1
|
Monesterolo NE, Santander VS, Campetelli AN, Rivelli Antonelli JF, Nigra AD, Balach MM, Muhlberger T, Previtali G, Casale CH. Tubulin Regulates Plasma Membrane Ca 2+-ATPase Activity in a Lipid Environment-dependent Manner. Cell Biochem Biophys 2024; 82:319-328. [PMID: 38133791 DOI: 10.1007/s12013-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ca2+ plays a crucial role in cell signaling, cytosolic Ca2+ can change up to 10,000-fold in concentration due to the action of Ca2+-ATPases, including PMCA, SERCA and SCR. The regulation and balance of these enzymes are essential to maintain cytosolic Ca2+ homeostasis. Our laboratory has discovered a novel PMCA regulatory system, involving acetylated tubulin alone or in combination with membrane lipids. This regulation controls cytosolic Ca2+ levels and influences cellular properties such as erythrocyte rheology. This review summarizes the findings on the regulatory mechanism of PMCA activity by acetylated tubulin in combination with lipids. The combination of tubulin cytoskeleton and membrane lipids suggests a novel regulatory system for PMCA, which consequently affects cytosolic Ca2+ content, depending on cytoskeletal and plasma membrane dynamics. Understanding the interaction between acetylated tubulin, lipids and PMCA activity provides new insights into Ca2+ signaling and cell function. Further research may shed light on potential therapeutic targets for diseases related to Ca2+ dysregulation. This discovery contributes to a broader understanding of cellular processes and offers opportunities to develop innovative approaches to treat Ca2+-related disorders. By elucidating the complex regulatory mechanisms of Ca2+ homeostasis, we advance our understanding of cell biology and its implications for human health.
Collapse
Affiliation(s)
- Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Juan F Rivelli Antonelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Melisa M Balach
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - Gabriela Previtali
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS), (CONICET - UNRC), Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
2
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Balach MM, Santander VS, Elisio EY, Rivelli JF, Muhlberger T, Campetelli AN, Casale CH, Monesterolo NE. Tubulin-mediated anatomical and functional changes caused by Ca 2+ in human erythrocytes. J Physiol Biochem 2023:10.1007/s13105-023-00946-4. [PMID: 36773113 DOI: 10.1007/s13105-023-00946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton.
Collapse
Affiliation(s)
- Melisa M Balach
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elida Y Elisio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Cesar H Casale
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina. .,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
4
|
Rivelli Antonelli JF, Santander VS, Nigra AD, Monesterolo NE, Previtali G, Primo E, Otero LH, Casale CH. Prevention of tubulin/aldose reductase association delays the development of pathological complications in diabetic rats. J Physiol Biochem 2021; 77:565-576. [PMID: 34097242 DOI: 10.1007/s13105-021-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
In recent studies, we found that compounds derived from phenolic acids (CAFs) prevent the formation of the tubulin/aldose reductase complex and, consequently, may decrease the occurrence or delay the development of secondary pathologies associated with aldose reductase activation in diabetes mellitus. To verify this hypothesis, we determined the effect of CAFs on Na+,K+-ATPase tubulin-dependent activity in COS cells, ex vivo cataract formation in rat lenses and finally, to evaluate the antidiabetic effect of CAFs, diabetes mellitus was induced in Wistar rats, they were treated with different CAFs and four parameters were determinates: cataract formation, erythrocyte deformability, nephropathy and blood pressure. After confirming that CAFs are able to prevent the association between aldose reductase and tubulin, we found that treatment of diabetic rats with these compounds decreased membrane-associated acetylated tubulin, increased NKA activity, and thus reversed the development of four AR-activated complications of diabetes mellitus determined in this work. Based on these results, the existence of a new physiological mechanism is proposed, in which tubulin is a key regulator of aldose reductase activity. This mechanism can explain the incorrect functioning of aldose reductase and Na+,K+-ATPase, two key enzymes in the pathogenesis of diabetes mellitus. Moreover, we found that such alterations can be prevented by CAFs, which are able to dissociate tubulin/aldose reductase complex.
