1
|
Ceron-Noriega A, Almeida MV, Levin M, Butter F. Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Res 2023; 33:112-128. [PMID: 36653121 PMCID: PMC9977148 DOI: 10.1101/gr.277070.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023]
Abstract
Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Collapse
Affiliation(s)
| | | | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
2
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
3
|
Kletter T, Biswas A, Reber S. Engineering metaphase spindles: Construction site and building blocks. Curr Opin Cell Biol 2022; 79:102143. [PMID: 36436307 DOI: 10.1016/j.ceb.2022.102143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
In an active, crowded cytoplasm, eukaryotic cells construct metaphase spindles from conserved building blocks to segregate chromosomes. Yet, spindles execute their function in a stunning variety of cell shapes and sizes across orders of magnitude. Thus, the current challenge is to understand how unique mesoscale spindle characteristics emerge from the interaction of molecular collectives. Key components of these collectives are tubulin dimers, which polymerise into microtubules. Despite all conservation, tubulin is a genetically and biochemically complex protein family, and we only begin to uncover how tubulin diversity affects microtubule dynamics and thus spindle assembly. Moreover, it is increasingly appreciated that spindles are dynamically intertwined with the cytoplasm that itself exhibits cell-type specific emergent properties with yet mostly unexplored consequences for spindle construction. Therefore, on our way toward a quantitative picture of spindle function, we need to understand molecular behaviour of the building blocks and connect it to the entire cellular context.
Collapse
Affiliation(s)
- Tobias Kletter
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
4
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
5
|
Lu T, Smit RB, Soueid H, Mains PE. STRIPAK regulation of katanin microtubule severing in the Caenorhabditis elegans embryo. Genetics 2022; 221:iyac043. [PMID: 35298637 PMCID: PMC9071564 DOI: 10.1093/genetics/iyac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.
Collapse
Affiliation(s)
- Tammy Lu
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Hanifa Soueid
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| |
Collapse
|
6
|
Unno T, Takatsuka H, Ohnishi Y, Ito M, Kubota Y. A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes Genomics 2021; 44:343-357. [PMID: 34843089 DOI: 10.1007/s13258-021-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.
Collapse
Affiliation(s)
- Takuma Unno
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
Schneider I, de Ruijter-Villani M, Hossain MJ, Stout TA, Ellenberg J. Dual spindles assemble in bovine zygotes despite the presence of paternal centrosomes. J Cell Biol 2021; 220:e202010106. [PMID: 34550316 PMCID: PMC8563290 DOI: 10.1083/jcb.202010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
The first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded, and instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In nonrodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether nonrodent zygotes assemble a single centrosomal spindle around both genomes or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in nonrodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.
Collapse
Affiliation(s)
- Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Division of Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - M. Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tom A.E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Joly N, Beaumale E, Van Hove L, Martino L, Pintard L. Phosphorylation of the microtubule-severing AAA+ enzyme Katanin regulates C. elegans embryo development. J Cell Biol 2020; 219:e201912037. [PMID: 32412594 PMCID: PMC7265321 DOI: 10.1083/jcb.201912037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.
