determined by environmental conditions, and botanical and geographical origin. In addition to carbohydrates, honey also contain pollen grains, proteins, free amino acids, and minerals. Although the content of proteins in honey is low, they are an important component that confirms the authenticity and quality of honey; therefore, they became a popular study object. The aim of the study was to evaluate protein content and composition of monofloral red clover and rapeseed honey collected from five different districts of Lithuania. Forty-eight proteins were identified in five different origin honey samples by liquid chromatography. The number of red clover proteins identified in individual honey samples in monofloral red clover honey C3 was 39 in polyfloral honey S22-36, while in monofloral rapeseed honey S5, S15, and S23 there was 33, 32, and 40 respectively. Aphids' proteins and lactic acid bacteria were identified in all honey samples tested. The linear relationship and the strongest correlation coefficient (r = 0.97) were determined between the content of Apilactobacillus kunkeei and Apilactobacillus apinorum, as well as between the number of faba bean (Vicia faba) pollen and lactic acid bacteria (r = 0.943). The data show a strong correlation coefficient between the amount of lactic acid and aphid protein number (r = 0.693). More studies are needed to evaluate the relationship between the pollination efficiency of red clover by bees and the multiplicity of red clover proteins in honey protein, as well as microbiota diversity and the influence of nature or plant diversity on the occurrence of microbiota in honey.
Collapse
Affiliation(s)
- Violeta Čeksterytė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Algirdas Kaupinis
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Andrius Aleliūnas
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| | - Rūta Navakauskienė
- VU GMC—Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (A.K.); (R.N.)
| | - Kristina Jaškūnė
- LAMMC—Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto Ave. 1, 58344 Akademija, Lithuania; (V.Č.); (A.A.)
| |
Collapse
|
9
|
Guo L, Zhao J, Zhang X, Liu Y, Zhang A, Sun J, Fan X, Yan X, Pang Q. Bacillus licheniformis Jrh14-10 enhances alkaline tolerance in Arabidopsis thaliana by regulating crosstalk between ethylene and polyamine pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14411. [PMID: 38973028 DOI: 10.1111/ppl.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Yaning Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Jingzheng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaoya Fan
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | | |
Collapse
|
10
|
Kubo Y, Fukuoka H, Shoji K, Mori C, Sakurai K, Nishikawa M, Oshida K, Yamashiro Y, Kawabata T. Longitudinal Analysis of One-Carbon Metabolism-Related Metabolites in Maternal and Cord Blood of Japanese Pregnant Women. Nutrients 2024; 16:1765. [PMID: 38892698 PMCID: PMC11174998 DOI: 10.3390/nu16111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| | - Chisato Mori
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Chiba, Japan;
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan;
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Miyagi, Japan;
| | - Kyoichi Oshida
- Faculty of Beauty & Wellness, Professional University of Beauty & Wellness, 3-9-3 Ushikubo, Tsuzuki-ku, Yokohama 224-0012, Kanagawa, Japan;
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, 2-9-8-3F, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| |
Collapse
|
11
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Viola RE, Parungao GG, Blumenthal RM. A growth-based assay using fluorescent protein emission to screen for S-adenosylmethionine synthetase inhibitors. Drug Dev Res 2024; 85:e22122. [PMID: 37819020 DOI: 10.1002/ddr.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, Ohio, USA
| |
Collapse
|
13
|
Maffeo B, Panuzzo C, Moraca A, Cilloni D. A Leukemic Target with a Thousand Faces: The Mitochondria. Int J Mol Sci 2023; 24:13069. [PMID: 37685874 PMCID: PMC10487524 DOI: 10.3390/ijms241713069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.
Collapse
Affiliation(s)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (B.M.); (A.M.); (D.C.)
| | | | | |
Collapse
|
14
|
Pajares MÁ. Amino Acid Metabolism and Disease. Int J Mol Sci 2023; 24:11935. [PMID: 37569311 PMCID: PMC10418717 DOI: 10.3390/ijms241511935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The origin of life is still a matter of debate, and several hypotheses have been proposed to explain how the building blocks leading to the minimal cell were formed [...].
