1
|
Benaim G, Paniz-Mondolfi A. Unmasking the Mechanism behind Miltefosine: Revealing the Disruption of Intracellular Ca 2+ Homeostasis as a Rational Therapeutic Target in Leishmaniasis and Chagas Disease. Biomolecules 2024; 14:406. [PMID: 38672424 PMCID: PMC11047903 DOI: 10.3390/biom14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.
Collapse
Affiliation(s)
- Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1080, Venezuela
- Laboratorio de Biofísica, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Division of Microbiology, New York, NY 10029, USA;
| |
Collapse
|
2
|
Cross-reactive, natural IgG recognizing L. major promote parasite internalization by dendritic cells and promote protective immunity. J Mol Med (Berl) 2021; 100:451-460. [PMID: 34604942 PMCID: PMC8844169 DOI: 10.1007/s00109-021-02137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/28/2022]
Abstract
In cutaneous leishmaniasis, infection of dendritic cells (DC) is essential for generation of T cell-dependent protective immunity. DC acquires Leishmania major through Fc receptor (FcR)-mediated uptake of complexes comprising antibodies bound to parasites. We now assessed the development of the initial B cell and DC response to the parasite itself and if natural IgG play a role. L. major parasites display large numbers of phospholipids on their surface. Parasites were opsonized with normal mouse serum (NMS), or serum containing anti-phospholipid IgG (PL). We found that L. major bound to PL which significantly enhanced parasite phagocytosis by DC as compared to NMS. Similar results were obtained with cross-reactive human PL antibodies using myeloid primary human DC. In addition, mice infected with PL-opsonized parasites showed significantly improved disease outcome compared to mice infected with NMS-opsonized parasites. Finally, IgMi mice, which produce membrane-bound IgM only and no secreted antibodies, displayed increased susceptibility to infection as compared to wild types. Interestingly, once NMS was administered to IgMi mice, their phenotype was normalized to that of wild types. Upon incubation with IgG-opsonized parasite (IgG derived from infected mice or using PL antibodies), also the IgMi mice were able to show superior immunity. Our findings suggest that "natural" cross-reactive antibodies (e.g., anti-PL Ab) in NMS bind to pathogens to facilitate phagocytosis, which leads to induction of protective immunity via preferential DC infection. Prior L. major-specific B cell-priming does not seem to be absolutely required to facilitate clearance of this important human pathogen in vivo. KEY MESSAGES: We found that anti-phospholipid (anti-PL) antibodies enhance phagocytosis of L. major by DCs. We also found that normal mouse sera have natural antibodies that can imitate PL specific antibodies. Using different genetically modified mice, we found that these antibodies can be IgG, not only IgM.
Collapse
|
3
|
Torres Suarez E, Granados-Falla DS, Robledo SM, Murillo J, Upegui Y, Delgado G. Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS One 2020; 15:e0243392. [PMID: 33370295 PMCID: PMC7769561 DOI: 10.1371/journal.pone.0243392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a neglected, parasitic tropical disease caused by an intracellular protozoan from the genus Leishmania. Quinoline alkaloids, secondary metabolites found in plants from the Rutaceae family, have antiparasitic activity against Leishmania sp. N-methyl-8-methoxyflindersin (1), isolated from the leaves of Raputia heptaphylla and also known as 7-methoxy-2,2-dimethyl-2H,5H,6H-pyran[3,2-c]quinolin-5-one, shows antiparasitic activity against Leishmania promastigotes and amastigotes. This study used in silico tools to identify synthetic quinoline alkaloids having structure similar to that of compound 1 and then tested these quinoline alkaloids for their in vitro antiparasitic activity against Leishmania (Viannia) panamensis, in vivo therapeutic response in hamsters suffering from experimental cutaneous leishmaniasis (CL), and ex vivo immunomodulatory potential in healthy donors' human peripheral blood (monocyte)-derived macrophages (hMDMs). Compounds 1 (natural), 2 (synthetic), and 8 (synthetic) were effective against intracellular promastigotes (9.9, 3.4, and 1.6 μg/mL medial effective concentration [EC50], respectively) and amastigotes (5.07, 7.94, and 1.91 μg/mL EC50, respectively). Compound 1 increased nitric oxide production in infected hMDMs and triggered necrosis-related ultrastructural alterations in intracellular amastigotes, while compound 2 stimulated oxidative breakdown in hMDMs and caused ultrastructural alterations in the parasite 4 h posttreatment, and compound 8 failed to induce macrophage modulation but selectively induced apoptosis of infected hMDMs and alterations in the intracellular parasite ultrastructure. In addition, synthetic compounds 2 and 8 improved the health of hamsters suffering from experimental CL, without evidence of treatment-associated adverse toxic effects. Therefore, synthetic compounds 2 and 8 are potential therapeutic candidates for topical treatment of CL.
