1
|
Patra D, Paul J, Rai U, P S A, Deshmukh MV. Conformational Plasticity in dsRNA-Binding Domains Drives Functional Divergence in RNA Recognition. J Am Chem Soc 2025. [PMID: 40326966 DOI: 10.1021/jacs.5c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The functional specificity of proteins is often attributed to their sequence and structural homology while frequently neglecting the underlying conformational dynamics occurring at different time scales that can profoundly impact biological consequences. Using 15N-CEST NMR and RDC-corrected metainference molecular dynamics simulations, here, we reveal differential substrate recognition mechanisms in two dsRNA-binding domain (dsRBD) paralogs, DRB2D1 and DRB3D1. Despite their nearly identical solution structures and conserved dsRNA interaction interfaces, DRB3D1 demonstrates structural plasticity that enables it to recognize conformationally flexible dsRNA, a feature notably absent in the more rigid DRB2D1. We present the pivotal role of intrinsic structural dynamics in driving functional divergence and provide insights into the mechanisms that govern specificity in dsRBD:dsRNA interactions. Importantly, our combined experimental and computational approach captures a cluster of intermediate conformations, complementing conventional methods to resolve the dominant ground state and sparsely populated excited states.
Collapse
Affiliation(s)
- Debadutta Patra
- CSIR─Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaydeep Paul
- CSIR─Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upasana Rai
- CSIR─Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aravind P S
- CSIR─Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mandar V Deshmukh
- CSIR─Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
3
|
Ahmad S, Zou T, Hwang J, Zhao L, Wang X, Davydenko A, Buchumenski I, Zhuang P, Fishbein AR, Capcha-Rodriguez D, Orgel A, Levanon EY, Myong S, Chou J, Meyerson M, Hur S. PACT prevents aberrant activation of PKR by endogenous dsRNA without sequestration. Nat Commun 2025; 16:3325. [PMID: 40199855 PMCID: PMC11978871 DOI: 10.1038/s41467-025-58433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The innate immune sensor PKR for double-stranded RNA (dsRNA) is critical for antiviral defense, but its aberrant activation by cellular dsRNA is linked to various diseases. The dsRNA-binding protein PACT plays a critical yet controversial role in this pathway. We show that PACT directly suppresses PKR activation by endogenous dsRNA ligands, such as inverted-repeat Alu RNAs, which robustly activate PKR in the absence of PACT. Instead of competing for dsRNA binding, PACT prevents PKR from scanning along dsRNA-a necessary step for PKR molecules to encounter and phosphorylate each other for activation. While PKR favors longer dsRNA for increased co-occupancy and scanning-mediated activation, longer dsRNA is also more susceptible to PACT-mediated regulation due to increased PACT-PKR co-occupancy. Unlike viral inhibitors that constitutively suppress PKR, this RNA-dependent mechanism allows PACT to fine-tune PKR activation based on dsRNA length and quantity, ensuring self-tolerance without sequestering most cellular dsRNA.
Collapse
Affiliation(s)
- Sadeem Ahmad
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tao Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jihee Hwang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Wang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anton Davydenko
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ilana Buchumenski
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Patrick Zhuang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alyssa R Fishbein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Diego Capcha-Rodriguez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aaron Orgel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Sua Myong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Behera PC, Paturi S, Deshmukh MV. Chemical shift assignments of N-terminal dsRNA binding domains dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB5. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10224-7. [PMID: 40126758 DOI: 10.1007/s12104-025-10224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) are among the key players that act along with other components involved in the RNA interference (RNAi) pathway for mediating gene silencing. Additionally, members of the dsRBP family of proteins play divergent roles in the broader array of biological processes. In Arabidopsis thaliana, dsRNA binding protein 5 (DRB5), along with DRB2 and DRB3, serves in recognition of viral RNA invasion and co-localizes with viral replication complexes. However, the functional role of DRB5 in such complexes is yet to be explored. DRB5 is a multidomain protein containing two tandem dsRNA binding domains (dsRBDs) at its N-terminus. Our current study presents the near-complete backbone and sidechain assignment of the dsRBD1 and dsRBD2 of DRB5 using solution NMR. The study will further contribute to determining the solution structure of dsRBDs and open new avenues to investigate the functional role of DRB5 in gene silencing pathways.