Collapse
Affiliation(s)
- Nicolas Joly
- Programme Equipes Labellisées Ligue contre le Cancer – Team “Cell Cycle and Development,” Centre National de la Recherche Scientifique – UMR7592, Institut Jacques Monod/University of Paris, Paris, France
| | | | | | | | - Lionel Pintard
- Programme Equipes Labellisées Ligue contre le Cancer – Team “Cell Cycle and Development,” Centre National de la Recherche Scientifique – UMR7592, Institut Jacques Monod/University of Paris, Paris, France
| |
Collapse
|
9
|
Fabig G, Kiewisz R, Lindow N, Powers JA, Cota V, Quintanilla LJ, Brugués J, Prohaska S, Chu DS, Müller-Reichert T. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 2020; 9:50988. [PMID: 32149606 PMCID: PMC7101234 DOI: 10.7554/elife.50988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Collapse
Affiliation(s)
- Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Vanessa Cota
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Luis J Quintanilla
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Centre for Systems Biology Dresden, Dresden, Germany
| | | | - Diana S Chu
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Wang YS, Jiao XF, Chen F, Wu D, Ding ZM, Miao YL, Huo LJ. WDR62 is a novel participator in spindle migration and asymmetric cytokinesis during mouse oocyte meiotic maturation. Exp Cell Res 2019; 387:111773. [PMID: 31836472 DOI: 10.1016/j.yexcr.2019.111773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023]
Abstract
In female meiosis, oocyte meiotic maturation is a form of asymmetric cell division, producing the first polar body and a large oocyte, in which the asymmetry of oocyte meiotic division depends on spindle migration and positioning, and cortical polarization. In this study, we conclude that WDR62 (WD40-repeat protein 62) plays an important role in asymmetric meiotic division during mouse oocyte maturation. Our initial study demonstrated that WDR62 mainly co-localized with chromosomes during mouse oocyte meiotic maturation. Interference of Wdr62 by siRNA microinjection did not affect germinal vesicle breakdown (GVBD) but compromised the first polar body extrusion (PBE) with the large polar bodies generated, which is coupled with a higher incidence of spindle abnormality and chromosome misalignment. Further analysis concluded that loss of WDR62 blocked asymmetric spindle positioning and actin cap formation, which should be responsible for large polar body extrusion. Moreover, WDR62 decline intervened with the Arp2/3 complex, an upstream regulator for the cortical actin. Besides for p-MAPK, a critical regulator for the asymmetric division of oocyte, WDR62-depleted oocytes showed perturbation only in localization pattern but not expression level. In summary, our study defines WDR62 as an essential cytoskeletal regulator of spindle migration and asymmetric division during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Hubei Province Engineering Research Center in Buffalo Breeding and Products, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Redemann S, Fürthauer S, Shelley M, Müller-Reichert T. Current approaches for the analysis of spindle organization. Curr Opin Struct Biol 2019; 58:269-277. [DOI: 10.1016/j.sbi.2019.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
|
12
|
Pelisch F, Bel Borja L, Jaffray EG, Hay RT. Sumoylation regulates protein dynamics during meiotic chromosome segregation in C. elegans oocytes. J Cell Sci 2019; 132:jcs232330. [PMID: 31243051 PMCID: PMC6679583 DOI: 10.1242/jcs.232330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Oocyte meiotic spindles in most species lack centrosomes and the mechanisms that underlie faithful chromosome segregation in acentrosomal meiotic spindles are not well understood. In C. elegans oocytes, spindle microtubules exert a poleward force on chromosomes that is dependent on the microtubule-stabilising protein CLS-2, the orthologue of the mammalian CLASP proteins. The checkpoint kinase BUB-1 and CLS-2 localise in the central spindle and display a dynamic localisation pattern throughout anaphase, but the signals regulating their anaphase-specific localisation remains unknown. We have shown previously that SUMO regulates BUB-1 localisation during metaphase I. Here, we found that SUMO modification of BUB-1 is regulated by the SUMO E3 ligase GEI-17 and the SUMO protease ULP-1. SUMO and GEI-17 are required for BUB-1 localisation between segregating chromosomes during early anaphase I. We also show that CLS-2 is subject to SUMO-mediated regulation; CLS-2 precociously localises in the midbivalent when either SUMO or GEI-17 are depleted. Overall, we provide evidence for a novel, SUMO-mediated control of protein dynamics during early anaphase I in oocytes.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