Collapse
Affiliation(s)
- Elaine Torres Suarez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Susana Granados-Falla
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
- Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sara María Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Javier Murillo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
GHAFARIFAR F, MOLAIE S, ABAZARI R, HASAN ZM, FOROUTAN M. Fe3O4@Bio-MOF Nanoparticles Combined with Artemisinin, Glucantime®, or Shark Cartilage Extract on Iranian Strain of Leishmania major (MRHO/IR/75/ER): An In-Vitro and In-Vivo Study. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:537-548. [PMID: 33884011 PMCID: PMC8039492 DOI: 10.18502/ijpa.v15i4.4859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/11/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND In the present study, we examined the effects of Fe3O4@bio-MOF nanoparticle (Nano-FO) plus artemisinin (Art) and glucantime (Glu) or shark cartilage extract (ShCE) on Leishmania major in vitro and in vivo. METHODS This experimental study was conducted at the laboratory of Department of Parasitology, Tarbiat Modares University, Tehran, Iran during 2016-2017. The promastigote and amastigote assays were performed were conducted at the presence of 3.12-400 μg/mL of the drug combinations. According to in vitro IC50 results, the combinations of 12.5μg/mL Nano-FO with 25 μg/mL Art as well as 200 μg/mL Glu and 0.5 mL of 20 mg/kg of ShCE were used to treat BALB/c mice. During and at the end of the treatment, the lesion sizes were measured. Parasite loads, cytokine levels were evaluated at the end of the treatment. RESULTS The IC50 of Fe3O4@bio-MOF-Artemisinin (Nano-FO/Art), Fe3O4@bio-MOF-Glucantime (Nano-FO/Glu), and Fe3O4@bio-MOF-Shark cartilage extract (Nano-FO/ShCE) on promasitigotes were 12.58±0.12, 235±0.17, and 18.54±0.15, respectively. These results on amastigotes were 10.32±0.01, 187±0.03, and 338±0.07 μg/mL, respectively. The apoptosis percentage of these combinations were 32.54%, 20.59%, and 15.68% in promastigotes and 15.68%, 12.84%, and 3.51% in infected macrophages, respectively with no toxicity on uninfected macrophages. In vivo results showed that the size of lesions significantly decreased against all drugs combinations, but Nano-FO/Art combination with Selectivity Index of 23.62 value was safe, and more effective on healing of lesions than other drugs combinations (P=0.003). CONCLUSION This study suggested that Nano-FO/Art combination can be considered as an anti-leishmania combination therapy in CL induced by L. major.
Collapse
Affiliation(s)
- Fatemeh GHAFARIFAR
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheila MOLAIE
- Arthropod Born Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza ABAZARI
- Department of Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zoheir-Mohammad HASAN
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud FOROUTAN
- Faculty of Medical Sciences, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
5
|
Molaie S, Ghaffarifar F, Hasan ZM, Dalimi A. Enhancement Effect of Shark Cartilage Extract on Treatment of Leishmania infantum with Artemisinin and Glucantime and Evaluation of killing Factors and Apoptosis in-vitro Condition. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:887-902. [PMID: 31531071 PMCID: PMC6706737 DOI: 10.22037/ijpr.2019.1100656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we examined enhancement effects of Artemisinin plus Glucantime and shark cartilage extract on promastigotes and amastigotes of L.infantum in in-vitro condition.The toxicity of artemisinin, glucantime, and shark cartilage extract on the L. infantum promastigotes and amastigote-infected macrophages was evaluated using MTT assay. The role of these drugs inducing apoptosis in promastigotes, un- infected, and parasite- infected macrophages was also studied. Using promastigote assay, IC50 values of artemisinin and glucantime as standalone drugs as well as in combination were obtained to be 50, 400, and 100µg/mL respectively. The flow cytometry analysis of apoptotic promastigotes stained with Annexin-V FITC staining showed that artemisinin, glucantime, artemisinin plus glucantime, artemisinin plus shark cartilage extract, and shark cartilage extract alone applied at their IC50 concentrations resulted in 53.5%, 73.92%, 64.46%, 49.9%, and 47.34% apoptosis respectively. The results of MTT assay indicated that cytotoxicity of artemisinin, glucantime, artemisinin plus glucantime, shark cartilage plus artemisinin, and shark cartilage in infected macrophages after 72h was 75%, 84%, 82%, 30%, and 3% respectively. In un- infected macrophages, cytotoxicity of Artemisinin, Glucantime, Artemisinin plus Glucantime and shark cartilage was 15%, 31%, 21%, 2%, and 0% respectively.This study suggests that artemisinin, glucantime, artemisinin plus glucantime, and shark cartilage extract have significant killing effects on promastigotes and amastigotes. Also, it proved that artimisinin alone and in combination with glucantime and shark cartilage extract has little toxic effect on macrophages, but could induce apoptosis in L.infantum promastigotes and amastigote-infected macrophages. Thus, these chemicals can be used as alternative drugs for in-vivo studies.
