1
|
Vukojević K, Šoljić V, Martinović V, Raguž F, Filipović N. The Ubiquitin-Associated and SH3 Domain-Containing Proteins (UBASH3) Family in Mammalian Development and Immune Response. Int J Mol Sci 2024; 25:1932. [PMID: 38339213 PMCID: PMC10855836 DOI: 10.3390/ijms25031932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
UBASH3A and UBASH3B are protein families of atypical protein tyrosine phosphatases that function as regulators of various cellular processes during mammalian development. As UBASH3A has only mild phosphatase activity, its regulatory effects are based on the phosphatase-independent mechanisms. On the contrary, UBASH3B has strong phosphatase activity, and the suppression of its receptor signalling is mediated by Syk and Zap-70 kinases. The regulatory functions of UBASH3A and UBASH3B are particularly evident in the lymphoid tissues and kidney development. These tyrosine phosphatases are also known to play key roles in autoimmunity and neoplasms. However, their involvement in mammalian development and its regulatory functions are largely unknown and are discussed in this review.
Collapse
Affiliation(s)
- Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Violeta Šoljić
- Department of Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vlatka Martinović
- Department of Surgery, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Fila Raguž
- Department of Internal Medicine, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
2
|
Tsai YL, Arias-Badia M, Kadlecek TA, Lwin YM, Srinath A, Shah NH, Wang ZE, Barber D, Kuriyan J, Fong L, Weiss A. TCR signaling promotes formation of an STS1-Cbl-b complex with pH-sensitive phosphatase activity that suppresses T cell function in acidic environments. Immunity 2023; 56:2682-2698.e9. [PMID: 38091950 PMCID: PMC10785950 DOI: 10.1016/j.immuni.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yee May Lwin
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aahir Srinath
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zhi-En Wang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diane Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Tsygankov AY. TULA Proteins in Men, Mice, Hens, and Lice: Welcome to the Family. Int J Mol Sci 2023; 24:ijms24119126. [PMID: 37298079 DOI: 10.3390/ijms24119126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The two members of the UBASH3/STS/TULA protein family have been shown to critically regulate key biological functions, including immunity and hemostasis, in mammalian biological systems. Negative regulation of signaling through immune receptor tyrosine-based activation motif (ITAM)- and hemITAM-bearing receptors mediated by Syk-family protein tyrosine kinases appears to be a major molecular mechanism of the down-regulatory effect of TULA-family proteins, which possess protein tyrosine phosphatase (PTP) activity. However, these proteins are likely to carry out some PTP-independent functions as well. Whereas the effects of TULA-family proteins overlap, their characteristics and their individual contributions to cellular regulation also demonstrate clearly distinct features. Protein structure, enzymatic activity, molecular mechanisms of regulation, and biological functions of TULA-family proteins are discussed in this review. In particular, the usefulness of the comparative analysis of TULA proteins in various metazoan taxa, for identifying potential roles of TULA-family proteins outside of their functions already established in mammalian systems, is examined.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Kunapuli SP, Tsygankov AY. TULA-Family Regulators of Platelet Activation. Int J Mol Sci 2022; 23:ijms232314910. [PMID: 36499237 PMCID: PMC9736690 DOI: 10.3390/ijms232314910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.
Collapse
|
5
|
Tsygankov AY. TULA proteins as signaling regulators. Cell Signal 2019; 65:109424. [PMID: 31639493 DOI: 10.1016/j.cellsig.2019.109424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Two members of the UBASH3/STS/TULA family exhibit a unique protein domain structure, which includes a histidine phosphatase domain, and play a key role in regulating cellular signaling. UBASH3A/STS-2/TULA is mostly a lymphoid protein, while UBASH3B/STS-1/TULA-2 is expressed ubiquitously. Dephosphorylation of tyrosine-phosphorylated proteins by TULA-2 and, probably to a lesser extent, by TULA critically contribute to the molecular basis of their regulatory effect. The notable differences between the effects of the two family members on cellular signaling and activation are likely to be linked to the difference between their specific enzymatic activities. However, these differences might also be related to the functions of their domains other than the phosphatase domain and independent of their phosphatase activity. The down-regulation of the Syk/Zap-70-mediated signaling, which to-date appears to be the best-studied regulatory effect of TULA family, is discussed in detail in this publication.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Fels Institute for Cancer Research and Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, United States.
