1
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Zhao G, Li P, Suo Y, Li C, Yang S, Zhang Z, Wu Z, Shen C, Hu H. An integrated pan-cancer assessment of prognosis, immune infiltration, and immunotherapy response for B7 family using multi-omics data. Life Sci 2024; 353:122919. [PMID: 39034028 DOI: 10.1016/j.lfs.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS B7 molecules (B7s) are crucial synergistic signals for effective immune surveillance against tumor cells. While previous studies have explored the association between the B7 family and cancer, most have been limited to specific genes or cancer subtypes. MAIN METHODS Our study utilized multi-omics data to investigate potential correlations between B7s expression (B7s exp.) and prognosis, clinicopathological features, somatic mutations (SMs), copy number variations (CNVs), immune characteristics, tumor microenvironment (TME), microsatellite instability, tumor mutation burden, immune checkpoint gene (ICG), and drug responsiveness in TCGA tumors. Furthermore, the connection between B7s exp. and immunotherapy (IT) performance assessed in various validated datasets. Following this, immune infiltration analysis (IIA) was conducted based on B7s exp., CNVs, or SMs in bladder cancer (BLCA), complemented by real-time PCR (RT-PCR) and protein confirmation of B7-H3. KEY FINDINGS Across most cancer types, B7s exp. was related to prognosis, clinicopathological characteristics, mutations, CNVs, ICG, TMB, TME. The examination of sensitivity to anticancer drugs unveiled correlations between B7 molecules and different drug sensitivities. Specific B7s exp. patterns were linked to the clinical effectiveness of IT. Using GSEA, several enriched immune-related functions and pathways were identified. Particularly in BLCA, IIA revealed significant connections between B7 CNVs, mutation status, and various immune cell infiltrates. RT-PCR confirmed elevated B7-H3 gene levels in BLCA tumor tissues. SIGNIFICANCE This study confirmed the significance of B7s exp. and genomic changes in predicting outcomes and treatment across different cancer types. Moreover, they indicate a critical function of B7s in BLCA and their potential as IT biomarkers.
Collapse
Affiliation(s)
- Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chenyun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Gutiérrez-Iñiguez C, Cervantes-Rodríguez P, González-Hernández LA, Andrade-Villanueva JF, Gutiérrez-Silerio GY, Peña Rodríguez M, Rubio-Sánchez AX, García-Castillo E, Marín-Contreras ME, Del Toro-Arreola S, Bueno-Topete MR, Vega-Magaña N. Unraveling the non-fitness status of NK cells: Examining the NKp30 receptor and its isoforms distribution in HIV/HCV coinfected patients. Mol Immunol 2024; 172:9-16. [PMID: 38850777 DOI: 10.1016/j.molimm.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND HIV/HCV coinfection is associated with a rapid progression to liver damage. Specifically, NK cell population dysregulation is of particular interest, as these cells have been shown to block HCV replication effectively and have an anti-fibrogenic activity. The NKp30 receptor is linked to tumor cell lysis and has a crucial role during viral infections. In the present study, we determined the subpopulations of NK cells based on CD56 and CD16 expression, NKp30 receptor expression, its isoforms A, B, and C, along with the cytotoxicity molecules in patients with HIV/HCV. RESULTS evidenced by the APRI and FIB-4 indices, the HCV-infected patients presented greater liver damage than the HIV and HIV/HCV groups. The HCV group presented a decreased expression of NKp30 isoform A, and NK cell frequency was not different between groups; however, CD56brigth subpopulation, NKp30 receptor, and CD247 adaptor chain were decreased in HIV/HCV patients; further, we described increased levels of soluble IL-8, IL-10, IL-12, and IL-23 in the serum of HIV/HCV patients. CONCLUSIONS HCV and HIV/HCV patients have multiple parameters of non-fitness status in NK cells; awareness of these dysfunctional immunological parameters in HIV/HCV and HCV patients can elucidate possible novel therapeutics directed towards the improvement of NK cell fitness status, in order to improve their function against liver damage.
Collapse
Affiliation(s)
- Cecilia Gutiérrez-Iñiguez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Paulina Cervantes-Rodríguez
- Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara, Jalisco CP.44430, Mexico
| | - Luz Alicia González-Hernández
- Unidad de VIH del Antiguo Hospital Civil "Fray Antonio Alcalde", Guadalajara, Jalisco CP.44200, Mexico; Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44200, Mexico
| | | | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de endocrinología y nutrición, Facultad de Medicina de la Universidad Autónoma de Querétaro, Querétaro CP.76140, Mexico
| | - Marcela Peña Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Alina Xcaret Rubio-Sánchez
- Maestría en Microbiología Médica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Estefania García-Castillo
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - María Eugenia Marín-Contreras
- Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP.44340, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas (IECD), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico
| | - Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes (LaDEER), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco CP.44340, Mexico; Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Mexico.
| |
Collapse
|
4
|
Yao Q, Zhang X, Wang Y, Wang C, Chen J, Chen D. A promising natural killer cell-based model and a nomogram for the prognostic prediction of clear-cell renal cell carcinoma. Eur J Med Res 2024; 29:73. [PMID: 38268058 PMCID: PMC10807100 DOI: 10.1186/s40001-024-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Clear-cell renal cell carcinoma (ccRCC) is one of prevalent kidney malignancies with an unfavorable prognosis. There is a need for a robust model to predict ccRCC patient survival and guide treatment decisions. METHODS RNA-seq data and clinical information of ccRCC were obtained from the TCGA and ICGC databases. Expression profiles of genes related to natural killer (NK) cells were collected from the Immunology Database and Analysis Portal database. Key NK cell-related genes were identified using consensus clustering algorithms to classify patients into distinct clusters. A NK cell-related risk model was then developed using Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to predict ccRCC patient prognosis. The relationship between the NK cell-related risk score and overall survival, clinical features, tumor immune characteristics, as well as response to commonly used immunotherapies and chemotherapy, was explored. Finally, the NK cell-related risk score was validated using decision tree and nomogram analyses. RESULTS ccRCC patients were stratified into 3 molecular clusters based on expression of NK cell-related genes. Significant differences were observed among the clusters in terms of prognosis, clinical characteristics, immune infiltration, and therapeutic response. Furthermore, six NK cell-related genes (DPYSL3, SLPI, SLC44A4, ZNF521, LIMCH1, and AHR) were identified to construct a prognostic model for ccRCC prediction. The high-risk group exhibited poor survival outcomes, lower immune cell infiltration, and decreased sensitivity to conventional chemotherapies and immunotherapies. Importantly, the quantitative real-time polymerase chain reaction (qRT-PCR) confirmed significantly high DPYSL3 expression and low SLC44A4 expression in ACHN cells. Finally, the decision tree and nomogram consistently show the dramatic prediction performance of the risk score on the survival outcome of the ccRCC patients. CONCLUSIONS The six-gene model based on NK cell-related gene expression was validated and found to accurately mirror immune microenvironment and predict clinical outcomes, contributing to enhanced risk stratification and therapy response for ccRCC patients.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China.
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China.
| |
Collapse
|
5
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Gutierrez-Silerio GY, Bueno-Topete MR, Vega-Magaña AN, Bastidas-Ramirez BE, Gutierrez-Franco J, Escarra-Senmarti M, Pedraza-Brindis EJ, Peña-Rodriguez M, Ramos-Marquez ME, Delgado-Rizo V, Banu N, Alejandre-Gonzalez AG, Fafutis-Morris M, Haramati J, Del Toro-Arreola S. Non-fitness status of peripheral NK cells defined by decreased NKp30 and perforin, and increased soluble B7H6, in cervical cancer patients. Immunology 2023; 168:538-553. [PMID: 36271832 DOI: 10.1111/imm.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The NKp30 receptor is one of the three natural cytotoxic receptors reported in NK cells. This receptor is codified by the NCR3 gene, which encodes three isoforms, a consequence of the alternative splicing of exon 4. A greater expression of the three isoforms (A, B, and C), along with low levels of the NKp30 ligand B7H6, has been reported as a positive prognostic factor in different cancer types. Here, in patients with cervical cancer and precursor lesions, we report an altered immune-phenotype, characterized by non-fitness markers, that correlated with increased disease stage, from CIN 1 to FIGO IV. While overall NK cell numbers increased, loss of NKp30+ NK cells, especially in the CD56dim subpopulation, was found. Perforin levels were decreased in these cells. Decreased expression of the NKp30 C isoform and overexpression of soluble B7H6 was found in cervical cancer patients when compared against healthy subjects. PBMCs from healthy subjects downregulated NKp30 isoforms after co-culture with B7H6-expressing tumour cells. Taken together, these findings describe a unique down-modulation or non-fitness status of the immune response in cervical cancer, the understanding of which will be important for the design of novel immunotherapies against this disease.