Collapse
Affiliation(s)
- Priti Chanda Behera
- CSIR - Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Paturi
- CSIR - Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Mandar V Deshmukh
- CSIR - Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Cao N, Wang J, Deng T, Fan B, Su S, Ma J, Wang HW. Structural basis of endo-siRNA processing by Drosophila Dicer-2 and Loqs-PD. Nucleic Acids Res 2025; 53:gkaf102. [PMID: 39988314 PMCID: PMC11840564 DOI: 10.1093/nar/gkaf102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs or esiRNAs) originate from either elongated endogenous transcripts capable of forming complex fold-back structures or from double-stranded regions generated through intermolecular base pairing of convergently transcribed mRNAs. The mechanism of maturation and functionality of esiRNAs exhibit significant variation across diverse species. In Drosophila melanogaster, esiRNAs reside in both somatic and germline cells, where they serve as post-transcriptional modulators for specific target RNAs. Their maturation process critically relies on Dicer-2 (Dcr-2), with the assistance of its cofactor Loqs-PD. In this study, we have successfully elucidated the cryo-EM structures of Dcr-2/Loqs-PD complex bound to esiRNA precursors (pre-esiRNAs) in various states. Our structural and biochemical results reveal that ATP is essential for the cleavage of esiRNAs by the Dcr-2/Loqs-PD complex, a process analogous to the cleavage of double-stranded RNA (dsRNA). When Loqs-PD is present, pre-esiRNAs are preferentially loaded onto the Helicase domain of Dcr-2. Moreover, as the Helicase domain exhibits a preference for binding to the rigid end of double-stranded RNA, Dcr-2 tends to cleave pre-esiRNA from the small closed loop end, rather than the loose and flexible open end.
Collapse
Affiliation(s)
- Na Cao
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Boming Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Hanelt TN, Treiber N, Treiber T, Lehmann G, Eichner N, Rothmeier T, Schmid G, Reichelt R, Zambelli F, Pavesi G, Grohmann D, Meister G. Endo-bind-n-seq: identifying RNA motifs of RNA binding proteins isolated from endogenous sources. Life Sci Alliance 2025; 8:e202402782. [PMID: 39622621 PMCID: PMC11612968 DOI: 10.26508/lsa.202402782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
RNA binding proteins (RBPs) are crucial regulators of gene expression and critically depend on the specific recognition of their target RNAs. Accordingly, a selection of methods to analyze RBP specificities has been developed, including protein-RNA crosslinking and sequencing (CLIP) and in vitro selection methods such as SELEX, RNA compete or RNA bind-n-seq. However, limitations like the availability for purified recombinant proteins and custom microarray platforms (RNAcompete) or extensive sequencing depth and sophisticated bioinformatic data processing (CLIP) may limit a broader implementation of these methods. Here, we present an RNA bind-n-seq method that uses short random RNA pools and enables multiple rounds of selection. This results in strong motif enrichment with low positional variance thus reducing sequencing depth requirements. Furthermore, we have coupled our protocol to immunoprecipitation of tagged or endogenous RBPs from cultured cells or tissue samples, eliminating the need for recombinant proteins. Our method also allows for the identification of indirect RNA motifs of proteins that are integral parts of multiprotein RNPs and result in physically more relevant RNA motifs.
Collapse
Affiliation(s)
- Tiana Nicole Hanelt
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gerhard Lehmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Tamara Rothmeier
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, Milan, Italy
| | - Dina Grohmann
- Regensburg Center for Biochemistry (RCB), Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
8
|
Chang RB, Toyoda HC, Hobbs SJ, Richmond-Buccola D, Wein T, Burger N, Chouchani ET, Sorek R, Kranzusch PJ. A widespread family of viral sponge proteins reveals specific inhibition of nucleotide signals in anti-phage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630793. [PMID: 39803557 PMCID: PMC11722364 DOI: 10.1101/2024.12.30.630793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse E. coli and Bacillus phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the Bacillus phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.1 Å crystal structure of Acb4 in complex with 3'3'-cGAMP reveals a tetrameric assembly that functions as a sponge to sequester CBASS signals and inhibit immune activation. We demonstrate Acb4 alone is sufficient to disrupt CBASS activation in vitro and enable immune evasion in vivo. Analyzing phages that infect diverse bacteria, we explain how Acb4 selectively targets nucleotide signals in host defense and avoids disruption of cellular homeostasis. Together, our results reveal principles of immune evasion protein evolution and explain a major mechanism phages use to inhibit host immunity.