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Coppo L, Scheggi S, DeMontis G, Priora R, Frosali S, Margaritis A, Summa D, Di Giuseppe D, Ulivelli M, Di Simplicio P. Does Risk of Hyperhomocysteinemia Depend on Thiol-Disulfide Exchange Reactions of Albumin and Homocysteine? Antioxid Redox Signal 2023; 38:920-958. [PMID: 36352822 DOI: 10.1089/ars.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 μM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simona Scheggi
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Graziella DeMontis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Raffaella Priora
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Simona Frosali
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Margaritis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Summa
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Danila Di Giuseppe
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Surgery, Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Paolo Di Simplicio
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
17
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Chaudhary D, Singh A, Marzuki M, Ghosh A, Kidwai S, Gosain TP, Chawla K, Gupta SK, Agarwal N, Saha S, Kumar Y, Thakur KG, Singhal A, Singh R. Identification of small molecules targeting homoserine acetyl transferase from Mycobacterium tuberculosis and Staphylococcus aureus. Sci Rep 2022; 12:13801. [PMID: 35963878 PMCID: PMC9376091 DOI: 10.1038/s41598-022-16468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
There is an urgent need to validate new drug targets and identify small molecules that possess activity against both drug-resistant and drug-sensitive bacteria. The enzymes belonging to amino acid biosynthesis have been shown to be essential for growth in vitro, in vivo and have not been exploited much for the development of anti-tubercular agents. Here, we have identified small molecule inhibitors targeting homoserine acetyl transferase (HSAT, MetX, Rv3341) from M. tuberculosis. MetX catalyses the first committed step in L-methionine and S-adenosyl methionine biosynthesis resulting in the formation of O-acetyl-homoserine. Using CRISPRi approach, we demonstrate that conditional repression of metX resulted in inhibition of M. tuberculosis growth in vitro. We have determined steady state kinetic parameters for the acetylation of L-homoserine by Rv3341. We show that the recombinant enzyme followed Michaelis-Menten kinetics and utilizes both acetyl-CoA and propionyl-CoA as acyl-donors. High-throughput screening of a 2443 compound library resulted in identification of small molecule inhibitors against MetX enzyme from M. tuberculosis. The identified lead compounds inhibited Rv3341 enzymatic activity in a dose dependent manner and were also active against HSAT homolog from S. aureus. Molecular docking of the identified primary hits predicted residues that are essential for their binding in HSAT homologs from M. tuberculosis and S. aureus. ThermoFluor assay demonstrated direct binding of the identified primary hits with HSAT proteins. Few of the identified small molecules were able to inhibit growth of M. tuberculosis and S. aureus in liquid cultures. Taken together, our findings validated HSAT as an attractive target for development of new broad-spectrum anti-bacterial agents that should be effective against drug-resistant bacteria.
Collapse
Affiliation(s)
- Deepika Chaudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avantika Singh
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mardiana Marzuki
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Saqib Kidwai
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Kiran Chawla
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore.,Singapore Immunology Network (SIgN), (A*STAR), Singapore, 138648, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India. .,Tuberculosis Research Laboratory, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, India.
| |
Collapse
|
19
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
20
|
Kleiner D, Shapiro Tuchman Z, Shmulevich F, Shahar A, Zarivach R, Kosloff M, Bershtein S. Evolution of homo-oligomerization of methionine S-adenosyltransferases is replete with structure-function constrains. Protein Sci 2022; 31:e4352. [PMID: 35762725 PMCID: PMC9202080 DOI: 10.1002/pro.4352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Homomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking. How is the diversification of protein interfaces linked to variation in functional regulation and structural integrity of homomeric complexes? To address this question, we studied quaternary structure evolution of bacterial methionine S-adenosyltransferases (MATs)-dihedral homotetramers formed along a large and conserved dimeric interface harboring two active sites, and a small, recently evolved, interdimeric interface. Here, we show that diversity in the physicochemical properties of small interfaces is directly linked to variability in the kinetic stability of MAT quaternary complexes and in modes of their functional regulation. Specifically, hydrophobic interactions within the small interface of Escherichia coli MAT render the functional homotetramer kinetically stable yet impose severe aggregation constraints on complex assembly. These constraints are alleviated by electrostatic interactions that accelerate dimer-dimer assembly. In contrast, Neisseria gonorrhoeae MAT adopts a nonfunctional dimeric state due to the low hydrophobicity of its small interface and the high flexibility of its active site loops, which perturbs small interface integrity. Remarkably, in the presence of methionine and ATP, N. gonorrhoeae MAT undergoes substrate-induced assembly into a functional tetrameric state. We suggest that evolution acts on the interdimeric interfaces of MATs to tailor the regulation of their activity and stability to unique organismal needs.
Collapse
Affiliation(s)
- Daniel Kleiner
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ziva Shapiro Tuchman
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Fannia Shmulevich
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Anat Shahar
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raz Zarivach
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Macromolecular Crystallography and Cryo‐EM Research Center, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Shimon Bershtein
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
21
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
22
|
Hübner V, Hannibal L, Janzen N, Grünert SC, Freisinger P. Methionine Adenosyltransferase I/III Deficiency Detected by Newborn Screening. Genes (Basel) 2022; 13:genes13071163. [PMID: 35885946 PMCID: PMC9323693 DOI: 10.3390/genes13071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase I/III deficiency is an inborn error of metabolism due to mutations in the MAT1A gene. It is the most common cause of hypermethioninemia in newborn screening. Heterozygotes are often asymptomatic. In contrast, homozygous or compound heterozygous individuals can develop severe neurological symptoms. Less than 70 cases with biallelic variants have been reported worldwide. A methionine-restricted diet is recommended if methionine levels are above 500−600 µmol/L. In this study, we report on a female patient identified with elevated methionine concentrations in a pilot newborn screening program. The patient carries a previously described variant c.1132G>A (p.Gly378Ser) in homozygosity. It is located at the C-terminus of MAT1A. In silico analysis suggests impaired protein stability by β-turn disruption. On a methionine-restricted diet, her serum methionine concentration ranged between 49−605 µmol/L (median 358 µmol/L). Her clinical course was characterized by early-onset muscular hypotonia, mild developmental delay, delayed myelination and mild periventricular diffusion interference in MRI. At 21 months, the girl showed age-appropriate neurological development, but progressive diffusion disturbances in MRI. Little is known about the long-term outcome of this disorder and the necessity of treatment. Our case demonstrates that neurological symptoms can be transient and even patients with initial neurologic manifestations can show normal development under dietary management.