Collapse
Affiliation(s)
- Soheila Molaie
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Zuheir Mohammad Hasan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Abdolhosein Dalimi
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| |
Collapse
|
6
|
Majid Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AUH, Adnan Ali Shah S, Wadood A, Nadhman A. β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights. Steroids 2019; 148:56-62. [PMID: 31085212 DOI: 10.1016/j.steroids.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023]
Abstract
The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
Collapse
Affiliation(s)
- Syed Majid Shah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| | - Sajid Hussain
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan; Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azhar-Ul-Haq Ali Shah
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar Pakistan
| |
Collapse
|
7
|
Shah S, Ullah F, Ayaz M, Sadiq A, Hussain S, Ali Shah AUH, Shah S, Ullah N, Ullah F, Ullah I, Nadhman A. Benzoic Acid Derivatives of Ifloga spicata (Forssk.) Sch.Bip. as Potential Anti-Leishmanial against Leishmania tropica. Processes (Basel) 2019; 7:208. [DOI: 10.3390/pr7040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aimed to appraise the anti-leishmanial potentials of benzoic acid derivatives, including methyl 3,4-dihydroxybenzoate (compound 1) and octadecyl benzoate (compound 2), isolated from the ethnomedicinally important plant Ifloga spicata (I. spicata). Chemical structures were elucidated via FT-IR, mass spectrometry, and multinuclear (1H and 13C) NMR spectroscopy. Anti-leishmanial potentials of the compounds were assessed using Leishmania tropica promastigotes. Moreover, acridine orange fluorescent staining was performed to visualize the apoptosis-associated changes in promastigotes under a fluorescent microscope. A SYTOX assay was used to check rupturing of Leishmania promastigote cell membranes using 0.1% Triton X-100 as positive control. A DNA interaction assay was carried out to assess DNA attachment potential. AutoDock software was used to check the binding affinity of compounds with surface enzyme leishmanolysin gp63 (1LML). Both compounds exhibited considerable anti-leishmanial potential, with LD50 values of 10.40 ± 0.09 and 14.11 ± 0.11 μg/mL for compound 1 and compound 2, respectively. Both compounds showed higher binding affinity with the leishmanolysin (gp63) receptor/protease of Leishmania, as assessed using computational analysis. The binding scores of compounds 1 and 2 with target gp63 were −5.3 and −5.6, respectively. The attachment of compounds with this receptor resulted in their entry into the cell where they bound with Leishmania DNA, causing apoptosis. The results confirmed that the investigated compounds have anti-leishmanial potential and are potential substitutes as natural anti-leishmanial agents against L. tropica.
Collapse
Affiliation(s)
- Syed Shah
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
| | - Sajid Hussain
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800, Pakistan
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Azhar-ul-Haq Ali Shah
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Syed Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor 42300, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - Nazif Ullah
- Department of Biotechnology Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Ikram Ullah
- Suleiman Bin Abdullah Aba-Alkhail center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad 46000, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences IIB, CECOS University, Peshawar 25000, Pakistan
| |
Collapse
|
8
|
Calixto SL, Glanzmann N, Xavier Silveira MM, da Trindade Granato J, Gorza Scopel KK, Torres de Aguiar T, DaMatta RA, Macedo GC, da Silva AD, Coimbra ES. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem Biol Interact 2018; 293:141-151. [PMID: 30098941 DOI: 10.1016/j.cbi.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Leishmaniases are infectious diseases, caused by protozoa of the Leishmania genus. These drugs present high toxicity, long-term administration, many adverse effects and are expensive, besides the identification of resistant parasites. In this work, the antileishmanial activity of quinoline derivative salts (QDS) was evaluated, as well as the toxicity on mammalian cells and the mechanism of action of the most promising compound. Among the compound tested, only the compound QDS3 showed activity against promastigotes and amastigotes of Leishmania spp., being more active against the intracellular amastigotes of L. amazonensis-GFP (IC50 of 5.48 μM). This value is very close to the one observed for miltefosine (IC50 of 4.05 μM), used as control drug. Furthermore, the compound QDS3 exhibited a selective effect, being 40.35 times more toxic to the amastigote form than to the host cell. Additionally, promastigotes of L. amazonensis treated with this compound exhibited characteristics of cells in the process of apoptosis such as mitochondrial membrane depolarization, mitochondrial swelling, increase of ROS production, phosphatidylserine externalization, reduced and rounded shape, and cell cycle alteration. The integrity of the plasma membrane remained unaltered, excluding necrosis in treated promastigotes. The compound QDS3 inhibited the formation of autophagic vacuoles, which may have contributed to parasite death by preventing autophagic mechanisms in the removal of damaged organelles, intensifying the damage caused by the treatment, highlighting the antileishmanial effect of this compound. In addition, treatment with QDS3 induced increased ROS levels in L. amazonensis-infected macrophages, but not in uninfected host cell. These data reinforce that the induction of oxidative stress is one of the main toxic effects caused by the treatment with the compound QDS3 in L. amazonensis, causing irreversible damage and triggering a selective death of intracellular parasites. Data shown here confirm the biological activity of quinoline derivatives and encourage future in vivo studies with this compound in the murine model.
Collapse
Affiliation(s)
- Stephane Lima Calixto
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Nícolas Glanzmann
- Departamento de Química, I.C.E, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Michele Maria Xavier Silveira
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Juliana da Trindade Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Kezia Katiani Gorza Scopel
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago Torres de Aguiar
- Laboratório de Biologia Celular e Tecidual, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gilson Costa Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, I.C.E, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, I.C.B, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
9
|
Antileishmanial and Immunomodulatory Effect of Babassu-Loaded PLGA Microparticles: A Useful Drug Target to Leishmania amazonensis Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3161045. [PMID: 30046335 PMCID: PMC6036798 DOI: 10.1155/2018/3161045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 01/21/2023]
Abstract
The immunological and the anti-Leishmania amazonensis activity of babassu-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles was evaluated. The anti-Leishmania activity was evaluated against promastigotes or amastigotes forms, in Balb/c macrophages. The size of the microparticles ranged from 3 to 6.4 μm, with a zeta potential of −25 mV and encapsulation efficiency of 48%. The anti-Leishmania activity of the PLGA microparticles loaded with the aqueous extract of babassu mesocarp (MMP) (IC50) was 10-fold higher than that free extract (Meso). MMP exhibited overall bioavailability and was very effective in eliminating intracellular parasites. MMP also reduced ex vivo parasite infectivity probably by the increased production of nitric oxide, hydrogen peroxide, and TNF-α indicating the activation of M1 macrophages. The overexpression of TNF-α did not impair cell viability, suggesting antiapoptotic effects of MMP. In conclusion, babassu-loaded microparticles could be useful for drug targeting in the treatment of leishmaniasis, due to the immunomodulatory effect on macrophage polarization and the increased efficacy as an anti-Leishmania product after the microencapsulation. These findings are of great relevance since the development of new drugs for the treatment of neglected diseases is desirable, mainly if we consider the high morbidity and mortality rates of leishmaniasis worldwide.