| |
Collapse
|
6
|
Tsygankov AY. TULA-family proteins: Jacks of many trades and then some. J Cell Physiol 2018; 234:274-288. [PMID: 30076707 DOI: 10.1002/jcp.26890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Abstract
UBASH3/STS/TULA is a novel two-member family, which exerts several key regulatory effects in multiple cell types. UBASH3B/STS-1/TULA-2 is a highly active protein tyrosine phosphatase; its major target appears to be a specific regulatory site of protein tyrosine kinases of the Syk family, dephosphorylation of which inhibits Syk and Zap-70 kinases and suppresses receptor signaling mediated by these kinases. UBASH3A/STS-2/TULA exhibits substantial homology to UBASH3B/STS-1/TULA-2, but possesses only a small fraction of phosphatase activity of UBASH3B/STS-1/TULA-2, and thus, its regulatory effect may be based also on the phosphatase-independent mechanisms. Critical physiologic effects of these proteins have been demonstrated in T lymphocytes, platelets, stem cells, and other important cell types. These proteins have also been shown to play a key role in such pathologic conditions as autoimmunity, cancer, and thrombosis. The review focuses on the recent studies of this important family of cellular regulators.
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology and Sol Sherry Thrombosis Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Reppschläger K, Gosselin J, Dangelmaier CA, Thomas DH, Carpino N, McKenzie SE, Kunapuli SP, Tsygankov AY. TULA-2 Protein Phosphatase Suppresses Activation of Syk through the GPVI Platelet Receptor for Collagen by Dephosphorylating Tyr(P)346, a Regulatory Site of Syk. J Biol Chem 2016; 291:22427-22441. [PMID: 27609517 DOI: 10.1074/jbc.m116.743732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Protein-tyrosine phosphatase TULA-2 has been shown to regulate receptor signaling in several cell types, including platelets. Platelets are critical for maintaining vascular integrity; this function is mediated by platelet aggregation in response to recognition of the exposed basement membrane collagen by the GPVI receptor, which is non-covalently associated with the signal-transducing FcRγ polypeptide chain. Our previous studies suggested that TULA-2 plays an important role in negatively regulating signaling through GPVI-FcRγ and indicated that the tyrosine-protein kinase Syk is a key target of the regulatory action of TULA-2 in platelets. However, the molecular basis of the down-regulatory effect of TULA-2 on Syk activation via FcRγ remained unclear. In this study, we demonstrate that suppression of Syk activation by TULA-2 is mediated, to a substantial degree, by dephosphorylation of Tyr(P)346, a regulatory site of Syk, which becomes phosphorylated soon after receptor ligation and plays a critical role in initiating the process that yields fully activated Syk. TULA-2 is capable of dephosphorylating Tyr(P)346 with high efficiency, thus controlling the overall activation of Syk, but is less efficient in dephosphorylating other regulatory sites of this kinase. Therefore, dephosphorylation of Tyr(P)346 may be considered an important "checkpoint" in the regulation of Syk activation process. Putative biological functions of TULA-2-mediated dephosphorylation of Tyr(P)346 may include deactivation of receptor-activated Syk or suppression of Syk activation by suboptimal stimulation.
Collapse
Affiliation(s)
- Kevin Reppschläger
- From the Departments of Microbiology and Immunology and.,Ernst-Moritz-Arndt-University Greifswald, 17489 Greifswald, Germany
| | - Jeanne Gosselin
- From the Departments of Microbiology and Immunology and.,Polytech Clermont-Ferrand, Ingenieur Genie Biologique, Clermont-Ferrand, Auvergne 63178, France, and
| | - Carol A Dangelmaier
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dafydd H Thomas
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,PMV Pharmaceuticals, Cranbury Township, New Jersey 08512
| | - Nick Carpino
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Steven E McKenzie
- the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Satya P Kunapuli
- the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140.,Physiology and
| | - Alexander Y Tsygankov
- From the Departments of Microbiology and Immunology and .,the Sol Sherry Thrombosis Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
8
|
Association of UBASH3A gene polymorphisms and systemic lupus erythematosus in a Chinese population. Gene 2015; 565:116-21. [DOI: 10.1016/j.gene.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
|
9
|
Teo AKK, Gupta MK, Doria A, Kulkarni RN. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Mol Metab 2015; 4:593-604. [PMID: 26413465 PMCID: PMC4563028 DOI: 10.1016/j.molmet.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diabetes and metabolic syndromes are chronic, devastating diseases with increasing prevalence. Human pluripotent stem cells are gaining popularity in their usage for human in vitro disease modeling. With recent rapid advances in genome editing tools, these cells can now be genetically manipulated with relative ease to study how genes and gene variants contribute to diabetes and metabolic syndromes. SCOPE OF REVIEW We highlight the diabetes and metabolic genes and gene variants, which could potentially be studied, using two powerful technologies - human pluripotent stem cells (hPSCs) and genome editing tools - to aid the elucidation of yet elusive mechanisms underlying these complex diseases. MAJOR CONCLUSIONS hPSCs and the advancing genome editing tools appear to be a timely and potent combination for probing molecular mechanism(s) underlying diseases such as diabetes and metabolic syndromes. The knowledge gained from these hiPSC-based disease modeling studies can potentially be translated into the clinics by guiding clinicians on the appropriate type of medication to use for each condition based on the mechanism of action of the disease.