Collapse
Affiliation(s)
- Vanessa Hübner
- Department of Pediatrics, Metabolic Disease Center, Klinikum Reutlingen, Steinenbergstr. 31, 72764 Reutlingen, Germany;
- Correspondence: (V.H.); (S.C.G.)
| | - Luciana Hannibal
- Department of General Pediatrics, Adolescent Medicine and Neonatology, University Medical Center, Faculty of Medicine, University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany;
| | - Nils Janzen
- Screening Laboratory Hannover, Box 91 10 09, 30430 Hannover, Germany;
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Janusz-Korczak-Allee 12, 30173 Hannover, Germany
- Department of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, University Medical Center, Faculty of Medicine, University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany;
- Correspondence: (V.H.); (S.C.G.)
| | - Peter Freisinger
- Department of Pediatrics, Metabolic Disease Center, Klinikum Reutlingen, Steinenbergstr. 31, 72764 Reutlingen, Germany;
| |
Collapse
|
23
|
Liu D, Shu X, Xiang S, Li T, Huang C, Cheng M, Cao J, Hua Y, Liu J. N4 -allyldeoxycytidine: A New DNA Tag with Chemical Sequencing Power for Pinpointing Labelling Sites, Mapping Epigenetic Mark, and in situ Imaging. Chembiochem 2022; 23:e202200143. [PMID: 35438823 DOI: 10.1002/cbic.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Indexed: 11/08/2022]
Abstract
DNA tagging with base analogs has found numerous applications. To precisely record the DNA labelling information, it will be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases upon a mild, efficient and bioorthognal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), to label and identify DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3, N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic mark N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Together,our study sheds light on the design of next generation DNA tags with chemical sequencing power.
Collapse
Affiliation(s)
- Donghong Liu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Xiao Shu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Siying Xiang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Tengwei Li
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Chenyang Huang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Mohan Cheng
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Jie Cao
- Zhejiang University, Life Sciences Institute; Department of Polymer Science and Engineering, CHINA
| | - Yuejin Hua
- Zhejiang University, he MOE Key Laboratory of Biosystems Homeostasis & Protection; Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, CHINA
| | - Jianzhao Liu
- Zhejiang University, Department of Polymer Science and Engineering, Zheda road 38, 310007, hangzhou, CHINA
| |
Collapse
|
24
|
Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Analogs of S-Adenosyl- L-Methionine in Studies of Methyltransferases. Mol Biol 2022; 56:229-250. [PMID: 35440827 PMCID: PMC9009987 DOI: 10.1134/s002689332202011x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S‑adenosyl‑L‑methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.
Collapse
Affiliation(s)
- A. Yu. Rudenko
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - S. S. Mariasina
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - V. I. Polshakov
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
25
|
Kaushik S, Yadav J, Das S, Singh S, Jyoti A, Srivastava VK, Sharma V, Kumar S, Kumar S. Deciphering the Role of S-adenosyl Homocysteine Nucleosidase in Quorum
Sensing Mediated Biofilm Formation. Curr Protein Pept Sci 2022; 23:211-225. [DOI: 10.2174/1389203723666220519152507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
S-adenosylhomocysteine nucleosidase (MTAN) is a protein that plays a crucial role in several
pathways of bacteria that are essential for its survival and pathogenesis. In addition to the role of
MTAN in methyl-transfer reactions, methionine biosynthesis, and polyamine synthesis, MTAN is also
involved in bacterial quorum sensing (QS). In QS, chemical signaling autoinducer (AI) secreted by
bacteria assists cell to cell communication and is regulated in a cell density-dependent manner. They
play a significant role in the formation of bacterial biofilm. MTAN plays a major role in the synthesis
of these autoinducers. Signaling molecules secreted by bacteria, i.e., AI-1 are recognized as acylated
homoserine lactones (AHL) that function as signaling molecules within bacteria. QS enables bacteria
to establish physical interactions leading to biofilm formation. The formation of biofilm is a primary
reason for the development of multidrug-resistant properties in pathogenic bacteria like Enterococcus
faecalis (E. faecalis). In this regard, inhibition of E. faecalis MTAN (EfMTAN) will block the QS and
alter the bacterial biofilm formation. In addition to this, it will also block methionine biosynthesis and
many other critical metabolic processes. It should also be noted that inhibition of EfMTAN will not
have any effect on human beings as this enzyme is not present in humans. This review provides a comprehensive
overview of the structural-functional relationship of MTAN. We have also highlighted the
current status, enigmas that warrant further studies, and the prospects for identifying potential inhibitors
of EfMTAN for the treatment of E. faecalis infections. In addition to this, we have also reported
structural studies of EfMTAN using homology modeling and highlighted the putative binding sites of
the protein.