Avidor-Reiss T, Fishman EL. It takes two (centrioles) to tango. Reproduction 2019; 157:R33-R51. [PMID: 30496124 PMCID: PMC6494718 DOI: 10.1530/rep-18-0350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Cells that divide during embryo development require precisely two centrioles during interphase and four centrioles during mitosis. This precise number is maintained by allowing each centriole to nucleate only one centriole per cell cycle (i.e. centriole duplication). Yet, how the first cell of the embryo, the zygote, obtains two centrioles has remained a mystery in most mammals and insects. The mystery arose because the female gamete (oocyte) is thought to have no functional centrioles and the male gamete (spermatozoon) is thought to have only one functional centriole, resulting in a zygote with a single centriole. However, recent studies in fruit flies, beetles and mammals, including humans, suggest an alternative explanation: spermatozoa have a typical centriole and an atypical centriole. The sperm typical centriole has a normal structure but distinct protein composition, whereas the sperm atypical centriole is distinct in both. During fertilization, the atypical centriole is released into the zygote, nucleates a new centriole and participates in spindle pole formation. Thus, the spermatozoa's atypical centriole acts as a second centriole in the zygote. Here, we review centriole biology in general and especially in reproduction, we describe the discovery of the spermatozoon atypical centriole, and we provide an updated model for centriole inherence during sexual reproduction. While we focus on humans and other non-rodent mammals, we also provide a broader evolutionary perspective.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| | - Emily L. Fishman
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Rd., Wolfe Hall 4259, Toledo, OH 43606
| |
Collapse
|
14
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
15
|
Lacroix B, Letort G, Pitayu L, Sallé J, Stefanutti M, Maton G, Ladouceur AM, Canman JC, Maddox PS, Maddox AS, Minc N, Nédélec F, Dumont J. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev Cell 2018; 45:496-511.e6. [PMID: 29787710 DOI: 10.1016/j.devcel.2018.04.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| | - Gaëlle Letort
- Institut Curie, Mines Paris Tech, Inserm, U900, PSL Research University, 75005 Paris, France
| | - Laras Pitayu
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | | | - Julie C Canman
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Paul S Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy S Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicolas Minc
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
16
|
Abstract
Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional (3D) architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. 3D reconstruction of microtubules, however, is only the first step toward biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.
Collapse
|
17
|
Laband K, Lacroix B, Edwards F, Canman JC, Dumont J. Live imaging of C. elegans oocytes and early embryos. Methods Cell Biol 2018; 145:217-236. [PMID: 29957205 DOI: 10.1016/bs.mcb.2018.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans is a self-fertilizing hermaphroditic worm. A single C. elegans worm therefore produces both male and female gametes that fuse to generate embryos. While sperm production stops at the end of the C. elegans larval development, oocytes are continuously generated and fertilized during the entire reproductive life of the adult worm. The molecular and cellular mechanisms involved in gametogenesis and the early embryonic divisions are highly conserved between worms and humans; thus C. elegans is a powerful model to study meiotic and mitotic cell divisions in a metazoan system. Additionally, the optical transparency of the worm combined with the ease of the genome-editing methods can be used to easily follow the subcellular behavior of any fluorescently tagged protein of interest using light microscopy approaches. Here we describe two methods for preparing live samples to study oocyte meiotic and early embryonic mitotic divisions by confocal microscopy in C. elegans.
Collapse
Affiliation(s)
- Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Paris, France
| | - Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Paris, France
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Paris, France
| | - Julie C Canman
- Columbia University Medical Center, New York, NY, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Paris, France.
| |
Collapse
|
18
|
Müller-Reichert T, Kiewisz R, Redemann S. Mitotic spindles revisited – new insights from 3D electron microscopy. J Cell Sci 2018; 131:131/3/jcs211383. [DOI: 10.1242/jcs.211383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans. Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
Collapse
Affiliation(s)
- Thomas Müller-Reichert
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Robert Kiewisz
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stefanie Redemann
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| |
Collapse
|
19
|
C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat Commun 2017; 8:15288. [PMID: 28492281 PMCID: PMC5437269 DOI: 10.1038/ncomms15288] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient. A connection between centrosomes and chromosomes is a key feature of mitotic spindles. Here the authors generate 3D reconstructions of whole mitotic spindles in early C. elegans embryos and show that chromosomes are anchored by the entire spindle network and that connections through kinetochore microtubules are few and likely very transient.