Collapse
Affiliation(s)
- Renee B. Chang
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hunter C. Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Desmond Richmond-Buccola
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Edward T. Chouchani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Lead Contact
| |
Collapse
|
9
|
Parvez F, Amin Z, Sangpal D, Chugh J. Role of pH in Modulating RNA-Protein Interactions in TRBP2-dsRBD2: An Interplay between Conformational Dynamics and Electrostatic Interactions. J Phys Chem B 2024; 128:12698-12709. [PMID: 39722586 DOI: 10.1021/acs.jpcb.4c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions. Thus, it is crucial to ascertain the role of pH in modulating such interactions. We have previously shown the role of conformational dynamics in the RNA-protein interaction in TAR RNA-binding protein (TRBP) double-stranded RNA-binding domains (dsRBD) 1 and 2 using solution-state NMR spectroscopy. The current study provides insights into the effect of pH on interactions between TRBP2-dsRBD2 and a dsRNA. Remarkably, it was observed that a unit decrease in pH leads to an increase in the flexibility of TRBP2-dsRBD2 in RNA-binding residues, as seen in NMR dynamics experiments, in addition to altering the charge distribution on the protein surface. This led us to propose a dynamics-driven model where the two effects of pH, electrostatic and conformational flexibility, counterbalance each other. Thus, it can be concluded that the overall binding affinity between the protein and RNA is governed by a delicate balance between its conformational dynamics and electrostatic interactions.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Devika Sangpal
- Institute of Bioinformatics and Biotechnology (Jointly Merged with Department of Biotechnology), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
10
|
Holla A, Martin EW, Dannenhoffer-Lafage T, Ruff KM, König SLB, Nüesch MF, Chowdhury A, Louis JM, Soranno A, Nettels D, Pappu RV, Best RB, Mittag T, Schuler B. Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations. JACS AU 2024; 4:4729-4743. [PMID: 39735932 PMCID: PMC11672150 DOI: 10.1021/jacsau.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS). The set of disordered proteins shows a strong dependence of the chain dimensions on sequence composition, with chain volumes differing by up to a factor of 6. The residue-specific intrachain interaction networks that underlie these pronounced differences were identified using atomistic simulations combined with ensemble reweighting, revealing the important role of charged, aromatic, and polar residues. To advance a transferable description of disordered protein regions, we further employed the experimental data to parametrize a coarse-grained model for disordered proteins that includes an explicit representation of the FRET fluorophores and successfully describes experiments with different dye pairs. Our findings demonstrate the value of integrating experiments and simulations for advancing our quantitative understanding of the sequence features that determine the conformational ensembles of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Andrea Holla
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Erik W. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Thomas Dannenhoffer-Lafage
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sebastian L. B. König
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark F. Nüesch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Aritra Chowdhury
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John M. Louis
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Andrea Soranno
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Biochemistry and Molecular Biophysics, Center for Biomolecular
Condensates, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Tanja Mittag
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Kazancev M, Merkulov P, Tiurin K, Demurin Y, Soloviev A, Kirov I. Comparative Analysis of Active LTR Retrotransposons in Sunflower ( Helianthus annuus L.): From Extrachromosomal Circular DNA Detection to Protein Structure Prediction. Int J Mol Sci 2024; 25:13615. [PMID: 39769378 PMCID: PMC11728184 DOI: 10.3390/ijms252413615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Plant genomes possess numerous transposable element (TE) insertions that have occurred during evolution. Most TEs are silenced or diverged; therefore, they lose their ability to encode proteins and are transposed in the genome. Knowledge of active plant TEs and TE-encoded proteins essential for transposition and evasion of plant cell transposon silencing mechanisms remains limited. This study investigated active long terminal repeat (LTR) retrotransposons (RTEs) in sunflowers (Helianthus annuus), revealing heterogeneous and phylogenetically distinct RTEs triggered by epigenetic changes and heat stress. Many of these RTEs belong to three distinct groups within the Tekay clade, showing significant variations in chromosomal insertion distribution. Through protein analysis of these active RTEs, it was found that Athila RTEs and Tekay group 2 elements possess additional open reading frames (aORFs). The aORF-encoded proteins feature a transposase domain, a transmembrane domain, and nuclear localization signals. The aORF proteins of the Tekay subgroup exhibited remarkable conservation among over 500 Tekay members, suggesting their functional importance in RTE mobility. The predicted 3D structure of the sunflower Tekay aORF protein showed significant homology with Tekay proteins in rice, maize, and sorghum. Additionally, the structural features of aORF proteins resemble those of plant DRBM-containing proteins, suggesting their potential role in RNA-silencing modulation. These findings offer insights into the diversity and activity of sunflower RTEs, emphasizing the conservation and structural characteristics of aORF-encoded proteins.