Collapse
Affiliation(s)
- Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Structural Biology Lab, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Suraj Singh
- Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | | | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Maharashtra, India
| |
Collapse
|
26
|
Charidemou E, Tsiarli MA, Theophanous A, Yilmaz V, Pitsouli C, Strati K, Griffin JL, Kirmizis A. Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biol 2022; 20:22. [PMID: 35057804 PMCID: PMC8781613 DOI: 10.1186/s12915-021-01225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Maria A Tsiarli
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Andria Theophanous
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Vural Yilmaz
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Hammersmith Campus, UK Dementia Research Institute at Imperial College, Burlington Danes Building, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Section of Biomolecular Medicine, Department of Metabolism, Division of Systems Medicine, Digestion and Reproduction, The Sir Alexander Fleming Building, Exhibition Road, South Kensington, Imperial College London, London, SW7 2AZ, UK
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
27
|
Chouhan BPS, Gade M, Martinez D, Toledo‐Patino S, Laurino P. Implications of divergence of methionine adenosyltransferase in archaea. FEBS Open Bio 2022; 12:130-145. [PMID: 34655277 PMCID: PMC8727953 DOI: 10.1002/2211-5463.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosyl methionine from l-methionine and ATP. MAT enzymes are ancient, believed to share a common ancestor, and are highly conserved in all three domains of life. However, the sequences of archaeal MATs show considerable divergence compared with their bacterial and eukaryotic counterparts. Furthermore, the structural significance and functional significance of this sequence divergence are not well understood. In the present study, we employed structural analysis and ancestral sequence reconstruction to investigate archaeal MAT divergence. We observed that the dimer interface containing the active site (which is usually well conserved) diverged considerably between the bacterial/eukaryotic MATs and archaeal MAT. A detailed investigation of the available structures supports the sequence analysis outcome: The protein domains and subdomains of bacterial and eukaryotic MAT are more similar than those of archaea. Finally, we resurrected archaeal MAT ancestors. Interestingly, archaeal MAT ancestors show substrate specificity, which is lost during evolution. This observation supports the hypothesis of a common MAT ancestor for the three domains of life. In conclusion, we have demonstrated that archaeal MAT is an ideal system for studying an enzyme family that evolved differently in one domain compared with others while maintaining the same catalytic activity.
Collapse
Affiliation(s)
- Bhanu Pratap Singh Chouhan
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Madhuri Gade
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Desirae Martinez
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Saacnicteh Toledo‐Patino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
28
|
Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. JACS AU 2021; 1:2349-2360. [PMID: 34977903 PMCID: PMC8715544 DOI: 10.1021/jacsau.1c00464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.
Collapse
Affiliation(s)
- Madhuri Gade
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Li Lynn Tan
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Adam M. Damry
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Mahakaran Sandhu
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Joseph S. Brock
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Andie Delaney
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Alejandro Villar-Briones
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra 2601, ACT, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra 2601, ACT, Australia
| | - Paola Laurino
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| |
Collapse
|
29
|
Polar Interactions at the Dimer-Dimer Interface of Methionine Adenosyltransferase MAT I Control Tetramerization. Int J Mol Sci 2021; 22:ijms222413206. [PMID: 34948004 PMCID: PMC8703375 DOI: 10.3390/ijms222413206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Catalytic MATα1 subunits associate into kinetically distinct homo-dimers (MAT III) and homo-tetramers (MAT I) that synthesize S-adenosylmethionine in the adult liver. Pathological reductions in S-adenosylmethionine levels correlate with MAT III accumulation; thus, it is important to know the determinants of dimer–dimer associations. Here, polar interactions (<3.5 Å) at the rat MAT I dimer–dimer interface were disrupted by site-directed mutagenesis. Heterologous expression rendered decreased soluble mutant MATα1 levels that appeared mostly as dimers. Substitutions at the B1–B2 or B3–C1 β-strand loops, or changes in charge on helix α2 located behind, induced either MAT III or MAT I accumulation. Notably, double mutants combining neutral changes on helix α2 with substitutions at either β-strand loop further increased MAT III content. Mutations had negligible impact on secondary or tertiary protein structure, but induced changes of 5–10 °C in thermal stability. All mutants preserved tripolyphosphatase activity, although AdoMet synthesis was only detected in single mutants. Kinetic parameters were altered in all purified proteins, their AdoMet synthesis Vmax and methionine affinities correlating with the association state induced by the corresponding mutations. In conclusion, polar interactions control MATα1 tetramerization and kinetics, diverse effects being induced by changes on opposite β-sheet loops putatively leading to subtle variations in central domain β-sheet orientation.
Collapse
|
30
|
Zhu H, He M, Jahan MS, Wu J, Gu Q, Shu S, Sun J, Guo S. CsCDPK6, a CsSAMS1-Interacting Protein, Affects Polyamine/Ethylene Biosynthesis in Cucumber and Enhances Salt Tolerance by Overexpression in Tobacco. Int J Mol Sci 2021; 22:11133. [PMID: 34681792 PMCID: PMC8538082 DOI: 10.3390/ijms222011133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine synthetase (SAMS) plays a crucial role in regulating stress responses. In a recent study, we found that overexpression of the cucumber gene CsSAMS1 in tobacco can affect the production of polyamines and ethylene, as well as enhancing the salt stress tolerance of tobacco, but the exact underlying mechanisms are elusive. The calcium-dependent protein kinase (CDPK) family is ubiquitous in plants and performs different biological functions in plant development and response to abiotic stress. We used a yeast two-hybrid system to detect whether the protein CDPK6 could interact with SAMS1 and verified their interaction by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. To further explore the function of cucumber CDPK6, we isolated and characterized CsCDPK6 in cucumber. CsCDPK6 is a membrane protein that is highly expressed under various abiotic stresses, including salt stress. It was also observed that ectopic overexpression of CsCDPK6 in tobacco enhanced salt tolerance. Under salt stress, CsCDPK6-overexpressing lines enhanced the survival rate and reduced stomatal apertures in comparison to wild-type (WT) lines, as well as lowering malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents and causing less relative electrolyte leakage. Moreover, repression of CsCDPK6 expression by virus-induced gene silencing (VIGS) in cucumber seedling cotyledons under salt stress increased ethylene production and promoted the transformation from putrescine (Put) to spermidine (Spd) and spermine (Spm). These findings shed light on the interaction of CsSAMS1 and CsCDPK6, which functions positively to regulate salt stress in plants.