Collapse
|
10
|
Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitol Res 2017; 117:391-403. [PMID: 29248978 DOI: 10.1007/s00436-017-5713-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Leishmaniasis has become a significant public health issue in several countries in the world. New products have been identified to treat against the disease; however, toxicity and/or high cost is a limitation. The present work evaluated the antileishmanial activity of a new naphthoquinone derivate, Flau-A [2-(2,3,4-tri-O-acetyl-6-deoxy-β-L-galactopyranosyloxy)-1,4-naphthoquinone], against promastigote and amastigote-like stages of Leishmania amazonensis and L. infantum. In addition, the cytotoxicity in murine macrophages and human red cells was also investigated. The mechanism of action of Flau-A was assessed in L. amazonensis as well as its efficacy in treating infected macrophages and inhibiting infection of pretreated parasites. Results showed that Flau-A was effective against promastigotes and amastigote-like forms of both parasite species, as well as showed low toxicity in mammalian cells. Results also highlighted the morphological and biochemical alterations induced by Flau-A in L. amazonensis, including loss of mitochondrial membrane potential, as well as increased reactive oxygen species production, cell shrinkage, and alteration of the plasma membrane integrity. The present study demonstrates for the first time the antileishmanial activity of Flau-A against two Leishmania species and suggests that the mitochondria of the parasites may be the main target organelle. Data shown here encourages the use of this molecule in new studies concerning treatment against Leishmania infection in mammalian hosts.
Collapse
|
11
|
Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol 2017; 206:235-257. [PMID: 28283754 DOI: 10.1007/s00430-017-0500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.
Collapse
|
12
|
Hazra S, Ghosh S, Hazra B. Phytochemicals With Antileishmanial Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy 2016; 11:285-97. [PMID: 25801301 PMCID: PMC4502818 DOI: 10.1080/15548627.2014.998904] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.
Collapse
Key Words
- ANXA5, annexin V
- CFSE, carboxyfluorescein succinimidyl ester
- CM, complete medium
- IF, immunofluorescence
- IL, interleukin
- LAP
- LAP, LC3-associated phagocytosis
- Lm, Leishmania
- MACS, magnetic-associated cell sorting
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MOI, multiplicity of infection
- PBMCs, peripheral blood mononuclear cells
- PS, phosphatidylserine
- T-cell proliferation
- TGFB, transforming growth factor
- anti-inflammatory
- apoptotic-like Leishmania
- autophagy
- hMDM, human monocyte derived macrophage
- human primary macrophages
- immune evasion
- log.ph, logarithmic phase
- stat.ph, stationary phase
- β; TT, tetanus toxoid
Collapse
Affiliation(s)
- Peter Crauwels
- a Division of Immunology ; Paul-Ehrlich-Institute ; Langen , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mandal A, Das S, Roy S, Ghosh AK, Sardar AH, Verma S, Saini S, Singh R, Abhishek K, Kumar A, Mandal C, Das P. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway. PLoS Negl Trop Dis 2016; 10:e0004373. [PMID: 26808657 PMCID: PMC4726550 DOI: 10.1371/journal.pntd.0004373] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023] Open
Abstract
The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Saptarshi Roy
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ayan Kumar Ghosh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Abul Hasan Sardar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sudha Verma
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Ruby Singh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Chitra Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
15
|
Zeng J, Chen QW, Yu ZY, Zhang JR, Chen DL, Song C, Luo J, Zhang C, Wang SL, Chen JP. Regulation of intrinsic apoptosis in cycloheximide-treated macrophages by the Sichuan human strain of Chinese Leishmania isolates. Acta Trop 2016; 153:101-10. [PMID: 26482137 DOI: 10.1016/j.actatropica.2015.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Leishmania spp. are able to survive and proliferate inside mammals' mononuclear phagocytes, causing Leishmaniasis. Previous studies have noted that the regulation of apoptosis in host cells by these parasites may contribute to their ability to evade the immune system. However, current results remain unclear about whether the parasites can promote or delay the apoptotic process in host cells, because the regulatory effect of Leishmania was assumed to be strain-, species- and even infection time-dependent. The aim of this study was to investigate whether the Sichuan isolates of Chinese Leishmania (SC10H2) can alter the process of intrinsic apoptosis induced by cycloheximide in different types of macrophage cell lines and to determine in which steps of the signaling pathway the parasites were involved. Human THP-1 and mouse RAW264.7 macrophages were infected by SC10H2 promastigotes followed by cycloheximide stimulation to assess the alteration of intrinsic apoptosis in these cells. The results indicated that SC10H2 infection of human THP-1 macrophages could promote the initiation of intrinsic apoptosis, but completely opposite results were found in mouse RAW264.7 macrophages. Nevertheless, the expression of Bcl-2 and the DNA fragmentation rates were not altered by SC10H2 infection in the cell lines used in the experiments. This study suggests that SC10H2 promastigote infection is able to promote and delay the transduction of early apoptotic signals induced by cycloheximide in THP-1 and RAW264.7 macrophages, revealing that the regulation of intrinsic apoptosis in host cells by SC10H2 in vitro occurs in a host cell-dependent manner. The data from this study might play a significant role in further understanding the relationship between Leishmania and different host cells.