Collapse
Affiliation(s)
- Gloria Yareli Gutierrez-Silerio
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alejandra Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Mexico
| | | | - Eliza Julia Pedraza-Brindis
- Departamento Academia de Aparatos y Sistemas I, Unidad Académica de Ciencias de la Salud, Universidad Autónoma de Guadalajara, Guadalajara, Mexico
| | - Marcela Peña-Rodriguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha Eloisa Ramos-Marquez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vidal Delgado-Rizo
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Nehla Banu
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Alan Guillermo Alejandre-Gonzalez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
7
|
Fan J, Wang Y, Liang X, Peng Y, Li S, Li X, Zhou F, Li Y. B7-H6 enhances F-actin rearrangement by targeting c-MYC activation to promote medulloblastoma migration and invasion. Med Oncol 2023; 40:85. [PMID: 36692844 DOI: 10.1007/s12032-023-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Medulloblastoma (MB) is children's most common primary malignant primitive neuro-ectodermal tumor. Group 3 MB showed a higher propensity to metastasis, which is molecularly characterized by c-MYC gene amplification. The activation of c-MYC promotes the remodeling of the F-actin cytoskeleton to enhance metastasis. The B7 homologue 6 (B7-H6) is associated with the manifold essential hallmarks of tumorigenesis. In this study, we will explore whether B7-H6 regulates the reorganization of F-actin by elevating the c-MYC expression to promote metastasis. The Daoy cell line was used to act as the cell model of medulloblastoma. Small interfering RNA and the plasmid were used to downregulate and upregulate the expression of B7-H6 in Daoy cells. Transwell assays with/without the matrigel matrix were used to detect migration and invasion of Daoy cells. Western blots were used to detect the expression of related proteins. Immunofluorescence staining was used to observe the impact of B7-H6 on the c-MYC /F-actin axis. B7-H6 improved migration and invasion in the Daoy cell line. B7-H6 enhanced the rearrangement of F-actin and activated the expression of MMP-9 and MMP-2. B7-H6 promoted the remodeling of F-actin by targeting c-MYC activation to reinforce migration and invasion. B7-H6 acts as a promoter of migration and invasion in medulloblastoma by activating the c-MYC /F-actin axis.
Collapse
Affiliation(s)
- Jianing Fan
- School of Medicine, Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yangyang Wang
- Bioengineering College of Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yan Peng
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, China. .,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| |
Collapse
|
8
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
9
|
Xiao L, Guan X, Xiang M, Wang Q, Long Q, Yue C, Chen L, Liu J, Liao C. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol 2022; 13:1088560. [PMID: 36561746 PMCID: PMC9763287 DOI: 10.3389/fimmu.2022.1088560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chaoyi Yue
- School of Medicine and Technology, Zunyi Medical University, Zunyi, China
| | - Lulu Chen
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| |
Collapse
|
10
|
Mohammadi A, Najafi S, Amini M, Mansoori B, Baghbanzadeh A, Hoheisel JD, Baradaran B. The potential of B7-H6 as a therapeutic target in cancer immunotherapy. Life Sci 2022; 304:120709. [PMID: 35697295 DOI: 10.1016/j.lfs.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
Immune checkpoints are vital molecules that regulate T-cell function by activation or inhibition. Among the immune checkpoint molecules, the B7-family proteins are significantly involved in the immune escape of tumor cells. By binding to inhibitory receptors, they can suppress T-cell-mediated immunity. B7-family proteins are found at various stages of tumor microenvironment formation and promote tumorigenesis and tumor progression. B7-H6 (encoded by gene NCR3LG1) is a prominent member of the family. It has unique immunogenic properties and is involved in natural killer (NK) cell immunosurveillance by binding to the NKp30 receptor. High B7-H6 expression in certain tumor types and shortage of or low expression in healthy cells - except in cases of inflammatory or microbial stimulation - have made the protein an attractive target of research activities in recent years. The avoidance of NK-mediated B7-H6 detection is a mechanism through which tumor cells escape immune surveillance. The stimulation of tumorigenesis occurs by suppressing caspase cascade initiation and anti-apoptosis activity stimulation via the STAT3 pathway. The B7-H6-NKp30 complex on the tumor membrane activates the NK cells and releases both tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). B7-H6 is highly expressed in a wide range of tumor cells, including glioma, hematologic malignant tumors, and breast cancer cells. Clinical examination of cancer patients indicated that the expression of B7-H6 is related to distant metastasis status and permits postoperative prognosis. Because of its unique properties, B7-H6 has a high potential be utilized as a biological marker for cancer diagnosis and prognosis, as well as a target for novel treatment options.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113545. [PMID: 35684481 PMCID: PMC9182385 DOI: 10.3390/molecules27113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.
Collapse
|
12
|
Bulter SE, Brog RA, Chang CH, Sentman CL, Huang YH, Ackerman ME. Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30. Cancer Immunol Immunother 2022; 71:165-176. [PMID: 34046711 PMCID: PMC8626535 DOI: 10.1007/s00262-021-02971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.
Collapse
Affiliation(s)
- Savannah E. Bulter
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rachel A. Brog
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Cheryl H. Chang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Charles L. Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yina H. Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA,Corresponding author: Margaret E. Ackerman, Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755 USA, (ph) 603 646 9922,
| |
Collapse
|
13
|
Kalousková B, Skořepa O, Cmunt D, Abreu C, Krejčová K, Bláha J, Sieglová I, Král V, Fábry M, Pola R, Pechar M, Vaněk O. Tumor Marker B7-H6 Bound to the Coiled Coil Peptide-Polymer Conjugate Enables Targeted Therapy by Activating Human Natural Killer Cells. Biomedicines 2021; 9:biomedicines9111597. [PMID: 34829829 PMCID: PMC8615638 DOI: 10.3390/biomedicines9111597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023] Open
Abstract
Targeted cancer immunotherapy is a promising tool for restoring immune surveillance and eradicating cancer cells. Hydrophilic polymers modified with coiled coil peptide tags can be used as universal carriers designed for cell-specific delivery of such biologically active proteins. Here, we describe the preparation of pHPMA-based copolymer conjugated with immunologically active protein B7-H6 via complementary coiled coil VAALEKE (peptide E) and VAALKEK (peptide K) sequences. Receptor B7-H6 was described as a binding partner of NKp30, and its expression has been proven for various tumor cell lines. The binding of B7-H6 to NKp30 activates NK cells and results in Fas ligand or granzyme-mediated apoptosis of target tumor cells. In this work, we optimized the expression of coiled coil tagged B7-H6, its ability to bind activating receptor NKp30 has been confirmed by isothermal titration calorimetry, and the binding stoichiometry of prepared chimeric biopolymer has been characterized by analytical ultracentrifugation. Furthermore, this coiled coil B7-H6-loaded polymer conjugate activates NK cells in vitro and, in combination with coiled coil scFv, enables their targeting towards a model tumor cell line. Prepared chimeric biopolymer represents a promising precursor for targeted cancer immunotherapy by activating the cytotoxic activity of natural killer cells.
Collapse
Affiliation(s)
- Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Denis Cmunt
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Kateřina Krejčová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Irena Sieglová
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Vlastimil Král
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
- Correspondence:
| |
Collapse
|
14
|
The Race of CAR Therapies: CAR-NK Cells for Fighting B-Cell Hematological Cancers. Cancers (Basel) 2021; 13:cancers13215418. [PMID: 34771581 PMCID: PMC8582420 DOI: 10.3390/cancers13215418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Over the last few years, CAR-T cells have arisen as one of the most promising immunotherapies against relapsed or refractory hematological cancers. Despite their good results in clinical trials, there are some limitations to overcome, such as undesirable side-effects or the restraints of an autologous treatment. Therefore, CAR-NK cells have emerged as a good alternative for these kinds of treatments. This review discusses the advantages of CAR-NK cells compared to CAR-T cells, as well as the different sources and strategies in order to obtain these CAR-NK cells. Abstract Acute lymphoblastic leukemia (ALL) and Chronic lymphocytic leukemia (CLL) are the most common leukemias in children and elderly people, respectively. Standard therapies, such as chemotherapy, are only effective in 40% of ALL adult patients with a five-year survival rate and therefore new alternatives need to be used, such as immunotherapy targeting specific receptors of malignant cells. Among all the options, CAR (Chimeric antigen receptor)-based therapy has arisen as a new opportunity for refractory or relapsed hematological cancer patients. CARs were designed to be used along with T lymphocytes, creating CAR-T cells, but they are presenting such encouraging results that they are already in use as drugs. Nonetheless, their side-effects and the fact that it is not possible to infuse an allogenic CAR-T product without causing graft-versus-host-disease, have meant using a different cell source to solve these problems, such as Natural Killer (NK) cells. Although CAR-based treatment is a high-speed race led by CAR-T cells, CAR-NK cells are slowly (but surely) consolidating their position; their demonstrated efficacy and the lack of undesirable side-effects is opening a new door for CAR-based treatments. CAR-NKs are now in the field to stay.