Collapse
Affiliation(s)
- Heyuan Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Meiwen He
- Institute of China Agricultural University Press, China Agricultural University, Beijing 100094, China;
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China;
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| |
Collapse
|
31
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
32
|
Fultang L, Gneo L, De Santo C, Mussai FJ. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front Oncol 2021; 11:674720. [PMID: 34094976 PMCID: PMC8174708 DOI: 10.3389/fonc.2021.674720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Luciana Gneo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis J Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
33
|
Michailidou F, Rentmeister A. Harnessing methylation and AdoMet-utilising enzymes for selective modification in cascade reactions. Org Biomol Chem 2021; 19:3756-3762. [PMID: 33949607 PMCID: PMC7611180 DOI: 10.1039/d1ob00354b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enzyme-mediated methylation is a very important reaction in nature, yielding a wide range of modified natural products, diversifying small molecules and fine-tuning the activity of biomacromolecules. The field has attracted much attention over the recent years and interesting applications of the dedicated enzymes in biocatalysis and biomolecular labelling have emerged. In this review article, we summarise the concepts and recent advances in developing (chemo)-enzymatic cascades for selective methylation, alkylation and photocaging as tools to study biological methylation and as biotransformations to generate site-specifically alkylated products.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 481\49 Münster, Germany.
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 481\49 Münster, Germany.
| |
Collapse
|
34
|
Morellato AE, Umansky C, Pontel LB. The toxic side of one-carbon metabolism and epigenetics. Redox Biol 2021; 40:101850. [PMID: 33418141 PMCID: PMC7804977 DOI: 10.1016/j.redox.2020.101850] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
One-carbon metabolism is a central metabolic hub that provides one-carbon units for essential biosynthetic reactions and for writing epigenetics marks. The leading role in this hub is performed by the one-carbon carrier tetrahydrofolate (THF), which accepts formaldehyde usually from serine generating one-carbon THF intermediates in a set of reactions known as the folate or one-carbon cycle. THF derivatives can feed one-carbon units into purine and thymidine synthesis, and into the methionine cycle that produces the universal methyl-donor S-adenosylmethionine (AdoMet). AdoMet delivers methyl groups for epigenetic methylations and it is metabolized to homocysteine (Hcy), which can enter the transsulfuration pathway for the production of cysteine and lastly glutathione (GSH), the main cellular antioxidant. This vital role of THF comes to an expense. THF and other folate derivatives are susceptible to oxidative breakdown releasing formaldehyde, which can damage DNA -a consequence prevented by the Fanconi Anaemia DNA repair pathway. Epigenetic demethylations catalysed by lysine-specific demethylases (LSD) and Jumonji histone demethylases can also release formaldehyde, constituting a potential threat for genome integrity. In mammals, the toxicity of formaldehyde is limited by a metabolic route centred on the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which oxidizes formaldehyde conjugated to GSH, lastly generating formate. Remarkably, this formate can be a significant source of one-carbon units, thus defining a formaldehyde cycle that likely restricts the toxicity of one-carbon metabolism and epigenetic demethylations. This work describes recent advances in one-carbon metabolism and epigenetics, focusing on the steps that involve formaldehyde flux and that might lead to cytotoxicity affecting human health.
Collapse
Affiliation(s)
- Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Niland CN, Ghosh A, Cahill SM, Schramm VL. Mechanism and Inhibition of Human Methionine Adenosyltransferase 2A. Biochemistry 2021; 60:791-801. [PMID: 33656855 DOI: 10.1021/acs.biochem.0c00998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is synthesized by the MAT2A isozyme of methionine adenosyltransferase in most human tissues and in cancers. Its contribution to epigenetic control has made it a target for anticancer intervention. A recent kinetic isotope effect analysis of MAT2A demonstrated a loose nucleophilic transition state. Here we show that MAT2A has a sequential mechanism with a rate-limiting step of formation of AdoMet, followed by rapid hydrolysis of the β-γ bond of triphosphate, and rapid release of phosphate and pyrophosphate. MAT2A catalyzes the slow hydrolysis of both ATP and triphosphate in the absence of other reactants. Positional isotope exchange occurs with 18O as the 5'-oxygen of ATP. Loss of the triphosphate is sufficiently reversible to permit rotation and recombination of the α-phosphoryl group of ATP. Adenosine (α-β or β-γ)-imido triphosphates are slow substrates, and the respective imido triphosphates are inhibitors. The hydrolytically stable (α-β, β-γ)-diimido triphosphate (PNPNP) is a nanomolar inhibitor. The MAT2A protein structure is highly stabilized against denaturation by binding of PNPNP. A crystal structure of MAT2A with 5'-methylthioadenosine and PNPNP shows the ligands arranged appropriately in the ATP binding site. Two magnesium ions chelate the α- and γ-phosphoryl groups of PNPNP. The β-phosphoryl oxygen is in contact with an essential potassium ion. Imidophosphate derivatives provide contact models for the design of catalytic site ligands for MAT2A.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