Collapse
|
16
|
Rochael NC, Lima LG, Oliveira SMPD, Barcinski MA, Saraiva EM, Monteiro RQ, Pinto-da-Silva LH. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz 2014; 108:679-85. [PMID: 24037188 PMCID: PMC3970692 DOI: 10.1590/0074-0276108062013002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
Leishmania parasites expose phosphatidylserine (PS) on their
surface, a process that has been associated with regulation of host's immune
responses. In this study we demonstrate that PS exposure by metacyclic
promastigotes of Leishmania amazonensis favours blood
coagulation. L. amazonensis accelerates in vitro coagulation of
human plasma. In addition, L. amazonensis supports the assembly
of the prothrombinase complex, thus promoting thrombin formation. This process
was reversed by annexin V which blocks PS binding sites. During blood meal,
Lutzomyia longipalpis sandfly inject saliva in the bite
site, which has a series of pharmacologically active compounds that inhibit
blood coagulation. Since saliva and parasites are co-injected in the host during
natural transmission, we evaluated the anticoagulant properties of sandfly
saliva in counteracting the procoagulant activity of L.
amazonensis . Lu. longipalpis saliva reverses
plasma clotting promoted by promastigotes. It also inhibits thrombin formation
by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS
vesicles or in L. amazonensis . Sandfly saliva inhibits factor
X activation by the intrinsic tenase complex assembled on PC/PS vesicles and
blocks factor Xa catalytic activity. Altogether our results show that metacyclic
promastigotes of L. amazonensis are procoagulant due to PS
exposure. Notably, this effect is efficiently counteracted by sandfly
saliva.
Collapse
Affiliation(s)
- Natalia Cadaxo Rochael
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroRJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
17
|
Ecotin-like ISP of L. major promastigotes fine-tunes macrophage phagocytosis by limiting the pericellular release of bradykinin from surface-bound kininogens: a survival strategy based on the silencing of proinflammatory G-protein coupled kinin B2 and B1 receptors. Mediators Inflamm 2014; 2014:143450. [PMID: 25294952 PMCID: PMC4177093 DOI: 10.1155/2014/143450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/17/2014] [Indexed: 01/22/2023] Open
Abstract
Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.
Collapse
|
18
|
Manjolin LC, dos Reis MBG, Maquiaveli CDC, Santos-Filho OA, da Silva ER. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food Chem 2013; 141:2253-62. [DOI: 10.1016/j.foodchem.2013.05.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/22/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
|
19
|
Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res 2013; 52:488-512. [PMID: 23827884 DOI: 10.1016/j.plipres.2013.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Collapse
|
20
|
Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, Ouellette M. Exoproteome dynamics in Leishmania infantum. J Proteomics 2013; 84:106-18. [DOI: 10.1016/j.jprot.2013.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022]
|
21
|
Forni D, Cagliani R, Pozzoli U, Colleoni M, Riva S, Biasin M, Filippi G, De Gioia L, Gnudi F, Comi GP, Bresolin N, Clerici M, Sironi M. A 175 million year history of T cell regulatory molecules reveals widespread selection, with adaptive evolution of disease alleles. Immunity 2013; 38:1129-41. [PMID: 23707475 DOI: 10.1016/j.immuni.2013.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
T cell activation plays a central role in immune response and in the maintenance of self-tolerance. We analyzed the evolutionary history of T cell regulatory molecules. Nine genes involved in triggering T cell activation or in regulating the ensuing response evolved adaptively in mammals. Several positively selected sites overlap with positions interacting with the binding partner or with cellular components. Population genetic analysis in humans revealed a complex scenario of local (FASLG, CD40LG, HAVCR2) and worldwide (FAS, ICOSLG) adaptation and H. sapiens-to-Neandertal gene flow (gene transfer between populations). Disease variants in these genes are preferential targets of pathogen-driven selection, and a Crohn's disease risk polymorphism targeted by bacterial-driven selection modulates the expression of ICOSLG in response to a bacterial superantigen. Therefore, we used evolutionary information to generate experimentally testable hypotheses concerning the function of specific genetic variants and indicate that adaptation to infection underlies the maintenance of autoimmune risk alleles.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cruz EDM, da Silva ER, Maquiaveli CDC, Alves ESS, Lucon JF, dos Reis MBG, de Toledo CEM, Cruz FG, Vannier-Santos MA. Leishmanicidal activity of Cecropia pachystachya flavonoids: arginase inhibition and altered mitochondrial DNA arrangement. PHYTOCHEMISTRY 2013; 89:71-77. [PMID: 23453911 DOI: 10.1016/j.phytochem.2013.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 01/12/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
The plant Cecropia pachystachya Trécul is widely used in Brazilian ethnomedicine to treat hypertension, asthma, and diabetes. Arginase is an enzyme with levels that are elevated in these disorders, and it is central to Leishmania polyamine biosynthesis. The aims of this study were to evaluate antileishmanial activity and inhibition of the arginase enzyme by C. pachystachya extracts, and to study changes in cellular organization using electron microscopy. The ethanol extract of C. pachystachya was tested on Leishmania (Leishmania) amazonensis promastigote survival/proliferation and arginase activity in vitro. Qualitative ultrastructural analysis was also used to observe changes in cell organization. The major bioactive molecules of the ethanol extract were characterized using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The ethyl acetate fraction of the ethanol extract diminished promastigote axenic growth/survival, inhibited arginase activity, and altered a mitochondrial kinetoplast DNA (K-DNA) array. The bioactive compounds of C. pachystachya were characterized as glucoside flavonoids. Orientin (9) (luteolin-8-C-glucoside) was the main component of the methanol-soluble ethyl acetate fraction obtained from the ethanol extract and is an arginase inhibitor (IC50 15.9 μM). The ethyl acetate fraction was not cytotoxic to splenocytes at a concentration of 200 μg/mL. In conclusion, C. pachystachya contains bioactive compounds that reduce the growth of L. (L.) amazonensis promastigotes, altering mitochondrial K-DNA arrangement and inhibiting arginase.