Collapse
Affiliation(s)
- Juan F Rivelli Antonelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Ayelen D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Gabriela Previtali
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Emilianao Primo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina
| | - Lisandro H Otero
- Instituto de Investigaciones Bioquímicas de Buenos Aires, IIBBA, CONICET - Fundación Instituto Leloir, Av Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800, Córdoba, CP, Argentina.
- INBIAS CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud, Campus UNRC, Río Cuarto, 5800, Córdoba, CP, Argentina.
| |
Collapse
|
5
|
Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nat Commun 2021; 12:1645. [PMID: 33712594 PMCID: PMC7955080 DOI: 10.1038/s41467-021-21938-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI. Debilitating anemias in chronic diseases can result from deficient iron delivery to red cell precursors. Here, the authors show how this deficiency damages the cytoskeletal framework of progenitor cells and identify a targeted strategy for cytoskeletal repair, leading to anemia correction.
Collapse
|
6
|
Tamara M, Micaela BM, Gastón BC, Silvina SV, Edith MN, Horacio CC, Nazareno CA. Inhibition of flippase-like activity by tubulin regulates phosphatidylserine exposure in erythrocytes from hypertensive and diabetic patients. J Biochem 2021; 169:731-745. [PMID: 33576821 DOI: 10.1093/jb/mvab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/09/2021] [Indexed: 02/04/2023] Open
Abstract
Plasma membrane tubulin is an endogenous regulator of P-ATPases and the unusual accumulation of tubulin in the erythrocyte membrane results in a partial inhibition of some their activities, causing hemorheological disorders like reduced cell deformability and osmotic resistance. These disorders are of particular interest in hypertension and diabetes, where the abnormal increase in membrane tubulin may be related to the disease development. Phosphatidylserine is more exposed on the membrane of diabetic erythrocytes than in healthy cells. In most cells, phosphatidylserine is transported from the exoplasmic to the cytoplasmic leaflet of the membrane by lipid flippases. Here we report that phosphatidylserine is more exposed in erythrocytes from both hypertensive and diabetic patients than in healthy erythrocytes, which could be attributed to the inhibition of flippase activity by tubulin. This is supported by: (i)- the translocation rate of a fluorescent phosphatidylserine analog in hypertensive and diabetic erythrocytes was slower than in healthy cells, (ii)- the pharmacological variation of membrane tubulin in erythrocytes and K562 cells was linked to changes in phosphatidylserine translocation, (iii)- the P-ATPase-dependent phosphatidylserine translocation in inside-out vesicles from human erythrocytes was inhibited by tubulin. These results suggest that tubulin regulates flippase activity and hence the membrane phospholipid asymmetry.
Collapse
Affiliation(s)
- Muhlberger Tamara
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Balach Melisa Micaela
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Bisig Carlos Gastón
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Santander Verónica Silvina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Monesterolo Noelia Edith
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Casale Cesar Horacio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| | - Campetelli Alexis Nazareno
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.,INBIAS CONICET-UNRC. Instituto de Biotecnología Ambiental y Salud. Campus UNRC, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
7
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
8
|
Pereira DG, Rendeiro MM, Cortes VF, Barbosa LA, Quintas LEM. Antagonistic anticancer effect of paclitaxel and digoxin combination. J Cell Biochem 2019; 120:13107-13114. [PMID: 30883884 DOI: 10.1002/jcb.28583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Despite the growing interest in the antitumor effect of cardiotonic steroids, combination treatments with well-established chemotherapy drugs like paclitaxel have been rarely investigated. Moreover, paclitaxel has been suggested as a Na+ /K+ -ATPase inhibitor. Here we investigated the effect of paclitaxel and digoxin alone or in combination on the viability of human lung (A549) and cervical cancer (HeLa) cell lines and the inhibitory effect of paclitaxel on several mammalian Na+ /K+ -ATPases. Although the viability of both tumor cell lines was concentration-dependently affected by digoxin treatment after 48 hours (A549 IC50 = 31 nM and HeLa IC50 = 151 nM), a partial effect was observed for paclitaxel, with a maximal inhibitory effect of 45% at 1000 nM with A549 and around 70% with HeLa cells (IC50 = 1 nM). Although the two drugs were cytotoxic, their combined effect in HeLa cells was revealed to be antagonistic, as estimated by the combination index. No direct inhibitory effect of paclitaxel was detected in human, pig, rat, and mouse Na+ /K+ -ATPase enzymes, but high concentrations of paclitaxel decreased the Na+ /K+ -ATPase activity in HeLa cells after 48 hours without affecting protein expression. Our findings demonstrate that, under our conditions, paclitaxel and digoxin cotreatment produce antagonistic cytotoxic effects in HeLa cells, and the mechanism of action of paclitaxel does not involve a direct inhibition of Na+ /K+ -ATPase. More studies shall be designed to evaluate the consequences of the interaction of cardiotonic steroids and chemotherapy drugs.