Collapse
|
15
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
16
|
Pontarini E, Sciacca E, Grigoriadou S, Rivellese F, Lucchesi D, Fossati-Jimack L, Coleby R, Chowdhury F, Calcaterra F, Tappuni A, Lewis MJ, Fabris M, Quartuccio L, Bella SD, Bowman S, Pitzalis C, Mavilio D, De Vita S, Bombardieri M. NKp30 Receptor Upregulation in Salivary Glands of Sjögren's Syndrome Characterizes Ectopic Lymphoid Structures and Is Restricted by Rituximab Treatment. Front Immunol 2021; 12:706737. [PMID: 34594326 PMCID: PMC8477027 DOI: 10.3389/fimmu.2021.706737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease resulting from the inflammatory infiltration of exocrine glands, mainly salivary and lacrimal glands, leading to secretory dysfunction and serious complications including debilitating fatigue, systemic autoimmunity, and lymphoma. Like other autoimmune disorders, a strong interferon (IFN) signature is present among subsets of pSS patients, suggesting the involvement of innate immunity in pSS pathogenesis. NCR3/NKp30 is a natural killer (NK) cell-specific activating receptor regulating the cross talk between NK and dendritic cells including type II IFN secretion upon NK-cell activation. A genetic association between single-nucleotide polymorphisms (SNPs) in the NCR3/NKp30 promoter gene and a higher susceptibility for pSS has been previously described, with pSS patients most frequently carrying the major allele variant associated with a higher NKp30 transcript and IFN-γ release as a consequence of the receptor engagement. In the present study, we combined RNA-sequencing and histology from pSS salivary gland biopsies to better characterize NKp30 (NCR3) and its ligand B7/H6 (NCR3LG1) in pSS salivary gland tissues. Levels of NCR3/NKp30 were significantly increased both in salivary glands and in circulating NK cells of pSS patients compared with sicca controls, especially in salivary glands with organized ectopic lymphoid structures. In line with this observation, a strong correlation between NCR3/NKp30 levels and salivary gland infiltrating immune cells (CD3, CD20) was found. Furthermore, NCR3/NKp30 levels also correlated with higher IFN-γ, Perforin, and Granzyme-B expression in pSS SGs with organized ectopic lymphoid structures, suggesting an activation state of NK cells infiltrating SG tissue. Of note, NKp30+ NK cells accumulated at the border of the inflammatory foci, while the NKp30 ligand, B7/H6, is shown to be expressed mainly by ductal epithelial cells in pSS salivary glands. Finally, immunomodulatory treatment, such as the B-cell depleting agent rituximab, known to reduce the infiltration of immune cells in pSS SGs, prevented the upregulation of NCR3/NKp30 within the glands.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Elisabetta Sciacca
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Sofia Grigoriadou
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Farzana Chowdhury
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anwar Tappuni
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Myles J. Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Martina Fabris
- Istituto Di Patologia Clinica, Azienda Sanitaria Universitaria Integrata di Udine (ASUID), Udine, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), University of Udine, School of Rheumatology, Academic Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Simon Bowman
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham National Health System (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Salvatore De Vita
- Clinic of Rheumatology, Department of Medicine (DAME), University of Udine, School of Rheumatology, Academic Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, United Kingdom
| |
Collapse
|
17
|
Sheffer M, Lowry E, Beelen N, Borah M, Amara SNA, Mader CC, Roth JA, Tsherniak A, Freeman SS, Dashevsky O, Gandolfi S, Bender S, Bryan JG, Zhu C, Wang L, Tariq I, Kamath GM, Simoes RDM, Dhimolea E, Yu C, Hu Y, Dufva O, Giannakis M, Syrgkanis V, Fraenkel E, Golub T, Romee R, Mustjoki S, Culhane AC, Wieten L, Mitsiades CS. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat Genet 2021; 53:1196-1206. [PMID: 34253920 DOI: 10.1038/s41588-021-00889-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.
Collapse
MESH Headings
- Allogeneic Cells/physiology
- Animals
- B7 Antigens/genetics
- Cell Line, Tumor
- Chromatin Assembly and Disassembly/physiology
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/physiology
- Mice, Inbred NOD
- Xenograft Model Antitumor Assays
- HLA-E Antigens
- Mice
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| | - Emily Lowry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicky Beelen
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Minasri Borah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Chris C Mader
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Bender
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Cong Zhu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Li Wang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ifrah Tariq
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Channing Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Sichuan University, Chengdu, China
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Ernest Fraenkel
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd Golub
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Aedin C Culhane
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
The effects of stereotactic body radiotherapy on peripheral natural killer and CD3 +CD56 + NKT-like cells in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:240-250. [PMID: 33454220 DOI: 10.1016/j.hbpd.2020.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Both natural killer (NK) and CD3+CD56+natural killer T (NKT)-like cells play critical roles in the antitumor response. This study aimed to explore the effects of stereotactic body radiotherapy (SBRT) on peripheral NK and NKT-like cells in patients with hepatocellular carcinoma (HCC), and to identify possible surface markers on these cells that correlate with the prognosis. METHODS Twenty-five HCC patients were prospectively enrolled in our study, and 10 healthy individuals were served as healthy controls. Flow cytometry was used to determine the counts and the percentages of peripheral NK and NKT-like cells, cells with certain receptors, and cells with intracellular interferon-γ and TNF-α secretion at different time points, including time points of prior to SBRT, at post-SBRT, and 3-month and 6-month after treatment. The Kaplan-Meier method with the log-rank test was applied for survival analysis. RESULTS The peripheral NKT-like cells was increased at post-SBRT. Meanwhile, elevated levels of inhibitory receptors and reduced levels of activating receptors of NK cells were also observed in NK cells at post-SBRT, but the levels was not significantly different at 3-month and 6-month as compared with the baseline levels. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT were associated with poor progression-free survival. In addition, higher percentage of CD3+CD56+ NKT-like cells was associated with a higher overall survival rate in HCC patients. CONCLUSIONS SBRT has an apparent effect on both peripheral NK and CD3+CD56+NKT-like cells. Lower percentage of NKp30+NK cells before SBRT and higher percentage of CD158b+NK cells after SBRT are correlated with poor patients' PFS. Higher percentage of CD3+CD56+ NKT-like cells is associated with higher OS in HCC patients.