Collapse
Affiliation(s)
- Ebenézer de Mello Cruz
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz, CPqGM-FIOCRUZ, Laboratório de Biologia Parasitária, Rua Waldemar Falcão 121, Candeal, CEP 40296-710 Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Farias LHS, Rodrigues APD, Silveira FT, Seabra SH, DaMatta RA, Saraiva EM, Silva EO. Phosphatidylserine Exposure and Surface Sugars in Two Leishmania (Viannia) braziliensis Strains Involved in Cutaneous and Mucocutaneous Leishmaniasis. J Infect Dis 2012; 207:537-43. [DOI: 10.1093/infdis/jis689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Soong L, Henard CA, Melby PC. Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 2012; 34:735-51. [PMID: 23053396 PMCID: PMC4111229 DOI: 10.1007/s00281-012-0350-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
The outcomes of Leishmania infection are determined by host immune and nutrition status, parasite species, and co-infection with other pathogens. While subclinical infection and self-healing cutaneous leishmaniasis (CL) are common, uncontrolled parasite replication can lead to non-healing local lesions or visceral leishmaniasis (VL). It is known that infection control requires Th1-differentiation cytokines (IL-12, IL-18, and IL-27) and Th1 cell and macrophage activation. However, there is no generalized consensus for the mechanisms of host susceptibility. The recent studies on regulatory T cells and IL-17-producing cells help explain the effector T cell responses that occur independently of the known Th1/Th2 cell signaling pathways. This review focuses on the immunopathogenesis of non-healing American CL and progressive VL. We summarize recent evidence from human and animal studies that reveals the mechanisms of dysregulated, hyper-responses to Leishmania braziliensis, as well as the presence of disease-promoting or the absence of protective responses to Leishmania amazonensis and Leishmania donovani. We highlight immune-mediated parasite growth and immunopathogenesis, with an emphasis on the putative roles of IL-17 and its related cytokines as well as arginase. A better understanding of the quality and regulation of innate immunity and T cell responses triggered by Leishmania will aid in the rational control of pathology and the infection.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
25
|
Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E. Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance. Med Microbiol Immunol 2012; 201:581-92. [PMID: 22983754 DOI: 10.1007/s00430-012-0261-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important infectious diseases worldwide; a vaccine is still not available. Infected dendritic cells (DC) are critical for the initiation of protective Th1 immunity against Leishmania major. Phagocytosis of L. major by DC leads to cell activation, IL-12 release and (cross-) presentation of Leishmania antigens by DC. Here, we review the role of Fcγ receptor- and B cell-mediated processes for parasite internalization by DC. In addition, the early events after parasite inoculation that consist of mast cell activation, parasite uptake by skin-resident macrophages (MΦ), followed by neutrophil and monocyte immigration and DC activation are described. All these events contribute significantly to antigen processing in infected DC and influence resulting T cell priming in vivo. A detailed understanding of the role of DC for the development of efficient anti-Leishmania immunity will aid the development of potent anti-parasite drugs and/or vaccines.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
26
|
El-Hani CN, Borges VM, Wanderley JLM, Barcinski MA. Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective. Front Cell Infect Microbiol 2012; 2:96. [PMID: 22912937 PMCID: PMC3418608 DOI: 10.3389/fcimb.2012.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023] Open
Abstract
Apoptotic death and apoptotic mimicry are defined respectively as a non-accidental death and as the mimicking of an apoptotic-cell phenotype, usually by phosphatidylserine (PS) exposure. In the case of the murine infection by Leishmania spp, apoptotic death has been described in promastigotes and apoptotic mimicry in amastigotes. In both situations they are important events of the experimental murine infection by this parasite. In the present review we discuss what features we need to consider if we want to establish if a behavior shown by Leishmania is altruistic or not: does the behavior increases the fitness of organisms other than the one showing it? Does this behavior have a cost for the actor? If we manage to show that a given behavior is costly for the actor and beneficial for the recipient of the action, we will be able to establish it as altruistic. From this perspective, we can argue that apoptotic-like death and apoptotic mimicry are both altruistic with the latter representing a weaker altruistic behavior than the former.