Collapse
Affiliation(s)
- Duane Gischewski Pereira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Mariana Manzano Rendeiro
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Faria Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Santander VS, Campetelli AN, Monesterolo NE, Rivelli JF, Nigra AD, Arce CA, Casale CH. Tubulin-Na + , K + -ATPase interaction: Involvement in enzymatic regulation and cellular function. J Cell Physiol 2018; 234:7752-7763. [PMID: 30378111 DOI: 10.1002/jcp.27610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+ ,K + -ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin-NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na + . Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K + , and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na + /K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.
Collapse
Affiliation(s)
- Veronica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelen D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Carlos A Arce
- entro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Nigra AD, Santander VS, Dircio-Maldonado R, Amaiden MR, Monesterolo NE, Flores-Guzmán P, Muhlberger T, Rivelli JF, Campetelli AN, Mayani H, Casale CH. Tubulin is retained throughout the human hematopoietic/erythroid cell differentiation process and plays a structural role in sedimentable fraction of mature erythrocytes. Int J Biochem Cell Biol 2017; 91:29-36. [PMID: 28855121 DOI: 10.1016/j.biocel.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/24/2022]
Abstract
We investigated the properties of tubulin present in the sedimentable fraction ("Sed-tub") of human erythrocytes, and tracked the location and organization of tubulin in various types of cells during the process of hematopoietic/erythroid differentiation. Sed-tub was sensitive to taxol/nocodazole (drugs that modify microtubule assembly/disassembly), but was organized as part of a protein network rather than in typical microtubule form. This network had a non-uniform "connected-ring" structure, with tubulin localized in the connection areas and associated with other proteins. When tubulin was eliminated from Sed-tub fraction, this connected-ring structure disappeared. Spectrin, a major protein component in Sed-tub fraction, formed a complex with tubulin. During hematopoietic differentiation, tubulin shifts from typical microtubule structure (in pro-erythroblasts) to a disorganized structure (in later stages), and is retained in reticulocytes following enucleation. Thus, tubulin is not completely lost when erythrocytes mature; it continues to play a structural role in the Sed-tub fraction.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Roberto Dircio-Maldonado
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, IMSS National Medical Center, Mexico City, Mexico
| | - Marina Rafaela Amaiden
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Patricia Flores-Guzmán
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, IMSS National Medical Center, Mexico City, Mexico
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Juan F Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina
| | - Héctor Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, IMSS National Medical Center, Mexico City, Mexico
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba 5800, Argentina.
| |
Collapse
|
11
|
Radosinska J, Vrbjar N. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia. Physiol Res 2017; 65 Suppl 1:S43-54. [PMID: 27643939 DOI: 10.33549/physiolres.933402] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes.