Collapse
|
20
|
Pécréaux J, Redemann S, Alayan Z, Mercat B, Pastezeur S, Garzon-Coral C, Hyman AA, Howard J. The Mitotic Spindle in the One-Cell C. elegans Embryo Is Positioned with High Precision and Stability. Biophys J 2016; 111:1773-1784. [PMID: 27760363 PMCID: PMC5071606 DOI: 10.1016/j.bpj.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Abstract
Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents of the mother cell are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early Caenorhabditis elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution. We found that the precision is remarkably high: the cell-to-cell variation in the transverse position of the center of the spindle during metaphase, as measured by the standard deviation, was only 1.5% of the length of the short axis of the cell. Spindle position is also very stable: the standard deviation of the fluctuations in transverse spindle position during metaphase was only 0.5% of the short axis of the cell. Assuming that stability is limited by fluctuations in the number of independent motor elements such as microtubules or dyneins underlying the centering machinery, we infer that the number is ∼1000, consistent with the several thousand of astral microtubules in these cells. Astral microtubules grow out from the two spindle poles, make contact with the cell cortex, and then shrink back shortly thereafter. The high stability of centering can be accounted for quantitatively if, while making contact with the cortex, the astral microtubules buckle as they exert compressive, pushing forces. We thus propose that the large number of microtubules in the asters provides a highly precise mechanism for positioning the spindle during metaphase while assembly is completed before the onset of anaphase.
Collapse
Affiliation(s)
- Jacques Pécréaux
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Stefanie Redemann
- Dresden University of Technology, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Zahraa Alayan
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Benjamin Mercat
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Sylvain Pastezeur
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Carlos Garzon-Coral
- Shriram Center of Bioengineering and Chemical Engineering, Stanford University, Stanford, California; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathon Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
21
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
22
|
Abstract
Gametogenesis in animal oocytes reduces the diploid genome content of germline precursors to a haploid state in gametes by discarding ¾ of the duplicated chromosomes through a sequence of two meiotic cell divisions called meiosis I and II. The assembly of the microtubule-based spindle structure that mediates this reduction in genome content remains poorly understood compared to our knowledge of mitotic spindle assembly and function. In this review, we consider the diversity of oocyte meiotic spindle assembly and structure across animal phylogeny, review recent advances in our understanding of how animal oocytes assemble spindles in the absence of the centriole-based microtubule-organizing centers that dominate mitotic spindle assembly, and discuss different models for how chromosomes are captured and moved to achieve chromosome segregation during oocyte meiotic cell division.
Collapse
Affiliation(s)
- Aaron F Severson
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
23
|
Connolly AA, Sugioka K, Chuang CH, Lowry JB, Bowerman B. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol 2015; 210:917-32. [PMID: 26370499 PMCID: PMC4576866 DOI: 10.1083/jcb.201412010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
KLP-7/MCAK regulates kinetochore–microtubule attachment and spindle tension to promote the coalescence of early spindle pole foci, which produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly in C. elegans. During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.
Collapse
Affiliation(s)
- Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Joshua B Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
24
|
Yang R, Feldman JL. SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome. Curr Biol 2015; 25:1924-31. [PMID: 26119750 DOI: 10.1016/j.cub.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The centrosome acts as the microtubule-organizing center (MTOC) during mitosis in animal cells. Microtubules are nucleated and anchored by γ-tubulin ring complexes (γ-TuRCs) embedded within the centrosome's pericentriolar material (PCM). The PCM is required for the localization of γ-TuRCs, and both are steadily recruited to the centrosome, culminating in a peak in MTOC function in metaphase. In differentiated cells, the centrosome is often attenuated as an MTOC and MTOC function is reassigned to non-centrosomal sites such as the apical membrane in epithelial cells, the nuclear envelope in skeletal muscle, and down the lengths of axons and dendrites in neurons. Hyperactive MTOC function at the centrosome is associated with epithelial cancers and with invasive behavior in tumor cells. Little is known about the mechanisms that limit MTOC activation at the centrosome. Here, we find that MTOC function at the centrosome is completely inactivated during cell differentiation in C. elegans embryonic intestinal cells and MTOC function is reassigned to the apical membrane. In cells that divide after differentiation, the cellular MTOC state switches between the membrane and the centrosome. Using cell fusion experiments in live embryos, we find that the centrosome MTOC state is dominant and that the inactive MTOC state of the centrosome is malleable; fusion of a mitotic cell to a differentiated or interphase cell results in rapid reactivation of the centrosome MTOC. We show that conversion of MTOC state involves the conserved centrosome protein SPD-2/CEP192 and CDK activity from the mitotic cell.