Collapse
Affiliation(s)
- Charbel N. El-Hani
- Laboratório de Ensino, História e Filosofia de Biologia, Instituto de Biologia, Universidade Federal da BahiaSalvador, Brazil
| | - Valéria M. Borges
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo CruzSalvador, Brazil
- Faculdade de Medicina, Universidade Federal da BahiaSalvador, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em ImunologiaSalvador, Brazil
| | | | | |
Collapse
|
27
|
Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15:490-9. [PMID: 22749376 DOI: 10.1016/j.mib.2012.05.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
Macropinocytosis has emerged as a major endocytic mechanism in the cell entry of animal viruses. The process differs fundamentally from other endocytic mechanisms involved in virus internalization. By activating growth factor receptors or other signaling molecules, plasma membrane-bound viruses trigger the activation of a signaling pathway. When amplified, this causes a transient, global change in cell behavior. The consequences of this change include the actin-dependent formation of membrane protrusions, the elevation of non-specific uptake of fluid, and the internalization of membrane together with surface-bound ligands and particles including viruses. Recent studies show that this strategy is used by a variety of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zürich, Institute of Biochemistry, Zürich, Switzerland.
| | | |
Collapse
|
28
|
Soong L. Subversion and Utilization of Host Innate Defense by Leishmania amazonensis. Front Immunol 2012; 3:58. [PMID: 22566939 PMCID: PMC3342205 DOI: 10.3389/fimmu.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
Infection with Leishmania amazonensis and other members of the Leishmania mexicana complex can lead to diverse clinical manifestations, some of which are relatively difficult to control, even with standard chemotherapy. Diffuse cutaneous leishmaniasis (CL) is a rare but severe form, and its clinical hallmark is excessive parasitic growth in infected cells accompanied by profound impairments in host immune responses to the parasites. Since these parasites also cause non-healing CL in most inbred strains of mice, these animals are valuable models for dissecting the mechanisms of persistent infection and disease pathogenesis. In comparison to other Leishmania species, L. amazonensis infections are most remarkable for their ability to repress the activation and effector functions of macrophages, dendritic cells, and CD4(+) T cells, implying discrete mechanisms at work. In addition to this multilateral suppression of host innate and adaptive immunity, the activation of types I and II interferon-mediated responses and autophagic/lipid metabolic pathways actually promotes rather than restrains L. amazonensis infection. These seemingly contradictory findings reflect the remarkable adaptation of the parasites to the ancient defense machinery of the host, as well as the complex parasite-host interactions at different stages of infection, which collectively contribute to non-healing leishmaniasis in the New World. This review article highlights new evidence that reveals the strategies utilized by L. amazonensis parasites to subvert or modulate host innate defense machinery in neutrophils and macrophages, as well as the regulatory roles of host innate responses in promoting parasite survival and replication within the huge parasitophorous vacuoles. A better understanding of unique features in host responses to these parasites at early and late stages of infection is important for the rational design of control strategies for non-healing leishmaniasis.
Collapse
Affiliation(s)
- Lynn Soong
- Center for Tropical Diseases, Sealy Center for Vaccine Development, Department of Microbiology and Immunology, The University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
29
|
The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol 2012; 130:183-8. [DOI: 10.1016/j.exppara.2012.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 01/26/2023]
|
30
|
A proteomics view of programmed cell death mechanisms during host–parasite interactions. J Proteomics 2011; 75:246-56. [DOI: 10.1016/j.jprot.2011.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
|
31
|
Phosphatidylserine exposure by Toxoplasma gondii is fundamental to balance the immune response granting survival of the parasite and of the host. PLoS One 2011; 6:e27867. [PMID: 22140476 PMCID: PMC3226563 DOI: 10.1371/journal.pone.0027867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/26/2011] [Indexed: 01/22/2023] Open
Abstract
Phosphatidylserine (PS) exposure on the cell surface indicates apoptosis, but has also been related to evasion mechanisms of parasites, a concept known as apoptotic mimicry. Toxoplasma gondii mimics apoptotic cells by exposing PS, inducing secretion of TGF-beta1 by infected activated macrophages leading to degradation of inducible nitric oxide (NO) synthase, NO production inhibition and consequently persisting in these cells. Here PS+ and PS− subpopulation of tachyzoites were separated and the entrance mechanism, growth and NO inhibition in murine macrophages, and mice survival and pathology were analyzed. Infection index in resident macrophages was similar for both PS subpopulations but lower when compared to the total T. gondii population. Growth in resident macrophages was higher for the total T. gondii population, intermediate for the PS+ and lower for the PS− subpopulation. Production of NO by activated macrophages was inhibited after infection with the PS+ subpopulation and the total populations of tachyzoites. However, the PS− subpopulation was not able to inhibit NO production. PS+ subpopulation invaded macrophages by active penetration as indicated by tight-fitting vacuoles, but the PS− subpopulation entered macrophages by phagocytosis as suggested by loose-fitting vacuoles containing these tachyzoites. The entrance mechanism of both subpopulations was confirmed in a non-professional phagocytic cell line where only the PS+ tachyzoites were found inside these cells in tight-fitting vacuoles. Both subpopulations of T. gondii killed mice faster than the total population. Clear signs of inflammation and no tachyzoites were seen in the peritoneal cavity of mice infected with the PS− subpopulation. Moreover, mice infected with the PS+ subpopulation had no sign of inflammation and the parasite burden was intense. These results show that PS+ and PS− subpopulations of T. gondii are necessary for a successful toxoplasma infection indicating that both subpopulations are required to maintain the balance between inflammation and parasite growth.