Collapse
Affiliation(s)
- J Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic; Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
12
|
Alterations of hemorheological parameters and tubulin content in erythrocytes from diabetic subjects. Int J Biochem Cell Biol 2016; 74:109-20. [DOI: 10.1016/j.biocel.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/02/2015] [Accepted: 02/20/2016] [Indexed: 12/14/2022]
|
13
|
Polonikov AV, Ushachev DV, Ivanov VP, Churnosov MI, Freidin MB, Ataman AV, Harbuzova VY, Bykanova MA, Bushueva OY, Solodilova MA. Altered erythrocyte membrane protein composition mirrors pleiotropic effects of hypertension susceptibility genes and disease pathogenesis. J Hypertens 2015; 33:2265-2277. [PMID: 26335431 DOI: 10.1097/hjh.0000000000000699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The study was designed to assess the effects of polymorphisms in genes associated with essential hypertension on the variation of erythrocyte membrane proteins (EMPs) in hypertensive patients. METHODS Major EMPs content was analyzed in blood from 1162 unrelated Russians (235 hypertensive patients, 176 healthy controls, and 751 random individuals from the Central Russia population). Essential hypertension patients were genotyped for 11 polymorphisms of essential hypertension susceptibility genes including ADD1 (rs4961), GNB3 (rs5443, rs16932941), NOS3 (rs1799983, rs2070744), ACE (rs5186), AGTR1 (rs5186), AGT (rs699, rs4762), MR (rs5534), and TGFB1 (rs1800471). EMP contents and their relationship with the genetic loci were analyzed using various statistical tests. RESULTS Sex-specific differences in EMP contents between the cases and controls were observed. Regardless of sex, hypertensives exhibited mainly decreased levels of alpha (SPTA1) and beta-spectrin (SPTB) and increased levels of glucose transporter (GLUT1) as compared with healthy subjects (P ≤ 0.001). EMP correlated differently in essential hypertension patients and controls. Almost 70% of the joint variation in the EMP levels is explained by five gender-specific principal components. The essential hypertension susceptibility genes showed considerable effects on the levels of spectrins and glucose transporter. A joint variation of the genes explained about half the total polygenic variance in the GLUT1, SPTA1, and SPTB levels in hypertensives. CONCLUSIONS The study showed that essential hypertension susceptibility genes are the important factors of the inherited EMP variation, and their pleitropic effects may be mirrored in the altered expression of genes encoding cytoskeletal proteins and those related to intracellular glucose metabolism.
Collapse
Affiliation(s)
- Alexey V Polonikov
- aDepartment of Biology, Medical Genetics and Ecology, Kursk State Medical University bDivision of Cardiology, Kursk Regional Clinical Hospital, Kursk cDepartment of Medical Biological Disciplines, Belgorod State University, Belgorod dPopulation Genetics Laboratory, Research Institute for Medical Genetics, Tomsk, Russian Federation eDepartment of Physiology, Pathophysiology and Medical Biology, Sumy State University, Sumy, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Monesterolo NE, Nigra AD, Campetelli AN, Santander VS, Rivelli JF, Arce CA, Casale CH. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2813-20. [DOI: 10.1016/j.bbamem.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
|
15
|
Zhu C, Zuo Y, Liang B, Yue H, Yue X, Wen G, Wang R, Quan J, Du J, Bu X. Distinct tubulin dynamics in cancer cells explored using a highly tubulin-specific fluorescent probe. Chem Commun (Camb) 2015. [PMID: 26214302 DOI: 10.1039/c5cc04927j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly specific fluorescent probe (OC9) was discovered exhibiting tubulin-specific affinity fluorescence, which allowed selective labeling of cellular tubulin in microtubules. Moreover, distinct tubulin dynamics in various cellular bio-settings such as drug resistant or epithelial-mesenchymal transition (EMT) cancer cells were directly observed for the first time via OC9 staining.
Collapse
Affiliation(s)
- Cuige Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, GuangZhou 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Amaiden MR, Santander VS, Monesterolo NE, Nigra AD, Rivelli JF, Campetelli AN, Pie J, Casale CH. Effects of detyrosinated tubulin on Na+
,K+
-ATPase activity and erythrocyte function in hypertensive subjects. FEBS Lett 2014; 589:364-73. [DOI: 10.1016/j.febslet.2014.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
17
|
Rivelli JF, Amaiden MR, Monesterolo NE, Previtali G, Santander VS, Fernandez A, Arce CA, Casale CH. High glucose levels induce inhibition of Na,K-ATPase via stimulation of aldose reductase, formation of microtubules and formation of an acetylated tubulin/Na,K-ATPase complex. Int J Biochem Cell Biol 2012; 44:1203-13. [DOI: 10.1016/j.biocel.2012.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 11/29/2022]
|
18
|
|
19
|
Monesterolo N, Amaiden M, Campetelli A, Santander V, Arce C, Pié J, Casale C. Regulation of plasma membrane Ca2+-ATPase activity by acetylated tubulin: Influence of the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:601-8. [DOI: 10.1016/j.bbamem.2011.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 11/15/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|