Collapse
Affiliation(s)
- Renzhi Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Grode KD, Rogers SL. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity. PLoS One 2015; 10:e0123912. [PMID: 25886649 PMCID: PMC4401518 DOI: 10.1371/journal.pone.0123912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT) domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.
Collapse
Affiliation(s)
- Kyle D. Grode
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen L. Rogers
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Weber B, Tranfield EM, Höög JL, Baum D, Antony C, Hyman T, Verbavatz JM, Prohaska S. Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 2014; 9:e113222. [PMID: 25438148 PMCID: PMC4249889 DOI: 10.1371/journal.pone.0113222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023] Open
Abstract
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
Collapse
Affiliation(s)
- Britta Weber
- Zuse Institute Berlin, Berlin, Germany
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | - Johanna L. Höög
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Claude Antony
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tony Hyman
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
28
|
Keikhaee MR, Nash EB, O'Rourke SM, Bowerman B. A semi-dominant mutation in the general splicing factor SF3a66 causes anterior-posterior axis reversal in one-cell stage C. elegans embryos. PLoS One 2014; 9:e106484. [PMID: 25188372 PMCID: PMC4154684 DOI: 10.1371/journal.pone.0106484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Establishment of anterior-posterior polarity in one-cell stage Caenorhabditis elegans embryos depends in part on astral microtubules. As the zygote enters mitosis, these microtubules promote the establishment of a posterior pole by binding to and protecting a cytoplasmic pool of the posterior polarity protein PAR-2 from phosphorylation by the cortically localized anterior polarity protein PKC-3. Prior to activation of the sperm aster, the oocyte Meiosis I and II spindles assemble and function, usually at the future anterior pole, but these meiotic spindle microtubules fail to establish posterior polarity through PAR-2. Here we show that a semi-dominant mutation in the general splicing factor SF3a66 can lead to a reversed axis of AP polarity that depends on PAR-2 and possibly on close proximity of oocyte meiotic spindles with the cell cortex. One possible explanation is that reduced levels of PKC-3, due to a general splicing defect, can result in axis reversal due to a failure to prevent oocyte meiotic spindle microtubules from interfering with AP axis formation.
Collapse
Affiliation(s)
- Mohammad R. Keikhaee
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric B. Nash
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sean M. O'Rourke
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Connolly AA, Osterberg V, Christensen S, Price M, Lu C, Chicas-Cruz K, Lockery S, Mains PE, Bowerman B. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1. Mol Biol Cell 2014; 25:1298-311. [PMID: 24554763 PMCID: PMC3982995 DOI: 10.1091/mbc.e13-11-0687] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oocyte meiotic spindles are bipolar but assemble without centrosomes. Three Caenorhabditis elegans genes that contribute are that for the calponin homology domain protein, aspm-1; the katanin mei-1; and the kinesin-12 family member klp-18. The results indicate that both microtubule severing and ASPM-1 promote pole assembly, whereas KLP-18 promotes bipolarity. In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions—ASPM-1 recruitment to the spindle and microtubule severing—both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity.
Collapse
Affiliation(s)
- Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403 Institute of Neuroscience, University of Oregon, Eugene, OR 97403 Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bajaj M, Srayko M. Laulimalide induces dose-dependent modulation of microtubule behaviour in the C. elegans embryo. PLoS One 2013; 8:e71889. [PMID: 23936530 PMCID: PMC3732258 DOI: 10.1371/journal.pone.0071889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022] Open
Abstract
Laulimalide is a microtubule-binding drug that was originally isolated from marine sponges. High concentrations of laulimalide stabilize microtubules and inhibit cell division similarly to paclitaxel; however, there are important differences with respect to the nature of the specific cellular defects between these two drugs and their binding sites on the microtubule. In this study, we used Caenorhabditis elegans embryos to investigate the acute effects of laulimalide on microtubules in vivo, with a direct comparison to paclitaxel. We observed surprising dose-dependent effects for laulimalide, whereby microtubules were stabilized at concentrations above 100 nM, but destabilized at concentrations between 50 and 100 nM. Despite this behaviour at low concentrations, laulimalide acted synergistically with paclitaxel to stabilize microtubules when both drugs were used at sub-effective concentrations, consistent with observations of synergistic interactions between these two drugs in other systems. Our results indicate that laulimalide induces a concentration-dependent, biphasic change in microtubule polymer dynamics in the C. elegans embryo.