Collapse
|
19
|
Descalzi-Montoya D, Montel RA, Smith K, Dziopa E, Darwich A, Yang Z, Bitsaktsis C, Korngold R, Sabatino D. Synthetic Antibody Mimics Based on Cancer-Targeting Immunostimulatory Peptides. Chembiochem 2021; 22:1589-1596. [PMID: 32964656 PMCID: PMC8191480 DOI: 10.1002/cbic.202000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Abstract
De novo cancer-targeting immunostimulatory peptides have been designed and developed as synthetic antibody mimics. A series of bifunctional peptides incorporating NKp30-binding and NK-cell-activating domains were synthesized as linear dimers and then extended into branching trimeric peptides by the incorporation of GRP78-targeting and tumor-cell-binding sequences. A selected trimeric peptide from this small set of peptides displayed binding capabilities on GRP78+ HepG2 and A549 target cells. Cell binding diminished in the presence of an anti-GRP78 peptide blocker, thus suggesting GRP78-binding dependence. Similarly, the selected trimeric peptide was also found to exhibit NK cell binding in an NKp30-dependent manner, which translated into NK cell activation as indicated by cytokine secretion. In co-culture, fluorescence microscopy revealed that the target GFP-expressing A549 cells were visibly associated with the effector NK cells when pre-activated with lead trimeric peptide. Accordingly, A549 cells were found to be compromised, as evidenced by the loss of GFP signal and notable detection of early-/late-stage apoptosis. Investigation of the immunological markers related to toxicity revealed detectable secretion of pro-inflammatory cytokines and chemokines, including IFN-γ, TNF-α, and IL-8. Furthermore, administration of peptide-activated NK cells into A549-tumor-bearing mice resulted in a consistent decrease in tumor growth when compared to the untreated control group. Taken together, the identification of a lead trimeric peptide capable of targeting and activating NK cells' immunotoxicity directly towards GRP78+ /B7H6- tumors provides a novel proof-of-concept for the development of cancer-targeting immunostimulatory peptide ligands that mimic antibody-targeting and -activating functions related to cancer immunotherapy applications.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Endoplasmic Reticulum Chaperone BiP/immunology
- Female
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/drug therapy
- Neoplasms/pathology
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Peptides/therapeutic use
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Dante Descalzi-Montoya
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Rachel A Montel
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Keith Smith
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Andrieh Darwich
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Zheng Yang
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Constantine Bitsaktsis
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Robert Korngold
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David Sabatino
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| |
Collapse
|
20
|
Baragaño Raneros A, Rodriguez RM, Bernardo Flórez A, Palomo P, Colado E, Minguela A, Suárez Álvarez B, López-Larrea C. Bromodomain protein BRD4 is an epigenetic activator of B7-H6 expression in acute myeloid leukemia. Oncoimmunology 2021; 10:1897294. [PMID: 33796404 PMCID: PMC8007156 DOI: 10.1080/2162402x.2021.1897294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
B7-H6, a ligand for the NK activating receptor NKp30, has been identified as a biomarker of poor prognosis in several solid cancers. However, little is known about the role of B7-H6 and the mechanisms that control its expression in acute myeloid leukemia (AML). Epigenome modulation, including epigenomic reader dysregulation, is one of the hallmarks of AML. Bromodomain-containing protein 4 (BRD4), the best-known member of the BET family of epigenetic readers, is overexpressed in AML cells and regulates the transcription of genes involved in the pathogenesis of AML, as MYC oncogene. Here, we analyze the role of BRD4 in regulating B7-H6 in AML cells. Results demonstrated that the specific inhibition of BRD4 drastically reduces the expression of B7-H6 in AML cells. Histone acetylation mediated by CBP30/P300 facilitates the binding of BRD4 to the B7-H6 promoter, which recruits the P-TEFb elongation factor that phosphorylates RNA polymerase II, thereby activating B7-H6 transcription. BRD4 also co-bounded with JMJD6 at the distal enhancer of the B7-H6 gene. Metabolic modulation with metformin modifies the acetylation pattern in the B7-H6 promoter, impairing BRD4 binding, thereby inhibiting B7-H6 expression. B7-H6 knockdown induces the apoptosis in HEL-R cell line. Moreover, a high level of B7-H6 expression in AML patients is related to increased BRD4 levels, myelodysplastic-derived AML, and del5q, the two latter being associated with poor prognosis. Our data show that BRD4 is a positive regulator of the pro-tumorigenic molecule B7-H6 and that the blockage of the B7-H6 is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Ramon M Rodriguez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Aida Bernardo Flórez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Pilar Palomo
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Enrique Colado
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
- Department of Laboratory Medicine, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano De Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen De La Arrixaca, Murcia, Spain
| | - Beatriz Suárez Álvarez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| |
Collapse
|
21
|
Zhao L, Lian T, Li J, Wei S, Li H, Li C, Wang H. NCR3LG1 (B7-H6) is a potential prognostic factor for bladder cancer patients. Biomarkers 2021; 26:260-267. [PMID: 33523715 DOI: 10.1080/1354750x.2021.1883110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND NCR3LG1 (B7-H6) protein is selectively overexpressed on tumour and is associated with fatal disease progression of various cancer. However, its prognostic value in bladder cancer (BCa) has not been well elaborated. METHODS We examined the expression of NCR3LG1 in human BCa and analysed its clinical significance and prognostic value. Meanwhile, the expression of NCR3LG1 was intervened in human BCa cell line 253JBV to analyse subsequent effects on tumour. RESULTS According to TCGA data, the disease-free survival rate was statistically significant between the NCR3LG1 high expression group and the low expression group (Log Rank p = 0.006). Immunohistochemical staining showed that the expression of NCR3LG1 in BCa tissue was significantly higher than that in adjacent tissues (p < 0.0001), which was positively correlated with TNM staging (p = 0.008), histological grade (p = 0.022), and lymphoma metastasis of BCa (p = 0.032). The proliferation (p < 0.0001), invasion (p < 0.001) and migration ability (p < 0.001) of 253JBV cells are significantly inhibited by knocking down the expression of NCR3LG1, and the cell cycle arrest is induced at the G1 phase, which accelerates the apoptosis of BCa cells (p < 0.005). CONCLUSION Our findings indicate that NCR3LG1 is involved in the progression of human BCa and may become a potential prognostic biomarker for BCa.
Collapse
Affiliation(s)
- Linlin Zhao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Lian
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiyao Wei
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongjie Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Cao G, Cheng Y, Zheng X, Wei H, Tian Z, Sun R, Sun H. All-trans retinoic acid induces leukemia resistance to NK cell cytotoxicity by down-regulating B7-H6 expression via c-Myc signaling. Cancer Commun (Lond) 2021; 41:51-61. [PMID: 34236140 PMCID: PMC7819554 DOI: 10.1002/cac2.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The interaction between activating receptor NKp30 and its major tumor ligand B7-H6 is important for NK cell-mediated tumor rejection. However, the regulation of B7-H6 by tumor therapeutics remains largely unknown. In this study, we investigated the regulation of B7-H6 by all-trans retinoic acid (atRA), a terminal differentiation inducer of tumor cells that is extensively used for clinical leukemia therapy. METHODS We investigated the role of NKp30:B7-H6 axis in NK cell-mediated tumor lysis against leukemia cells and the influence of atRA treatment on the cytotoxicity of NK cells using NK cell lines (NK92 and NKG) and leukemia cell lines (U-937 and THP-1). We evaluated the effect of atRA treatment on the expression of B7-H6 using real-time PCR, flow cytometry and western blotting. We used CRISPR/Cas9 to knockdown B7-H6 expression and siRNA to knockdown c-Myc in U-937 cells to evaluate the role of B7-H6 and c-Myc in atRA-induced tumor resistance against NK cells. RESULTS NK cell-mediated U-937 cell lysis was mainly dependent on NKp30/B7-H6 interaction. Blockade of B7-H6 by monoclonal antibody significantly impaired NK cytotoxicity. atRA treatment induced U-937 resistance to NK cell cytotoxicity by reducing B7-H6 expression, and showed no effect on NK cytotoxicity against B7-H6 knockdown U-937 cells. Epigenetic modifications, such as DNA methylation and histone deacetylase (HDAC), were not responsible for atRA-mediated B7-H6 down-regulation as inhibitors of these pathways could not restore B7-H6 mRNA expression. On the other hand, atRA treatment reduced c-Myc expression, which in turn inhibited the transcription of B7-H6 on leukemia cells. CONCLUSION atRA treatment promotes tumor cell resistance against NK cell-mediated lysis by down-regulating B7-H6 expression via the c-Myc signaling pathway, suggesting that more attention needs to be paid to the immunological adverse effects in the clinical use of atRA treatment.