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA ; Discovery Research Division, Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore ; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Manoj K Gupta
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - Alessandro Doria
- Section of Epidemiology and Genetics, Joslin Diabetes Center, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
10
|
Cai T, Wang X, Muhali FS, Song R, Shi X, Jiang W, Xiao L, Li D, Zhang J. Lack of association between polymorphisms in the UBASH3A gene and autoimmune thyroid disease: a case control study. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2014; 58:640-645. [PMID: 25211447 DOI: 10.1590/0004-2730000003209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate UBASH3A gene variation association with autoimmune thyroid disease and clinical features in a Chinese Han population. SUBJECTS AND METHODS A total of 667 AITD patients (417 GD and 250 HT) and 301 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs) rs11203203, rs3788013 of UBASH3A gene, utilizing the Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer (MALDI-TOF-MS) Platform. RESULTS Between the control group and AITD, GD and HT group, no statistically significant difference was observed in the genotypic and allelic frequencies of the two SNPs. There was no significant difference in allelic frequencies of the two SNPs between GD with and without ophthalmopathy. There was no significant difference in haplotype distributions between the control group and AITD, GD or HT group. CONCLUSION Rs11203203 and rs3788013 in UBASH3A gene may not be associated with AITD patients in Chinese Han population.
Collapse
Affiliation(s)
- TianTian Cai
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - Xuan Wang
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - Fatuma-Said Muhali
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - RongHua Song
- Clinical Research Center, The First Affiliated Hospital of Medical School, Xi?an Jiaotong University, Xi?an, China
| | - XiaoHong Shi
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - WenJuan Jiang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ling Xiao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - DanFeng Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - JinAn Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Members of the novel UBASH3/STS/TULA family of cellular regulators suppress T-cell-driven inflammatory responses in vivo. Immunol Cell Biol 2014; 92:837-50. [PMID: 25047644 DOI: 10.1038/icb.2014.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 01/03/2023]
Abstract
The UBASH3/STS/TULA family consists of two members sharing substantial homology and a similar multi-domain architecture, which includes a C-terminal histidine phosphatase domain capable of dephosphorylating phosphotyrosine-containing substrates. TULA-family proteins act as downregulators of receptor-induced activation in several cell types, including T cells and platelets. Deletion of both family members in mice has been shown to result in hyperresponsiveness of T cells to T-cell receptor (TCR)/CD3 complex engagement, but little is known about the biological consequences of double knockout (dKO) and especially of either single KO (sKO). We elucidated the biological consequences of the lack of TULA-family proteins in dKO and TULA and TULA-2 sKO animals. In order to do so, we examined immune responses in Trinitrobenzene sulfonic acid (TNBS)-induced colitis, a mouse model of human inflammatory bowel disease, which is characterized by the involvement of multiple cell types, of which T cells have a crucial role, in the development of a pathological inflammatory condition. Our data indicate that TNBS treatment upregulates T-cell responses in all KO mice studied to a significantly higher degree than in wild-type mice. Although the lack of either TULA-family member exacerbates inflammation and T-cell responses in a specific fashion, the lack of both TULA and TULA-2 in dKO exerts a higher effect than the lack of a single family member in TULA and TULA-2 sKO. Analysis of T-cell responses and TCR-mediated signaling argues that the proteins investigated affect T-cell signaling by regulating phosphorylation of Zap-70, a key protein tyrosine kinase.
Collapse
|
12
|
A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients. PLoS Genet 2014; 10:e1003874. [PMID: 24763277 PMCID: PMC3998918 DOI: 10.1371/journal.pgen.1003874] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Collapse
|
13
|
New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases. Biochem J 2013; 453:27-35. [PMID: 23565972 DOI: 10.1042/bj20121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.