Collapse
Affiliation(s)
- Megha Bajaj
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
31
|
Bärenz F, Inoue D, Yokoyama H, Tegha-Dunghu J, Freiss S, Draeger S, Mayilo D, Cado I, Merker S, Klinger M, Hoeckendorf B, Pilz S, Hupfeld K, Steinbeisser H, Lorenz H, Ruppert T, Wittbrodt J, Gruss OJ. The centriolar satellite protein SSX2IP promotes centrosome maturation. ACTA ACUST UNITED AC 2013; 202:81-95. [PMID: 23816619 PMCID: PMC3704989 DOI: 10.1083/jcb.201302122] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SSX2IP promotes centrosome maturation and maintenance at the onset of vertebrate development, preserving centrosome integrity and mitosis during rapid cleavage divisions and in somatic cells. Meiotic maturation in vertebrate oocytes is an excellent model system for microtubule reorganization during M-phase spindle assembly. Here, we surveyed changes in the pattern of microtubule-interacting proteins upon Xenopus laevis oocyte maturation by quantitative proteomics. We identified the synovial sarcoma X breakpoint protein (SSX2IP) as a novel spindle protein. Using X. laevis egg extracts, we show that SSX2IP accumulated at spindle poles in a Dynein-dependent manner and interacted with the γ-tubulin ring complex (γ-TuRC) and the centriolar satellite protein PCM-1. Immunodepletion of SSX2IP impeded γ-TuRC loading onto centrosomes. This led to reduced microtubule nucleation and spindle assembly failure. In rapidly dividing blastomeres of medaka (Oryzias latipes) and in somatic cells, SSX2IP knockdown caused fragmentation of pericentriolar material and chromosome segregation errors. We characterize SSX2IP as a novel centrosome maturation and maintenance factor that is expressed at the onset of vertebrate development. It preserves centrosome integrity and faithful mitosis during the rapid cleavage division of blastomeres and in somatic cells.
Collapse
Affiliation(s)
- Felix Bärenz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goulet A, Moores C. New insights into the mechanism of force generation by kinesin-5 molecular motors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:419-66. [PMID: 23809441 DOI: 10.1016/b978-0-12-407696-9.00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 motors are members of a superfamily of microtubule-dependent ATPases and are widely conserved among eukaryotes. Kinesin-5s typically form homotetramers with pairs of motor domains located at either end of a dumbbell-shaped molecule. This quaternary structure enables cross-linking and ATP-driven sliding of pairs of microtubules, although the exact molecular mechanism of this activity is still unclear. Kinesin-5 function has been characterized in greatest detail in cell division, although a number of interphase roles have also been defined. The kinesin-5 ATPase is tuned for slow microtubule sliding rather than cellular transport and-in vertebrates-can be inhibited specifically by allosteric small molecules currently in cancer clinical trials. The biophysical and structural basis of kinesin-5 mechanochemistry is being elucidated and has provided further insight into kinesin-5 activities. However, it is likely that the precise mechanism of these important motors has evolved according to functional context and regulation in individual organisms.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
33
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
34
|
|
35
|
O'Toole E, Greenan G, Lange KI, Srayko M, Müller-Reichert T. The role of γ-tubulin in centrosomal microtubule organization. PLoS One 2012; 7:e29795. [PMID: 22253783 PMCID: PMC3254605 DOI: 10.1371/journal.pone.0029795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/03/2011] [Indexed: 12/29/2022] Open
Abstract
As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is not absolutely required for microtubule nucleation in vivo, and raising questions about the function of the minus end cap. Here, we assessed the role of γ-tubulin in centrosomal microtubule organisation using three-dimensional reconstructions of γ-tubulin-depleted C. elegans embryos. We found that microtubule minus-end capping and the PCM component SPD-5 are both essential for the proper placement of microtubules in the centrosome. Our results further suggest that γ-tubulin and SPD-5 limit microtubule polymerization within the centrosome core, and we propose a model for how abnormal microtubule organization at the centrosome could indirectly affect centriole structure and daughter centriole replication.