36
|
Orłowska R, Zimny J, Bednarek PT. Copper Ions Induce DNA Sequence Variation in Zygotic Embryo Culture-Derived Barley Regenerants. FRONTIERS IN PLANT SCIENCE 2021; 11:614837. [PMID: 33613587 PMCID: PMC7889974 DOI: 10.3389/fpls.2020.614837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
In vitro tissue culture could be exploited to study cellular mechanisms that induce sequence variation. Altering the metal ion composition of tissue culture medium affects biochemical pathways involved in tissue culture-induced variation. Copper ions are involved in the mitochondrial respiratory chain and Yang cycle. Copper ions may participate in oxidative mutations, which may contribute to DNA sequence variation. Silver ions compete with copper ions to bind to the complex IV subunit of the respiratory chain, thus affecting the Yang cycle and DNA methylation. The mechanisms underlying somaclonal variation are unknown. In this study, we evaluated embryo-derived barley regenerants obtained from a single double-haploid plant via embryo culture under varying copper and silver ion concentrations and different durations of in vitro culture. Morphological variation among regenerants and the donor plant was not evaluated. Methylation-sensitive Amplified Fragment Length Polymorphism analysis of DNA samples showed DNA methylation pattern variation in CG and CHG (H = A, C, or T) sequence contexts. Furthermore, modification of in vitro culture conditions explained DNA sequence variation, demethylation, and de novo methylation in the CHG context, as indicated by analysis of variance. Linear regression indicated that DNA sequence variation was related to de novo DNA methylation in the CHG context. Mediation analysis showed the role of copper ions as a mediator of sequence variation in the CHG context. No other contexts showed a significant sequence variation in mediation analysis. Silver ions did not act as a mediator between any methylation contexts and sequence variation. Thus, incorporating copper ions in the induction medium should be treated with caution.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute–National Research Institute, Błonie, Poland
| | | | | |
Collapse
|
37
|
Xiang S, Gao M, Cao J, Shu X, Cheng M, Wang F, Deng T, Liu J. Precise identification of an RNA methyltransferase's substrate modification site. Chem Commun (Camb) 2021; 57:2499-2502. [DOI: 10.1039/d0cc08260k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple and nonradioactive method to probe the substrate modification site and structural preference of an RNA methyltransferase.
Collapse
Affiliation(s)
- Siying Xiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Mohan Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Fengqin Wang
- College of Animal Sciences
- Key Laboratory of Animal Nutrition & Feed Sciences
- Ministry of Agriculture
- Zhejiang University
- Hangzhou
| | - Ting Deng
- State Key Laboratory of Genetic Engineering
- Collaborative Innovation Centre of Genetics and Development
- Department of Biochemistry
- Institute of Plant Biology
- School of Life Sciences
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
38
|
Michailidou F, Klöcker N, Cornelissen NV, Singh RK, Peters A, Ovcharenko A, Kümmel D, Rentmeister A. Maßgeschneiderte SAM‐Synthetasen zur enzymatischen Herstellung von AdoMet‐Analoga mit Photoschutzgruppen und zur reversiblen DNA‐Modifizierung in Kaskadenreaktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Freideriki Michailidou
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
- Derzeitige Adresse: ETH Zürich Fachbereich Chemie und angewandte Biowissenschaften Laboratorium für Organische Chemie Vladimir-Prelog-Weg 1–5/10 8093 Zürich Schweiz
| | - Nils Klöcker
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Nicolas V. Cornelissen
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Rohit K. Singh
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Aileen Peters
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Anna Ovcharenko
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Daniel Kümmel
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| | - Andrea Rentmeister
- Fachbereich Chemie Institut für Biochemie Universität von Münster Corrensstr. 36 48149 Münster Deutschland
| |
Collapse
|
39
|
Michailidou F, Klöcker N, Cornelissen NV, Singh RK, Peters A, Ovcharenko A, Kümmel D, Rentmeister A. Engineered SAM Synthetases for Enzymatic Generation of AdoMet Analogs with Photocaging Groups and Reversible DNA Modification in Cascade Reactions. Angew Chem Int Ed Engl 2020; 60:480-485. [PMID: 33017502 PMCID: PMC7839696 DOI: 10.1002/anie.202012623] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Methylation and demethylation of DNA, RNA and proteins has emerged as a major regulatory mechanism. Studying the function of these modifications would benefit from tools for their site‐specific inhibition and timed removal. S‐Adenosyl‐L‐methionine (AdoMet) analogs in combination with methyltransferases (MTases) have proven useful to map or block and release MTase target sites, however their enzymatic generation has been limited to aliphatic groups at the sulfur atom. We engineered a SAM synthetase from Cryptosporidium hominis (PC‐ChMAT) for efficient generation of AdoMet analogs with photocaging groups that are not accepted by any WT MAT reported to date. The crystal structure of PC‐ChMAT at 1.87 Å revealed how the photocaged AdoMet analog is accommodated and guided engineering of a thermostable MAT from Methanocaldococcus jannaschii. PC‐MATs were compatible with DNA‐ and RNA‐MTases, enabling sequence‐specific modification (“writing”) of plasmid DNA and light‐triggered removal (“erasing”).