Collapse
|
14
|
Evidence of new risk genetic factor to systemic lupus erythematosus: the UBASH3A gene. PLoS One 2013; 8:e60646. [PMID: 23565265 PMCID: PMC3614928 DOI: 10.1371/journal.pone.0060646] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin associated and Src-homology 3 (SH3) domain containing A (UBASH3a) is a suppressor of T-cell receptor signaling, underscoring antigen presentation to T-cells as a critical shared mechanism of diseases pathogenesis. The aim of the present study was to determine whether the UBASH3a gene influence the susceptibility to systemic lupus erythematosus (SLE) in Caucasian populations. We evaluated five UBASH3a polymorphisms (rs2277798, rs2277800, rs9976767, rs13048049 and rs17114930), using TaqMan® allelic discrimination assays, in a discovery cohort that included 906 SLE patients and 1165 healthy controls from Spain. The SNPs that exhibit statistical significance difference were evaluated in a German replication cohort of 360 SLE patients and 379 healthy controls. The case-control analysis in the Spanish population showed a significant association between the rs9976767 and SLE (Pc = 9.9E-03 OR = 1.21 95%CI = 1.07–1.37) and a trend of association for the rs2277798 analysis (P = 0.09 OR = 0.9 95%CI = 0.79–1.02). The replication in a German cohort and the meta-analysis confirmed that the rs9976767 (Pc = 0.02; Pc = 2.4E-04, for German cohort and meta-analysis, respectively) and rs2277798 (Pc = 0.013; Pc = 4.7E-03, for German cohort and meta-analysis, respectively) UBASH3a variants are susceptibility factors for SLE. Finally, a conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs9976767 polymorphism. Our results suggest that UBASH3a gene plays a role in the susceptibility to SLE. Moreover, our study indicates that UBASH3a can be considered as a common genetic factor in autoimmune diseases.
Collapse
|
15
|
Atypical protein phosphatases: emerging players in cellular signaling. Int J Mol Sci 2013; 14:4596-612. [PMID: 23443160 PMCID: PMC3634448 DOI: 10.3390/ijms14034596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022] Open
Abstract
It has generally been considered that protein phosphatases have more diverse catalytic domain structures and mechanisms than protein kinases; however, gene annotation efforts following the human genome project appeared to have completed the whole array of protein phosphatases. Ser/Thr phosphatases are divided into three subfamilies that have different structures from each other, whereas Tyr phosphatases and dual-specificity phosphatases targeting Tyr, Ser and Thr belong to a single large family based on their common structural features. Several years of research have revealed, however, the existence of unexpected proteins, designated here as “atypical protein phosphatases”, that have structural and enzymatic features different from those of the known protein phosphatases and are involved in important biological processes. In this review, we focus on the identification and functional characterization of atypical protein phosphatases, represented by eyes absent (EYA), suppressor of T-cell receptor signaling (Sts) and phosphoglycerate mutase family member 5 (PGAM5) and discuss their biological significance in cellular signaling.
Collapse
|
16
|
TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function. Cell Mol Life Sci 2012; 70:1269-84. [PMID: 23149425 DOI: 10.1007/s00018-012-1203-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)-mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.
Collapse
|
17
|
|
18
|
Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol 2011; 179:69-79. [DOI: 10.1016/j.molbiopara.2011.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/21/2022]
|
19
|
Nonsegmental vitiligo and autoimmune mechanism. Dermatol Res Pract 2011; 2011:518090. [PMID: 21804820 PMCID: PMC3144695 DOI: 10.1155/2011/518090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Nonsegmental vitiligo is a depigmented skin disorder showing acquired, progressive, and depigmented lesions of the skin, mucosa, and hair. It is believed to be caused mainly by the autoimmune loss of melanocytes from the involved areas. It is frequently associated with other autoimmune diseases, particularly autoimmune thyroid diseases including Hashimoto's thyroiditis and Graves' disease, rheumatoid arthritis, type 1 diabetes, psoriasis, pernicious anemia, systemic lupus erythematosus, Addison's disease, and alopecia areata. This indicates the presence of genetically determined susceptibility to not only vitiligo but also to other autoimmune disorders. Here, we summarize current understanding of autoimmune pathogenesis in non-segmental vitiligo.
Collapse
|
20
|
Regulation and function of syk tyrosine kinase in mast cell signaling and beyond. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:507291. [PMID: 21776385 PMCID: PMC3135164 DOI: 10.1155/2011/507291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/23/2011] [Indexed: 01/16/2023]
Abstract
The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk−/− cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.