Collapse
Affiliation(s)
- Guoshuai Cao
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ying Cheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Xiaodong Zheng
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Research Unit of Natural Killer Cell StudyChinese Academy of Medical SciencesBeijing100864P. R. China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscalethe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| |
Collapse
|
23
|
Qiu H, Gao S, Sun Z, Wang J. Dual role of B7-H6 as a novel prognostic marker in hepatocellular carcinoma. APMIS 2020; 129:105-117. [PMID: 33220098 DOI: 10.1111/apm.13099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
B7 homolog 6 (B7-H6), a new member of the B7 family, is identified as an activating ligand for cytotoxicity triggering receptor 3 (NKp30) expressing on natural killer cells. The purpose of this study was to investigate the clinical significance of B7-H6 in hepatocellular carcinoma (HCC). We evaluated B7-H6 expression by immunohistochemistry in a cohort of 90 HCC tumors with clinical follow-up, the potential relationship between the B7-H6 expression and the clinicopathological characteristics of HCC patients was also analyzed. Stable B7-H6 knockdown in hepatoma cell line was established to explore the function and mechanism of B7-H6 in HCC. This study showed that high expression of B7-H6 was significantly associated with smaller tumor size, single tumor number in HCC, but no significant association was found between B7-H6 overexpression and other clinicopathological parameters. Moreover, Kaplan-Meier survival analysis showed that high expression of B7-H6 was significantly correlated with better survival of HCC patients. Knockdown of B7-H6 inhibited tumor cell proliferation and induced cell apoptosis. However, it also impaired the sensitivity of tumor cells to NK-mediated lysis together with significantly decreased degranulation and IFN-γ release of NK cells. These results indicated that B7-H6 has a dual role in HCC. It could be an independent indicator for better survival of HCC and maybe a potential target for future cancer treatment.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Shangshang Gao
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Ziling Sun
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Jiamin Wang
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Banu N, Riera-Leal A, Haramati J, Ortiz-Lazareno PC, Panikar SS, Bastidas-Ramirez BE, Gutierrez-Silerio GY, Solorzano-Ibarra F, Tellez-Bañuelos MC, Gutierrez-Franco J, Bueno-Topete MR, Pereira-Suarez AL, Del Toro-Arreola S. B7-H6, an immunoligand for the natural killer cell activating receptor NKp30, reveals inhibitory effects on cell proliferation and migration, but not apoptosis, in cervical cancer derived-cell lines. BMC Cancer 2020; 20:1083. [PMID: 33172426 PMCID: PMC7654602 DOI: 10.1186/s12885-020-07608-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although great progress has been made in treatment regimens, cervical cancer remains as one of the most common cancer in women worldwide. Studies focusing on molecules that regulate carcinogenesis may provide potential therapeutic strategies for cervical cancer. B7-H6, an activating immunoligand expressed by several tumor cells, is known to activate NK cell-mediated cytotoxicity once engaged with its natural receptor NKp30. However, the opposite, that is, the effects in the tumor cell triggered by B7-H6 after interacting with NKp30 has not yet been well explored. Methods In this study, we evaluated the surface expression of B7-H6 by flow cytometry. Later, we stimulated B7-H6 positive cervical cancer derived-cell lines (HeLa and SiHa) with recombinant soluble NKp30 (sNKp30) protein and evaluated biological effects using the impedance RTCA system for cell proliferation, the scratch method for cell migration, and flow cytometry for apoptosis. Cellular localization of B7-H6 was determined using confocal microscopy. Results Notably, we observed that the addition of sNKp30 to the cervical cancer cell lines decreased tumor cell proliferation and migration rate, but had no effect on apoptosis. We also found that B7-H6 is selectively maintained in tumor cell lines, and that efforts to sort and purify B7-H6 negative or positive cells were futile, as negative cells, when cultured, regained the expression of B7-H6 and B7-H6 positive cells, when sorted and cultivated, lost a percentage of B7-H6 expression. Conclusions Our results suggest that B7-H6 has an important, as of yet undescribed, role in the biology of the cervical tumor cells themselves, suggesting that this protein might be a promising target for anti-tumor therapy in the future.
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Annie Riera-Leal
- Institute for Regenerative Cures, Department of Dermatology, University of California-Davis, Davis, USA
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Gloria Yareli Gutierrez-Silerio
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Martha Cecilia Tellez-Bañuelos
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico. .,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.
| |
Collapse
|
25
|
Xiao ZX, Hu X, Jarjour W, Zheng SG. The role of B7 family members in the generation of Immunoglobulin. J Leukoc Biol 2020; 109:377-382. [PMID: 33118237 DOI: 10.1002/jlb.1mr0420-003rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 10/23/2022] Open
Abstract
Ig is a Y-shaped protein produced by plasma cells and exerts multiple functions in humoral immunity. There are five groups of Igs including IgA, IgD, IgE, IgG, and IgM, which differ in their heavy chain class. The primary function of Igs includes the neutralization of extrinsic pathogens, agglutination of foreign cells for phagocytosis, precipitation of soluble antigens in serum, and complement fixation. The B cells activated by antigen(s) can differentiate into antibody-producing cells that are called plasma cells and usually matured in the germinal center (GC). Follicular T helper (Tfh) cells crosstalk with antigen-presenting cells and play a crucial role in the development of the GC. Moreover, Tfh cells regulate trafficking through the GC to allow formative interaction with GC B cells that ultimately results in affinity maturation, B-cell memory, and Ig class switching. The B7 family is a series of number of structurally related membrane proteins that bind with a specific receptor to deliver costimulatory or co-inhibitory signals that regulate the activation of T cells in GC. Here, we review and summarize the recent advance of the effects of B7 family members on Ig production and relative diseases.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaojiang Hu
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
26
|
Sun X, Zhao J, Ma L, Sun X, Ge J, Yu Y, Ma J, Zhang M. B7-H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest New Drugs 2020; 39:24-33. [PMID: 32770284 DOI: 10.1007/s10637-020-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
T cells play crucial roles in the antitumour immune response. However, their dysfunction leads to inefficient tumour eradication. New members of the B7 family have moved to the fore of cancer research because of their involvement in T cell-mediated immune escape and tumorigenesis. Recently, bispecific antibodies (Bi-Abs) have become attractive because of their ability to activate T cells to target tumours. In this study, we examined the expression of new B7 family members B7-H4, B7-H5, B7-H6, and B7-H7 in human haematological tumour cells. Furthermore, we explored whether B7-H6 is an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. We determined the capability of T cells armed with the bispecific antibody anti-CD3 × anti-B7-H6 (B7-H6Bi-Ab) to target haematological tumours in K562, Thp-1, Daudi, Jurkat, and U266 cells. Compared with their T cell counterparts, B7-H6Bi-Ab-armed T cells demonstrated significant cytotoxicity induction in B7-H6+ haematological tumour cells, according to quantitative luciferase and lactate dehydrogenase assays, and their activity was accompanied by increased levels of the secreted killing mediators granzyme B and perforin. Moreover, B7-H6Bi-Ab-armed T cells produced more T cell-derived cytokines: TNF-α, IFN-γ, and IL-2. In addition, compared to the control T cells, a higher level of the activation marker CD69 was detected on the B7-H6Bi-Ab-armed T cells. Taken together, these data suggest that the antitumour effect of B7-H6Bi-Ab-armed T cells may be a promising immunotherapy for use in future haematologic treatments.
Collapse
Affiliation(s)
- Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jingyuan Zhao
- Department of Orthopaedic, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijng, 100049, China
| | - Li Ma
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Ximing Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Jing Ge
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Yang Yu
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
27
|
Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers (Basel) 2020; 12:cancers12071998. [PMID: 32708305 PMCID: PMC7409301 DOI: 10.3390/cancers12071998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
Collapse
|
28
|
Stokic-Trtica V, Diefenbach A, Klose CSN. NK Cell Development in Times of Innate Lymphoid Cell Diversity. Front Immunol 2020; 11:813. [PMID: 32733432 PMCID: PMC7360798 DOI: 10.3389/fimmu.2020.00813] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
After being described in the 1970s as cytotoxic cells that do not require MHC-dependent pre-activation, natural killer (NK) cells remained the sole member of innate lymphocytes for decades until lymphoid tissue-inducer cells in the 1990s and helper-like innate lymphoid lineages from 2008 onward completed the picture of innate lymphoid cell (ILC) diversity. Since some of the ILC members, such as ILC1s and CCR6- ILC3s, share specific markers previously used to identify NK cells, these findings provoked the question of how to delineate the development of NK cell and helper-like ILCs and how to properly identify and genetically interfere with NK cells. The description of eomesodermin (EOMES) as a lineage-specifying transcription factor of NK cells provided a candidate that may serve as a selective marker for the genetic targeting and identification of NK cells. Unlike helper-like ILCs, NK cell activation is, to a large degree, regulated by the engagement of activating and inhibitory surface receptors. NK cell research has revealed some elegant mechanisms of immunosurveillance, coined "missing-self" and "induced-self" recognition, thus complementing "non-self recognition", which is predominantly utilized by adaptive lymphocytes and myeloid cells. Notably, the balance of activating and inhibitory signals perceived by surface receptors can be therapeutically harnessed for anti-tumor immunity mediated by NK cells. This review aims to summarize the similarities and the differences in development, function, localization, and phenotype of NK cells and helper-like ILCs, with the purpose to highlight the unique feature of NK cell development and regulation.