Collapse
Affiliation(s)
- Eileen O'Toole
- Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Garrett Greenan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karen I. Lange
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
36
|
Correlative light and electron microscopy of intermediate stages of meiotic spindle assembly in the early Caenorhabditis elegans embryo. Methods Cell Biol 2012; 111:223-34. [PMID: 22857931 DOI: 10.1016/b978-0-12-416026-2.00012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter is an update of the previously published book chapter "Correlative Light and Electron Microscopy of Early C. elegans Embryos in Mitosis" (Müller-Reichert, Srayko, Hyman, O'Toole, & McDonald, 2007). Here, we have adapted and improved the protocol for the isolated meiotic embryos, which was necessary to meet the specific challenges a researcher faces while investigating the development of very early Caenorhabditis elegans embryos ex-utero. Due to the incompleteness of the eggshell assembly, the meiotic embryo is very fragile and much more susceptible to changes in the environmental conditions than the mitotic ones. To avoid phototoxicity associated with wide-field UV illumination, we stage the meiotic embryos primarily using transmitted visible light. Throughout the staging and high-pressure freezing, we incubate samples in an isotonic embryo buffer. The ex-utero approach allows precise tracking of the developmental events in isolated meiotic embryos, thus facilitating the comparison of structural features between wild-type and mutant or RNAi-treated samples.
Collapse
|
37
|
Jiang K, Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr Opin Cell Biol 2011; 23:94-101. [PMID: 20817499 DOI: 10.1016/j.ceb.2010.08.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
Abstract
Microtubule ends serve as sites of tubulin addition and removal, and at the same time play crucial roles in microtubule capture, stabilization and attachment to different cellular structures. Microtubule plus and minus-ends possess distinct structural and dynamic properties, and are recognized, bound and regulated by diverse factors. These include specific capping factors such as γ-tubulin, motors, such as plus-end and minus-end directed kinesins, highly specialized kinetochore-bound microtubule-associated proteins, and comet-making plus-end tracking proteins such as EB1 and its partners. Here, we provide an overview of microtubule tip-interacting proteins and the mechanisms responsible for their association with microtubule ends, and discuss the functional cross-talk between microtubule plus and minus-end binding factors.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
38
|
Abstract
Aurora A kinase is a key regulator of cell division, whose functions were attributed to its ability to phosphorylate diverse substrates. Aurora A is now shown to have a kinase-independent role in the regulation of chromatin-mediated microtubule assembly.
Collapse
|
39
|
Begasse ML, Hyman AA. The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. Results Probl Cell Differ 2011; 53:109-33. [PMID: 21630143 DOI: 10.1007/978-3-642-19065-0_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout the development of an organism, it is essential that the cell cycle machinery is fine-tuned to generate cells of different fate. A series of asymmetric cell divisions leads to lineage specification. The Caenorhabditis elegans embryo is an excellent system to study various aspects of the early embryonic cell cycle. The invariant nature of the rapid cell divisions is the key feature for studying the effects of small perturbations to a complex process such as the cell cycle. The thorough characterization of the asymmetric first cell division of the C. elegans embryo has given great insight on how the oscillations of the cell cycle coordinate with the cytoplasmic rearrangements that ultimately lead to two developmentally distinct daughter cells.
Collapse
Affiliation(s)
- Maria L Begasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
40
|
|
41
|
Abstract
The roundworm Caenorhabditis elegans is one of the major model organisms in modern cell and developmental biology. Here, we present methods for the three-dimensional (3D) reconstruction of the worm ultrastructure. We describe the use of (1) serial-section analysis, (2) electron tomography, and (3) serial block face imaging by scanning electron microscopy (SEM). Sample preparation for high-pressure freezing/freeze substitution (HPF/FS) has been extensively covered in a previous volume of this "Methods in Cell Biology" series and will only be described briefly. We will discuss these 3D methods in light of recent research activities related to worm and early embryo biology.
Collapse
|