Collapse
|
32
|
Efficacy of synthetic peptides RP-1 and AA-RP-1 against Leishmania species in vitro and in vivo. Antimicrob Agents Chemother 2011; 56:658-65. [PMID: 22123683 DOI: 10.1128/aac.05349-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Host defense peptides are naturally occurring molecules that play essential roles in innate immunity to infection. Based on prior structure-function knowledge, we tested two synthetic peptides (RP-1 and AA-RP-1) modeled on the conserved, microbicidal α-helical domain of mammalian CXCL4 platelet kinocidins. These peptides were evaluated for efficacy against Leishmania species, the causative agents of the group of diseases known as leishmaniasis. In vitro antileishmanial activity was assessed against three distinct Leishmania strains by measuring proliferation, metabolic activity and parasite viability after exposure to various concentrations of peptides. We demonstrate that micromolar concentrations of RP-1 and AA-RP-1 caused dose-dependent growth inhibition of Leishmania promastigotes. This antileishmanial activity correlated with rapid membrane disruption, as well as with a loss of mitochondrial transmembrane potential. In addition, RP-1 and AA-RP-1 demonstrated distinct and significant in vivo antileishmanial activities in a mouse model of experimental visceral leishmaniasis after intravenous administration. These results establish efficacy of RP-1 lineage synthetic peptides against Leishmania species in vitro and after intravenous administration in vivo and provide further validation of proof of concept for the development of these and related systemic anti-infective peptides targeting pathogens that are resistant to conventional antibiotics.
Collapse
|
33
|
Abstract
In the evolutionary battle between virus and host, viruses have developed numerous strategies to subjugate indispensable cellular functions. In this issue of Cell Host & Microbe, Morizono and colleagues (Morizono et al., 2011) describe how viruses hijack host apoptotic clearance machinery for entry. A host factor called Gas6 enhances infection by bridging virus phosphatidylserine to the clearance receptor Axl.
Collapse
Affiliation(s)
- Jason Mercer
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
34
|
Filardy AA, Pires DR, DosReis GA. Macrophages and neutrophils cooperate in immune responses to Leishmania infection. Cell Mol Life Sci 2011; 68:1863-70. [PMID: 21369708 PMCID: PMC11114789 DOI: 10.1007/s00018-011-0653-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/13/2011] [Accepted: 02/17/2011] [Indexed: 12/20/2022]
Abstract
Neutrophils and macrophages are phagocytic cells that cooperate during inflammation and tissue repair. Neutrophils undergo apoptosis and are engulfed by macrophages. Engulfment modulates macrophage activation and microbicidal activity. Infection by Leishmania takes place in the context of tissue repair. This article discusses cellular and molecular mechanisms involved in the intimate cooperation of neutrophils and macrophages in Leishmania infection.
Collapse
Affiliation(s)
- Alessandra A Filardy
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
35
|
Marinho FDA, Gonçalves KCDS, Oliveira SSD, Oliveira ACDSCD, Bellio M, d'Avila-Levy CM, Santos ALSD, Branquinha MH. Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes. Mem Inst Oswaldo Cruz 2011; 106:507-9. [DOI: 10.1590/s0074-02762011000400021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/06/2011] [Indexed: 11/22/2022] Open
|
36
|
Khademvatan S, Gharavi MJ, Rahim F, Saki J. Miltefosine-induced apoptotic cell death on Leishmania major and L. tropica strains. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:17-23. [PMID: 21461264 PMCID: PMC3063921 DOI: 10.3347/kjp.2011.49.1.17] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/23/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
Abstract
The aim of this study was to assess the cytotoxic effects of various concentrations of miltefosine on Leishmania major (MRHO/IR/75/ER) and L. tropica (MHOM/IR/02/Mash10) promastigotes and to observe the programmed cell death features. The colorimetric MTT assay was used to find L. major and L. tropica viability and the obtained results were expressed as 50% inhibitory concentration (IC50). Also, 50% effective doses (ED50) for L. major and L. tropica amastigotes were also determined. Annexin-V FLUOS staining was performed to study the cell death properties of miltefosine using FACS analysis. Qualitative analysis of the total genomic DNA fragmentation was performed by agarose gel electrophoresis. Furthermore, to observe changes in cell morphology, promastigotes were examined using light microscopy. In both strains of L. major and L. tropica, miltefosine induced dose-dependent death with features of apoptosis, including cell shrinkage, DNA laddering, and externalization of phosphatidylserine. The IC50 was achieved at 22 µM and 11 µM for L. major and L. tropica after 48 hr of incubation, respectively. ED50 of L. major and L. tropica amastigotes were 5.7 µM and 4.2 µM, respectively. Our results indicate that miltefosine induces apoptosis of the causative agent of cutaneous leishmaniasis in a dose-dependent manner. Interestingly, L. major did not display any apoptotic changes when it was exposed to miltefosine in concentrations sufficient to kill L. tropica.
Collapse
Affiliation(s)
- Shahram Khademvatan
- Department of Medical Parasitology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | |
Collapse
|
37
|
Mercer J, Helenius A. Apoptotic mimicry: phosphatidylserine-mediated macropinocytosis of vaccinia virus. Ann N Y Acad Sci 2010; 1209:49-55. [PMID: 20958316 DOI: 10.1111/j.1749-6632.2010.05772.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viruses are obligatory intracellular parasites that rely on cellular processes and factors for most aspects of their replication cycle. For entry, most viruses take advantage of cellular endocytic activities to be transported from the cell surface into the cytoplasm where they penetrate into the host cell cytosol. It has recently emerged that vaccinia virus, the prototypic poxvirus, uses macropinocytosis to gain entry. The incoming virus particles activate a complex signaling network that triggers dramatic changes in the cortical actin network, resulting in membrane blebbing that facilitates virus entry. Phosphatidylserine in the virus membrane is required to trigger the signaling, blebbing, and macropinocytic event, suggesting that the vaccinia virus uses an entry mechanism based on mimicry of apoptotic bodies.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, Zurich, Switzerland.
| | | |
Collapse
|