Collapse
Affiliation(s)
- Vladislava Stokic-Trtica
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Schulz-Kuhnt A, Wirtz S, Neurath MF, Atreya I. Regulation of Human Innate Lymphoid Cells in the Context of Mucosal Inflammation. Front Immunol 2020; 11:1062. [PMID: 32655549 PMCID: PMC7324478 DOI: 10.3389/fimmu.2020.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since their identification as a unique cell population, innate lymphoid cells (ILCs) have revolutionized our understanding of immune responses, leaving their impact on multiple inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation of local ILC numbers and their activity is of crucial importance. Even though this has been extensively studied in murine ILCs in the last few years, our knowledge of human ILCs is still lagging behind. Our review article will therefore summarize recent insights into the function of human ILCs and will particularly focus on their regulation under inflammatory conditions. The quality and intensity of ILC involvement into local immune responses at mucosal sites of the human body can potentially be modulated via three different axes: (1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs. Despite a still ongoing scientific effort in this field, already existing data on the fate of human ILCs under different pathologic conditions clearly indicate that all three of these mechanisms are of relevance for the clinical course of chronic inflammatory and autoimmune diseases and might likewise provide new target structures for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Zhang X, Xie W, Wang Z, Song S, Qin Y, Zhang F, Chen F, Cai L. Expression of a novel immune checkpoint B7-H6 ligand in human small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:589. [PMID: 32566616 PMCID: PMC7290544 DOI: 10.21037/atm-20-2548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background B7-H6 is a novel co-stimulatory ligand that is detected in most malignancies. However, the significance of B7-H6 in small cell lung cancer (SCLC) remains unknown. Methods B7-H6 expression was analyzed by immunohistochemistry (IHC) in 103 collected SCLC samples, and its association with clinicopathological characteristics and prognosis was analyzed. The 2-year survival rates were also investigated. Results B7-H6-positive staining was detected in 58 (56.31%) SCLC cases, and found to be localized mainly in the intracellular space of SCLC. Weak staining in lung tissues was observed in 4 (8%) cases. B7-H6 positive staining was significantly related to tumor-node-metastasis stage (P=0.028), age (P=0.001), and distant metastasis (P=0.033), whereas there was no association with smoking status, sex, mass size, limited-stage SCLC/extensive-stage SCLC, Karnofsky performance status, or nodal metastasis status. The 2-year survival rates showed that there were more patients whose survival was shorter than 2 years in the B7-H6-positive group compared with the B7-H6-negative group (P=0.042). Conclusions Our findings suggest that B7-H6 is involved in early-stage SCLC and could serve as an early marker to predict human SCLC progression and distant metastasis. B7-H6 may be a valuable therapeutic target with potential clinical applications in the future.
Collapse
Affiliation(s)
- Xiuqin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Weiguo Xie
- Department of Respiratory Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Zhiqiang Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Shu Song
- Department of Pathology Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Yan Qin
- Department of Pathology Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fang Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fangfang Chen
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Liming Cai
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
31
|
Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. J Immunol Res 2020; 2020:2328675. [PMID: 32322592 PMCID: PMC7165331 DOI: 10.1155/2020/2328675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
B7 homologue 6 (B7-H6), a newly identified member of the B7 costimulatory molecule family, is not only a crucial regulator of NK cell-mediated immune responses through binding to NKp30 but also has clinical implications due to its abnormal expression in human cancers. Here, we show that B7-H6 expression is abnormally upregulated in glioma tissue and that B7-H6 is coexpressed with stem cell marker Sox2. Intriguingly, B7-H6 was rarely detected on the surface of glioma cell lines but was abundantly expressed in glioma stem-like cells (GSLCs) that were derived from the glioma cell lines in vitro. Surprisingly, B7-H6 was the only one that was preferentially expressed in the GSLCs among the B7 family members. Functionally, knockdown of B7-H6 in GSLCs by siRNAs led to the inhibition of cell proliferation, with decrease in the expression of the oncogene Myc as well as inactivation of PI3K/Akt and ERK/MAPK signaling pathways. Moreover, we determined that three genes CBL (Casitas B-Lineage Lymphoma Proto-Oncogene), CCNT1 (Cyclin T1), and RNMT (RNA guanine-7 methyltransferase) were coexpressed with B7-H6 and c-myc in glioma tissue samples from the TCGA database and found, however that only RNMT expression was inhibited by the knockdown of B7-H6 expression in the GSLCs, suggesting the involvement of RNMT in the B7-H6/c-myc axis. Extending this to 293T cells, we observed that knocking out of B7-H6 with CRISPR-Cas9 system also suppressed cell proliferation. Thus, our findings suggest B7-H6 as a potential molecule for glioma stem cell targeted immunotherapy.
Collapse
|
32
|
Gutierrez-Silerio GY, Franco-Topete RA, Haramati J, Navarrete-Medina EM, Gutierrez-Franco J, Bueno-Topete MR, Bastidas-Ramirez BE, Ramos-Marquez ME, Del Toro-Arreola S. Positive staining of the immunoligand B7-H6 in abnormal/transformed keratinocytes consistently accompanies the progression of cervical cancer. BMC Immunol 2020; 21:9. [PMID: 32138659 PMCID: PMC7059382 DOI: 10.1186/s12865-020-0341-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Background B7-H6 has been revealed as an endogenous immunoligand expressed in a variety of tumors, but not expressed in healthy tissues. Heretofore, no studies have been reported describing B7-H6 in women with cervical cancer. To investigate this question, our present study was conducted. Results This retrospective study comprised a total of 62 paraffinized cervical biopsies, which were distributed in five groups: low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), squamous cervical carcinoma (SCC), uterine cervical adenocarcinoma (UCAC), and a group of cervicitis (as a control for non-abnormal/non-transformed cells). Cervical sections were stained by immunohistochemistry to explore the expression of B7-H6, which was reported according to the immunoreactive score (IRS) system. We observed a complete lack of B7-H6 in LSIL abnormal epithelial cells. Interestingly, B7-H6 began to be seen in HSIL abnormal epithelial cells; more than half of this group had B7-H6 positive cells, with staining characterized by a cytoplasmic and membranous pattern. B7-H6 in the SCC group was also seen in the majority of the sections, showing the same cytoplasmic and membranous pattern. Strong evidence of B7-H6 was notably found in UCAC tumor columnar cells (in 100% of the specimens, also with cytoplasmic and membranous pattern). Moreover, consistent B7-H6 staining was observed in infiltrating plasma cells in all groups. Conclusions B7-H6 IRS positively correlated with disease stage in the development of cervical cancer; additionally, B7-H6 scores were found to be even higher in the more aggressive uterine cervical adenocarcinoma, suggesting a possible future therapeutic target for this cancer type.
Collapse
Affiliation(s)
- Gloria Yareli Gutierrez-Silerio
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ramon Antonio Franco-Topete
- Laboratorio de Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Anatomía Patológica, Nuevo Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Eduardo Miguel Navarrete-Medina
- Laboratorio de Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.,Departamento de Anatomía Patológica, Nuevo Hospital Civil de Guadalajara "Dr. Juan I. Menchaca", Guadalajara, Jalisco, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Martha Eloisa Ramos-Marquez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico. .,Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico. .,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
33
|
Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy. J Immunol Res 2020; 2020:2045860. [PMID: 32377528 PMCID: PMC7199539 DOI: 10.1155/2020/2045860] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
Innate immunity represents the first barrier for host defense against microbial infection. Toll-like receptors (TLRs) are the most well-defined PRRs with respect to PAMP recognition and induction of innate immune responses. They recognize pathogen-associated molecular patterns (PAMPs) and trigger innate immune responses by inducing inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules. TLRs are expressed either on the cell surface or within endosomes of innate immune cells. NK cells are one of the innate immune cells and also express TLRs to recognize or respond to PAMPs. TLRs in NK cells induce the innate immune responses against bacterial and viral infections via inducing NK cytotoxicity and cytokine production. In this review, we will discuss the expression and cellular function of TLRs in NK cells and also introduce some therapeutic applications of TLR agonists for NK cell-mediated immunotherapy.