Collapse
|
21
|
San Luis B, Sondgeroth B, Nassar N, Carpino N. Sts-2 is a phosphatase that negatively regulates zeta-associated protein (ZAP)-70 and T cell receptor signaling pathways. J Biol Chem 2011; 286:15943-54. [PMID: 21393235 PMCID: PMC3091203 DOI: 10.1074/jbc.m110.177634] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 03/06/2011] [Indexed: 11/06/2022] Open
Abstract
T cell activity is controlled in large part by the T cell receptor (TCR). The TCR detects the presence of foreign pathogens and activates the T cell-mediated immune reaction. Numerous intracellular signaling pathways downstream of the TCR are involved in the process of T cell activation. Negative regulation of these pathways helps prevent excessive and deleterious T cell responses. Two homologous proteins, Sts-1 and Sts-2, have been shown to function as critical negative regulators of TCR signaling. The phosphoglycerate mutase-like domain of Sts-1 (Sts-1(PGM)) has a potent phosphatase activity that contributes to the suppression of TCR signaling. The function of Sts-2(PGM) as a phosphatase has been less clear, principally because its intrinsic enzyme activity has been difficult to detect. Here, we demonstrate that Sts-2 regulates the level of tyrosine phosphorylation on targets within T cells, among them the critical T cell tyrosine kinase Zap-70. Utilizing new phosphorylated substrates, we demonstrate that Sts-2(PGM) has clear, albeit weak, phosphatase activity. We further pinpoint Sts-2 residues Glu-481, Ser-552, and Ser-582 as specificity determinants, in that an Sts-2(PGM) triple mutant in which these three amino acids are altered to their counterparts in Sts-1(PGM) has substantially increased activity. Our results suggest that the phosphatase activities of both suppressor of TCR signaling homologues cooperate in a similar but independent fashion to help set the threshold for TCR-induced T cell activation.
Collapse
Affiliation(s)
- Boris San Luis
- From the Departments of Molecular Genetics and Microbiology and
| | - Ben Sondgeroth
- Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794
| | - Nicolas Nassar
- Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794
| | - Nick Carpino
- From the Departments of Molecular Genetics and Microbiology and
| |
Collapse
|
22
|
Chen X, Ren L, Kim S, Carpino N, Daniel JL, Kunapuli SP, Tsygankov AY, Pei D. Determination of the substrate specificity of protein-tyrosine phosphatase TULA-2 and identification of Syk as a TULA-2 substrate. J Biol Chem 2010; 285:31268-76. [PMID: 20670933 PMCID: PMC2951201 DOI: 10.1074/jbc.m110.114181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/28/2010] [Indexed: 11/06/2022] Open
Abstract
TULA-1 (UBASH3A/STS-2) and TULA-2 (p70/STS-1) represent a novel class of protein-tyrosine phosphatases. Previous studies suggest that TULA-2 is sequence-selective toward phosphotyrosyl (Tyr(P)) peptides. In this work the substrate specificity of TULA-1 and -2 was systematically evaluated by screening a combinatorial Tyr(P) peptide library. Although TULA-1 showed no detectable activity toward any of the Tyr(P) peptides in the library, TULA-2 recognizes two distinct classes of Tyr(P) substrates. On the N-terminal side of Tyr(P), the class I substrates contain a proline at the Tyr(P)-1 position, a hydrophilic residue at the Tyr(P)-2 position, and aromatic hydrophobic residues at positions Tyr(P)-3 and beyond. The class II substrates typically contain two or more acidic residues, especially at Tyr(P)-1 to Tyr(P)-3 positions, and aromatic hydrophobic residues at other positions. At the C-terminal side of Tyr(P), TULA-2 generally prefers acidic and aromatic residues. The library screening results were confirmed by kinetic analysis of representative peptides selected from the library as well as Tyr(P) peptides derived from various Tyr(P) proteins. TULA-2 is highly active toward peptides corresponding to the Tyr(P)-323 and Tyr(P)-352 sites of Syk, and the Tyr(P)-397 site of focal adhesion kinase and has lower activity toward other Tyr(P) sites in these proteins. In glycoprotein VI-stimulated platelets, knock-out of the TULA-2 gene significantly increased the phosphorylation level of Syk at Tyr-323 and Tyr-352 sites and to a lesser degree at the Tyr-525/526 sites. These results suggest that Syk is a bona fide TULA-2 substrate in platelets.
Collapse
Affiliation(s)
- Xianwen Chen
- From the Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Lige Ren
- From the Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | | | - Nicholas Carpino
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, and
| | - James L. Daniel
- Pharmacology
- the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Satya P. Kunapuli
- Physiology, and
- the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Alexander Y. Tsygankov
- the Departments of Microbiology and Immunology
- the Fels Institute for Cancer Research and Molecular Biology, and
- the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dehua Pei
- From the Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|