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany.,Current address: ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Nils Klöcker
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Nicolas V Cornelissen
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Rohit K Singh
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Aileen Peters
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Anna Ovcharenko
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Daniel Kümmel
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Corrensstr. 36, 48149, Münster, Germany
| |
Collapse
|
40
|
Haws SA, Leech CM, Denu JM. Metabolism and the Epigenome: A Dynamic Relationship. Trends Biochem Sci 2020; 45:731-747. [DOI: 10.1016/j.tibs.2020.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
|
41
|
Gateau H, Blanckaert V, Veidl B, Burlet-Schiltz O, Pichereaux C, Gargaros A, Marchand J, Schoefs B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 2020; 137:107588. [PMID: 33147566 DOI: 10.1016/j.bioelechem.2020.107588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
This study aims to employ a pulsed electric field (PEF) treatment for the biocompatible (non-destructive) extraction of proteins from living cells of the green microalga Haematococcus pluvialis. Using a field strength of 1 kV cm-1, we achieved the extraction of 10.2 µg protein per mL of culture, which corresponded to 46% of the total amount of proteins that could be extracted by complete destructive extraction (i.e. the grinding of biomass with glass beads). We found that the extraction yield was not improved by stronger field strengths and was not dependent on the pulse frequency. A biocompatibility index (BI) was defined as the relative abundance of cells that remained alive after the PEF treatment. This index relied on measurements of several physiological parameters after a PEF treatment. It was found that at 1 kV cm-1 that cultures recovered after 72 h. Therefore, these PEF conditions constituted a good compromise between protein extraction efficiency and culture survival. To characterize the PEF treatment further at a molecular level, mass spectrometry-based proteomics analyses of PEF-prepared extracts was used. This led to the identification of 52 electro-extracted proteins. Of these, only 16 proteins were identified when proteins were extracted with PEF at 0.5 cm-1. They belong to core metabolism, stress response and cell movement. Unassigned proteins were also extracted. Their physiological implications and possible utilization in food as alimentary complements are discussed.
Collapse
Affiliation(s)
- Hélène Gateau
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Vincent Blanckaert
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, IUT de Laval, Le Mans University, Le Mans, France
| | - Brigitte Veidl
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Carole Pichereaux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France; Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France
| | | | - Justine Marchand
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France.
| |
Collapse
|
42
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [PMID: 32105812 DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
43
|
Fan L, Hou F, Idris Muhammad A, Bilyaminu Ismail B, Lv R, Ding T, Liu D. Proteomic responses of spores of Bacillus subtilis to thermosonication involve large-scale alterations in metabolic pathways. ULTRASONICS SONOCHEMISTRY 2020; 64:104992. [PMID: 32018137 DOI: 10.1016/j.ultsonch.2020.104992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Thermosonication (TS) impacts numerous characteristics of spores, such as morphology, cell metabolism, and stress resistance. However, relevant mechanisms need to be clarified. In the present study, the effect of TS treatment on Bacillus subtilis spores was investigated at phenotypic and proteomic levels. The results showed that TS treatment induced significant changes to spores in growth kinetics and morphology. A total of 167 differentially expressed proteins (DEPs) were obtained after TS treatment at 6.67 W/mL and 80 °C. Among these proteins, 80 were up-regulated, whereas 87 were down-regulated. These DEPs were classed into 20 functional categories. Enrichment analysis of the proteome revealed that the major categories were associated with metabolic functions, including energy metabolic processes, amino acids biosynthesis and metabolism, translation and ribosomal protein. In summary, B. subtilis spores showed alteration primarily in the proteins that were associated with metabolism under TS treatment. These findings could be applied to the development and optimization of TS-based sporicidal treatment.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Furong Hou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruiling Lv
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Sekula B, Ruszkowski M, Dauter Z. S-adenosylmethionine synthases in plants: Structural characterization of type I and II isoenzymes from Arabidopsis thaliana and Medicago truncatula. Int J Biol Macromol 2020; 151:554-565. [PMID: 32057875 DOI: 10.1016/j.ijbiomac.2020.02.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
S-adenosylmethionine synthases (MATs) are responsible for production of S-adenosylmethionine, the cofactor essential for various methylation reactions, production of polyamines and phytohormone ethylene, etc. Plants have two distinct MAT types (I and II). This work presents the structural analysis of MATs from Arabidopsis thaliana (AtMAT1 and AtMAT2, both type I) and Medicago truncatula (MtMAT3a, type II), which, unlike most MATs from other domains of life, are dimers where three-domain subunits are sandwiched flat with one another. Although MAT types are very similar, their subunits are differently oriented within the dimer. Structural snapshots along the enzymatic reaction reveal the exact conformation of precatalytic methionine in the active site and show a binding niche, characteristic only for plant MATs, that may serve as a lock of the gate loop. Nevertheless, plants, in contrary to mammals, lack the MAT regulatory subunit, and the regulation of plant MAT activity is still puzzling. Our structures open a possibility of an allosteric activity regulation of type I plant MATs by linear compounds, like polyamines, which would tighten the relationship between S-adenosylmethionine and polyamine biosynthesis.
Collapse
Affiliation(s)
- Bartosz Sekula
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA.
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, USA
| |
Collapse
|
45
|
Zhang Z, Wang Y, Ma D, Cheng W, Sun Y, Jiang T. Analysis of five cases of hypermethioninemia diagnosed by neonatal screening. J Pediatr Endocrinol Metab 2020; 33:47-52. [PMID: 31851615 DOI: 10.1515/jpem-2019-0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 11/15/2022]
Abstract
Background Hypermethioninemia is a group of diseases with elevated plasma methionine (Met) caused by hereditary and non-hereditary factors, although it could also be caused by administration of the amino acid Met. Among these, the disease caused by methionine adenosyltransferase (MAT) I/III deficiency is the most common, and is characterized by persistent, isolated hypermethioninemia as well as slightly elevated homocysteine. S-adenosylmethionine is the product of Met, which can be used as a direct methyl donor of many substances, such as choline and nucleotide, and essential in the development of the body. Among the patients, most have no symptoms, and a small number have central nervous system complications with high levels of plasma Met, including mental retardation, cognitive impairment and special breathing odor. Methods In this study, five cases of MAT I/III deficiency were diagnosed and retrospectively analyzed among 220,000 newborns. Patients with high Met levels received a Met-restricted diet treatment. Results and conclusions MAT I/III deficiency is a common reason for Met elevation in neonatal screening by tandem mass spectrometry (MS/MS), which needs long-term follow-up except for these patients with explicitly benign mutations.