Collapse
|
34
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
35
|
Zhou H, Dong J, Guo L, Wang X, Wang K, Cai X, Yang S. The prognostic value of B7-H6 in esophageal squamous cell carcinoma. Sci Rep 2019; 9:18122. [PMID: 31792298 PMCID: PMC6889130 DOI: 10.1038/s41598-019-54731-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
B7-H6, a member of the B7 family molecules, participates in the clearance of tumor cells by binding to NKp30 on NK cells. B7-H6 expression level in esophageal squamous cell carcinoma (ESCC) and the clinical value remain unknown. The goal of this study was to determine the expression of B7-H6 in ESCC and further explore its clinical significance. We retrospectively collected the clinical data of 145 patients diagnosed with ESCC between January 2007 and December 2008. The expression of B7-H6 of the pathological tissue samples was detected by immunohistochemistry. The chi-square (χ2) test was used to analyse the relationships of B7-H6 and clinicopathological characteristics. Survival and hazard functions were estimated using the Kaplan-Meier method, and survival between groups was compared using the two-sided log-rank test. The Cox proportional hazards regression model was used to adjust for the risk factors related to overall survival (OS). 133/145 (91.72%) of the ESCC tissue samples exhibited B7-H6 expression. The expression level of B7-H6 was correlated with T stage (P = 0.036) and lymphatic metastasis status (P = 0.044). High B7-H6 expression (P = 0.003) was associated with a significantly worse OS than low B7-H6 expression. Multivariate Cox proportional hazards regression analysis demonstrated that tumour size (P = 0.021), B7-H6 expression (P = 0.025) and lymphatic metastasis status (P = 0.049) were independent prognostic factors of OS for ESCC. Collectively, our findings suggest that B7-H6 is widely expressed in ESCC samples. And B7-H6 may represent a predictor of poor prognosis for ESCC.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Dong
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liyi Guo
- Department of Radiotherapy, Huiyang Hospital Affiliated Southern Medical University, Huizhou, Guangdong, China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kailin Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Shu Yang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Mantovani S, Oliviero B, Lombardi A, Varchetta S, Mele D, Sangiovanni A, Rossi G, Donadon M, Torzilli G, Soldani C, Porta C, Pedrazzoli P, Chiellino S, Santambrogio R, Opocher E, Maestri M, Bernuzzi S, Rossello A, Clément S, De Vito C, Rubbia-Brandt L, Negro F, Mondelli MU. Deficient Natural Killer Cell NKp30-Mediated Function and Altered NCR3 Splice Variants in Hepatocellular Carcinoma. Hepatology 2019; 69:1165-1179. [PMID: 30153337 DOI: 10.1002/hep.30235] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
Abstract
The activating natural cytotoxicity receptor NKp30 is critical for natural killer (NK) cell function and tumor immune surveillance. The natural cytotoxicity receptor-3 (NCR3) gene is transcribed into several splice variants whose physiological relevance is still incompletely understood. In this study, we investigated the role of NKp30 and its major ligand B7 homolog 6 (B7-H6) in patients with hepatocellular carcinoma (HCC). Peripheral blood NK cell phenotype was skewed toward a defective/exhausted immune profile with decreased frequencies of cells expressing NKp30 and natural killer group 2, member D and an increased proportion of cells expressing T-cell immunoglobulin and mucin-domain containing-3. Moreover, NKp30-positive NK cells had a reduced expression of NCR3 immunostimulatory splice variants and an increased expression of the inhibitory variant in patients with advanced tumor, resulting in deficient NKp30-mediated functionality. Tumor-infiltrating lymphocytes showed a prevalent inhibitory NKp30 isoform profile, consistent with decreased NKp30-mediated function. Of note, there were significant differences in the cytokine milieu between the neoplastic and the surrounding non-neoplastic tissue, which may have further influenced NKp30 function. Exposure of NK cells to B7-H6-expressing HCC cells significantly down-modulated NKp30, that was prevented by small interfering RNA-mediated knockdown, suggesting a role for this ligand in inhibiting NKp30-mediated responses. Interestingly, B7-H6 expression was reduced in HCC tissue and simultaneously augmented as a soluble form in HCC patients, particularly those with advanced staging or larger nodule size. Conclusion: These findings provide evidence in support of a role of NKp30 and its major ligand in HCC development and evolution.
Collapse
Affiliation(s)
- Stefania Mantovani
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Oliviero
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Lombardi
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.,Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Stefania Varchetta
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dalila Mele
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angelo Sangiovanni
- CRC "A. M. and A. Migliavacca" Center for Liver Disease, Division of Gastroenterology and Hepatology
| | - Giorgio Rossi
- Liver Transplant Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Camillo Porta
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Chiellino
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberto Santambrogio
- Division of Gastrointestinal Surgery, San Paolo Hospital, University of Milan School of Medicine, Milan, Italy
| | - Enrico Opocher
- Division of Gastrointestinal Surgery, San Paolo Hospital, University of Milan School of Medicine, Milan, Italy
| | - Marcello Maestri
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Sophie Clément
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | | | - Francesco Negro
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.,Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland
| | - Mario U Mondelli
- Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Italy
| |
Collapse
|
38
|
Dörsam B, Reiners KS, von Strandmann EP. Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0481. [PMID: 29158311 PMCID: PMC5717436 DOI: 10.1098/rstb.2016.0481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Bastian Dörsam
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Kathrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center, University Hospital, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
39
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
40
|
Voutsadakis IA. Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: therapeutic implications. Cell Oncol (Dordr) 2018; 41:107-121. [PMID: 29470831 DOI: 10.1007/s13402-018-0373-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The interplay between the immune system and cancer cells has come to the forefront of cancer therapeutics, with novel immune blockade inhibitors being approved for the treatment of an increasing list of cancers. However, the majority of cancer patients still display or develop resistance to these promising drugs. It is possible that cancer stem cells (CSCs) are contributing to this therapeutic resistance. Although CSCs usually represent a small percentage of the total number of cancer cells, they are endowed with the ability of self-renewal and to produce differentiated progeny. Additionally, they have shown the capacity to establish tumors after transplantation to animals, even in small numbers. CSCs have also been found to be resistant to various anti-cancer therapies, including chemotherapy, radiation therapy and, more recently, immunotherapy. This is true despite the sensitivity of CSCs to lysis in vitro by natural killer (NK) cells, the main effector cells of the innate immune system. In this paper the expression of ligands specific for NK cells on CSCs, the intracellular network responsible for the expression of the NK cytotoxicity receptors, and the status of activation of NK cells in the tumor micro-environment are reviewed. The aim of this review is to highlight potential strategies for overcoming CSC immune resistance, thereby enhancing the efficacy of current and future anti-cancer therapies. THERAPEUTIC IMPLICATIONS NK cell activation in the tumor micro-environment through drugs neutralizing inhibitory immune receptors, and combined with other drugs harnessing the potential of the adaptive immune system, could be the most effective approach for attacking both stem cell and non-stem cell cancer populations.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON, Canada. .,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada. .,Division of Medical Oncology, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada.
| |
Collapse
|
41
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
42
|
Sanchez-Correa B, Bergua JM, Pera A, Campos C, Arcos MJ, Bañas H, Duran E, Solana R, Tarazona R. In Vitro Culture with Interleukin-15 Leads to Expression of Activating Receptors and Recovery of Natural Killer Cell Function in Acute Myeloid Leukemia Patients. Front Immunol 2017; 8:931. [PMID: 28824651 PMCID: PMC5545593 DOI: 10.3389/fimmu.2017.00931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent progress in the therapeutic approach of malignant hemopathies, their prognoses remain frequently poor. Immunotherapy could open a new window of great interest in this setting. Natural killer (NK) cells constitute an important area of research for hematologic malignancies, because this subpopulation is able to kill target cells spontaneously without previous sensitization, representing a novel tool in the treatment of them. Abnormal NK cytolytic function is observed in several hematological malignancies, including acute myeloid leukemia (AML) and myelodysplastic syndromes. Several mechanisms are involved in this abnormal function, such as decreased expression of activating receptors, increased expression of inhibitory receptors or defective expression of NK cell ligands on target cells. New immunotherapies are focused in identifying factors that could increase the expression of these activating receptors, to counteract inhibitory receptors expression, and therefore, to improve the NK cell cytotoxic capacities against tumor cells. In this work, we analyze the effect of interleukin (IL)-15 on the expression of NK cell-activating receptors that play a crucial role in the lysis of blasts from AML patients. Our results showed that IL-15 increased the surface expression of NKp30 on NK cells from healthy donors and AML patients with the consequent improvement of NK cell cytotoxicity. Besides, the upregulation of NKp30 induced by IL-15 is associated with an improvement of NK-mediated myeloid dendritic cells (DCs) maturation. NK cells cultured with IL-15 showed an upregulation of NKp30, which is associated with an increase anti-tumor activity and with an improved maturation of immature DCs. In our in vitro model, IL-15 exerted a great activating stimulus that could be used as novel immunotherapy in AML patients.