Collapse
Affiliation(s)
- Zhilei Zhang
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanyun Wang
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Cheng
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
46
|
Minici C, Mosca L, Ilisso CP, Cacciapuoti G, Porcelli M, Degano M. Structures of catalytic cycle intermediates of the Pyrococcus furiosus methionine adenosyltransferase demonstrate negative cooperativity in the archaeal orthologues. J Struct Biol 2020; 210:107462. [PMID: 31962159 DOI: 10.1016/j.jsb.2020.107462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/21/2023]
Abstract
Methionine adenosyltransferases catalyse the biosynthesis of S-adenosylmethionine, the primary methyl group donor in biochemical reactions, through the condensation of methionine and ATP. Here, we report the structural analysis of the Pyrococcus furiosus methionine adenosyltransferase (PfMAT) captured in the unliganded, substrate- and product-bound states. The conformational changes taking place during the enzymatic catalytic cycle are allosterically propagated by amino acid residues conserved in the archaeal orthologues to induce an asymmetric dimer structure. The distinct occupancy of the active sites within a PfMAT dimer is consistent with a half-site reactivity that is mediated by a product-induced negative cooperativity. The structures of intermediate states of PfMAT reported here suggest a distinct molecular mechanism for S-adenosylmethionine synthesis in Archaea, likely consequence of the evolutionary pressure to achieve protein stability under extreme conditions.
Collapse
Affiliation(s)
- Claudia Minici
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy
| | - Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Paola Ilisso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
47
|
Kleiner D, Shmulevich F, Zarivach R, Shahar A, Sharon M, Ben-Nissan G, Bershtein S. The interdimeric interface controls function and stability of Ureaplasma urealiticum methionine S-adenosyltransferase. J Mol Biol 2019; 431:4796-4816. [PMID: 31520601 DOI: 10.1016/j.jmb.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Methionine S-adenosyltransferases (MATs) are predominantly homotetramers, comprised of dimers of dimers. The larger, highly conserved intradimeric interface harbors two active sites, making the dimer the obligatory functional unit. However, functionality of the smaller, more diverged, and recently evolved interdimeric interface is largely unknown. Here, we show that the interdimeric interface of Ureaplasmaurealiticum MAT has evolved to control the catalytic activity and structural integrity of the homotetramer in response to product accumulation. When all four active sites are occupied with the product, S-adenosylmethionine (SAM), binding of four additional SAM molecules to the interdimeric interface prompts a ∼45° shift in the dimer orientation and a concomitant ∼60% increase in the interface area. This rearrangement inhibits the enzymatic activity by locking the flexible active site loops in a closed state and renders the tetramer resistant to proteolytic degradation. Our findings suggest that the interdimeric interface of MATs is subject to rapid evolutionary changes that tailor the molecular properties of the entire homotetramer to the specific needs of the organism.
Collapse
Affiliation(s)
- Daniel Kleiner
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Fannia Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel; Macromolecular Crystallography Research Center (MCRC), The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center (MCRC), The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel.
| |
Collapse
|
48
|
Liu M, Saha N, Gajan A, Saadat N, Gupta SV, Pile LA. A complex interplay between SAM synthetase and the epigenetic regulator SIN3 controls metabolism and transcription. J Biol Chem 2019; 295:375-389. [PMID: 31776190 DOI: 10.1074/jbc.ra119.010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
The SIN3 histone-modifying complex regulates the expression of multiple methionine catabolic genes, including SAM synthetase (Sam-S), as well as SAM levels. To further dissect the relationship between methionine catabolism and epigenetic regulation by SIN3, we sought to identify genes and metabolic pathways controlled by SIN3 and SAM synthetase (SAM-S) in Drosophila melanogaster Using several approaches, including RNAi-mediated gene silencing, RNA-Seq- and quantitative RT-PCR-based transcriptomics, and ultra-high-performance LC-MS/MS- and GC/MS-based metabolomics, we found that, as a global transcriptional regulator, SIN3 impacted a wide range of genes and pathways. In contrast, SAM-S affected only a narrow range of genes and pathways. The expression and levels of additional genes and metabolites, however, were altered in Sin3A+Sam-S dual knockdown cells. This analysis revealed that SIN3 and SAM-S regulate overlapping pathways, many of which involve one-carbon and central carbon metabolisms. In some cases, the factors acted independently; in some others, redundantly; and for a third set, in opposition. Together, these results, obtained from experiments with the chromatin regulator SIN3 and the metabolic enzyme SAM-S, uncover a complex relationship between metabolism and epigenetic regulation.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202; Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nirmalya Saha
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Ambikai Gajan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201; Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Nadia Saadat
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202; College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan 48221
| | - Smiti V Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202.
| |
Collapse
|
49
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
50
|
Muthmann N, Hartstock K, Rentmeister A. Chemo-enzymatic treatment of RNA to facilitate analyses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1561. [PMID: 31392842 DOI: 10.1002/wrna.1561] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nils Muthmann
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Katja Hartstock
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|