Collapse
Affiliation(s)
| | - Juan M Bergua
- Department of Haematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Alejandra Pera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Red Espanola de Investigacion en Patologia Infecciosa (REIPI), Córdoba, Spain.,Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carmen Campos
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Red Espanola de Investigacion en Patologia Infecciosa (REIPI), Córdoba, Spain
| | - Maria Jose Arcos
- Department of Haematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Helena Bañas
- Department of Haematology, Hospital San Pedro de Alcantara, Cáceres, Spain
| | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Rafael Solana
- Immunology Unit, University of Extremadura, Cáceres, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Red Espanola de Investigacion en Patologia Infecciosa (REIPI), Córdoba, Spain
| | | |
Collapse
|
43
|
Wang J, Jin X, Liu J, Zhao K, Xu H, Wen J, Jiang L, Zeng X, Li J, Chen Q. The prognostic value of B7-H6 protein expression in human oral squamous cell carcinoma. J Oral Pathol Med 2017; 46:766-772. [PMID: 28437013 DOI: 10.1111/jop.12586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Jiongke Wang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing China
| | - Jiajia Liu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Kui Zhao
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Hao Xu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Wen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Li
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
44
|
Abstract
Observations noting the presence of white blood cell infiltrates within tumors date back more than a century, however the cellular and molecular mechanisms regulating tumor immunity continue to be elucidated. The recent successful use of monoclonal antibodies to block immune regulatory pathways to enhance tumor-specific immune responses for the treatment of cancer has encouraged the identification of additional immune regulatory receptor/ligand pathways. Over the past several years, a growing body of data has identified B7-H4 (VTCN1/B7x/B7S1) as a potential therapeutic target for the treatment of cancer. The potential clinical significance of B7-H4 is supported by the high levels of B7-H4 expression found in numerous tumor tissues and correlation of the level of expression on tumor cells with adverse clinical and pathologic features, including tumor aggressiveness. The biological activity of B7-H4 has been associated with decreased inflammatory CD4+ T-cell responses and a correlation between B7-H4-expressing tumor-associated macrophages and FoxP3+ regulatory T cells (Tregs) within the tumor microenvironment. Since B7-H4 is expressed on tumor cells and tumor-associated macrophages in various cancer types, therapeutic blockade of B7-H4 could favorably alter the tumor microenvironment allowing for antigen-specific clearance tumor cells. The present review highlights the therapeutic potential of targeting B7-H4.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Clinical significance of novel costimulatory molecule B7-H6 in human breast cancer. Oncol Lett 2017; 14:2405-2409. [PMID: 28789456 DOI: 10.3892/ol.2017.6417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
B7 homolog 6 (B7-H6), a member of the B7 family, is as a cell-surface ligand for natural cytotoxicity triggering receptor 3, which is expressed on natural killer cells. It has previously been reported that B7-H6 is undetectable in normal human tissues but is expressed on tumor cells. However, there are few studies focusing on the clinical significance of B7-H6 expression in human carcinoma, with the exception of three studies on ovarian, lung and gastric cancer. The present study investigated the expression of B7-H6 protein in pathologic tissue samples from 305 patients with breast cancer using immunohistochemistry. A high B7-H6 expression level was identified in tissues from 32.13% of patients with breast cancer. These patients were revealed to also exhibit a high expression level of human epidermal growth factor receptor 2, a shorter survival time and a higher rate of lymph node metastasis. Furthermore, the expression level of B7-H6 was not associated with patient age, breast cancer subtype, tumor size, tumor location or estrogen receptor expression. The results of the present study revealed that higher B7-H6 expression level in breast cancer tissues was positively associated with tumor progression. This indicates that B7-H6 is associated with the progression and immunoevasion of human breast cancer; however, the molecular mechanisms underlying this potential effect require further investigation.
Collapse
|
46
|
Frazao A, Colombo M, Fourmentraux-Neves E, Messaoudene M, Rusakiewicz S, Zitvogel L, Vivier E, Vély F, Faure F, Dréno B, Benlalam H, Bouquet F, Savina A, Pasmant E, Toubert A, Avril MF, Caignard A. Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on BRAFV600E Melanoma Lines with Vemurafenib. Cancer Immunol Res 2017; 5:582-593. [PMID: 28576831 DOI: 10.1158/2326-6066.cir-16-0380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
Abstract
Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF-mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | - Marina Colombo
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France
| | | | - Brigitte Dréno
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Houssem Benlalam
- UMR 892-CRCNA, Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | | | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Toubert
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France
| | | | - Anne Caignard
- INSERM UMRS1160, Institut Universitaire d'Hématologie, Paris, France.
| |
Collapse
|
47
|
da Silva RF, Yoshida A, Cardozo DM, Jales RM, Paust S, Derchain S, Guimarães F. Natural Killer Cells Response to IL-2 Stimulation Is Distinct between Ascites with the Presence or Absence of Malignant Cells in Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18050856. [PMID: 28513532 PMCID: PMC5454809 DOI: 10.3390/ijms18050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peritoneal ascites are a distinguishable feature of patients with advanced epithelial ovarian cancer (EOC). The presence of different lymphocyte subsets has been reported in EOC-associated ascites, which also can or not contain malignant cells. The goal of this study was to analyze the functional characteristics of natural killer (NK) cells from EOC-associated ascites in terms of their expression of activating receptors and ascites’ contents of lymphocyte subtypes, cytokine profile and presence of EOC cells. NK cell function was evaluated by the expression of the degranulation marker CD107a in resting and interleukin (IL)-2 stimulated NK cells from ascites and blood. Degranulation of NK cells from EOC cell-free ascites was significantly (p < 0.05) higher than all the other groups, either in their resting state or after IL-2 stimulation, suggesting a previous local stimulation. In contrast, treatment with IL-2 had no effect on NK cells from ascites with EOC cells. The amount of regulatory T cells was significantly higher in ascites with EOC cells compared to EOC cell-free ascites. Ascites with EOC cells also had higher levels of tumor necrosis factor (TNF)-α, suggesting inflammation related to the malignancy. In conclusion, the functional performance of NK cells was distinct between EOC cell-free ascites and ascites with EOC cells. The impairment of NK cell response to IL-2 in ascites with EOC cells was consistent with an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
| | - Adriana Yoshida
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | | | | | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophie Derchain
- Faculty of Medical Sciences, University of Campinas, 13083-887 Campinas, Brazil.
| | - Fernando Guimarães
- Women´s Hospital "Professor Doutor José Aristodemo Pinotti"-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas, 13083-881 Campinas, Brazil.
| |
Collapse
|
48
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
49
|
Phillips M, Romeo F, Bitsaktsis C, Sabatino D. B7H6-derived peptides trigger TNF-α-dependent immunostimulatory activity of lymphocytic NK92-MI cells. Biopolymers 2017; 106:658-72. [PMID: 27216712 DOI: 10.1002/bip.22879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/10/2022]
Abstract
The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The immunostimulatory effects of IPs on the NK cells was assessed by the production of TNF-α alone as IFN-γ was undetectable. In a cell death assay, the IPs were found to be nontoxic, without any observable evidence of early or late stage apoptosis within the NK92-MI cells. Taking these findings together, this novel class of synthetic peptides may prove to be a promising lead in the development of a peptide-based immunotherapy approach, especially against B7H6 expressing tumors. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 658-672, 2016.
Collapse
Affiliation(s)
- Mariana Phillips
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079
| | - Francesca Romeo
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079
| | | | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079.
| |
Collapse
|
50
|
Xu X, Narni-Mancinelli E, Cantoni C, Li Y, Guia S, Gauthier L, Chen Q, Moretta A, Vély F, Eisenstein E, Rangarajan S, Vivier E, Mariuzza RA. Structural Insights into the Inhibitory Mechanism of an Antibody against B7-H6, a Stress-Induced Cellular Ligand for the Natural Killer Cell Receptor NKp30. J Mol Biol 2016; 428:4457-4466. [PMID: 27663271 DOI: 10.1016/j.jmb.2016.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
Antibodies have been shown to block signaling through cell surface receptors using several mechanisms. The two most common are binding to the ligand-binding site of the receptor and, conversely, binding to the receptor-binding site of the ligand. Here, we investigated the inhibitory mechanism of an antibody (17B1.3) against human B7-H6, a stress-induced cellular ligand for the natural killer (NK) cell receptor NKp30. Binding of this antibody to B7-H6, a transmembrane protein expressed on tumor and other stressed cells, but not on normal cells, prevents NK cell activation via NKp30. We determined the crystal structure of antibody 17B1.3 in complex with the ectodomain of B7-H6 to 2.5Å resolution. Surprisingly, 17B1.3 binds to a site on B7-H6 that is completely distinct from the binding site for NKp30, such that 17B1.3 does not block the NKp30-B7-H6 interaction. We then asked whether 17B1.3 prevents signaling by binding to a putative site for B7-H6 dimerization. However, structure-based mutations designed to disrupt potential B7-H6 dimerization through this site did not diminish NKp30-mediated cell activation. We conclude that the bulky 17B1.3 antibody most likely acts by sterically interfering with close cell-cell contacts at the NK cell-target cell interface that are required for NK cell activation. A similar inhibitory mechanism may apply to other antibodies, including therapeutic antibodies that block signaling through cell surface receptors whose ligands are also cell surface proteins.
Collapse
Affiliation(s)
- Xiaoping Xu
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy; Istituto Giannina Gaslini, Genova 16147, Italy
| | - Yili Li
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sophie Guia
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | | | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy
| | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France; Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille 13005, France
| | - Edward Eisenstein
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sneha Rangarajan
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France.
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|