Collapse
Affiliation(s)
- Mikhail Kazancev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Kirill Tiurin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia;
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
- All-Russia Center for Plant Quarantine, 140150 Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (M.K.); (P.M.); (K.T.); (A.S.)
| |
Collapse
|
12
|
Mboukou A, Rajendra V, Messmer S, Mandl TC, Catala M, Tisné C, Jantsch MF, Barraud P. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat Commun 2024; 15:10051. [PMID: 39572551 PMCID: PMC11582362 DOI: 10.1038/s41467-024-53777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Adenosine-to-inosine editing is catalyzed by adenosine deaminases acting on RNA (ADARs) in double-stranded RNA (dsRNA) regions. Although three ADARs exist in mammals, ADAR1 is responsible for the vast majority of the editing events and acts on thousands of sites in the human transcriptome. ADAR1 has been proposed to form a stable homodimer and dimerization is suggested to be important for editing activity. In the absence of a structural basis for the dimerization of ADAR1, and without a way to prevent dimer formation, the effect of dimerization on enzyme activity or site specificity has remained elusive. Here, we report on the structural analysis of the third double-stranded RNA-binding domain of ADAR1 (dsRBD3), which reveals stable dimer formation through a large inter-domain interface. Exploiting these structural insights, we engineered an interface-mutant disrupting ADAR1-dsRBD3 dimerization. Notably, dimerization disruption did not abrogate ADAR1 editing activity but intricately affected editing efficiency at selected sites. This suggests a complex role for dimerization in the selection of editing sites by ADARs, and makes dimerization a potential target for modulating ADAR1 editing activity.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Vinod Rajendra
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Serafina Messmer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Therese C Mandl
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France.
| |
Collapse
|
13
|
Le TNY, Le CT, Nguyen TA. Determinants of selectivity in the dicing mechanism. Nat Commun 2024; 15:8989. [PMID: 39420173 PMCID: PMC11487123 DOI: 10.1038/s41467-024-53322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Our research elucidates the cleavage processes of the RNase III enzyme, DICER, which plays a crucial role in the production of small RNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Utilizing high-throughput dicing assays, we expose the bipartite pairing rule that dictates the cleavage sites of DICER. Furthermore, we decode the intricate recognition mechanism of the primary YCR motif and identify an analogous secondary YCR motif that influences DICER's cleavage choices. Collectively, our findings clarify the bipartite pairing rule and enhance our understanding of the role of RNA motifs in modulating DICER's cleavage activity, laying the groundwork for future research on their roles in miRNA biogenesis and gene regulation.
Collapse
Affiliation(s)
- Thi Nhu-Y Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Cong Truc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
| |
Collapse
|
14
|
Fisher AJ, Beal PA. Structural perspectives on adenosine to inosine RNA editing by ADARs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102284. [PMID: 39165563 PMCID: PMC11334849 DOI: 10.1016/j.omtn.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that catalyze the hydrolytic deamination of adenosine to inosine. The editing feature of ADARs has garnered much attention as a therapeutic tool to repurpose ADARs to correct disease-causing mutations at the mRNA level in a technique called site-directed RNA editing (SDRE). Administering a short guide RNA oligonucleotide that hybridizes to a mutant sequence forms the requisite dsRNA substrate, directing ADARs to edit the desired adenosine. However, much is still unknown about ADARs' selectivity and sequence-specific effects on editing. Atomic-resolution structures can help provide additional insight to ADARs' selectivity and lead to novel guide RNA designs. Indeed, recent structures of ADAR domains have expanded our understanding on RNA binding and the base-flipping catalytic mechanism. These efforts have enabled the rational design of improved ADAR guide strands and advanced the therapeutic potential of the SDRE approach. While no full-length structure of any ADAR is known, this review presents an exposition of the structural basis for function of the different ADAR domains, focusing on human ADAR2. Key insights are extrapolated to human ADAR1, which is of substantial interest because of its widespread expression in most human tissues.
Collapse
Affiliation(s)
- Andrew J. Fisher
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
15
|
Parvez F, Sangpal D, Paithankar H, Amin Z, Chugh J. Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding. eLife 2024; 13:RP94842. [PMID: 39116184 PMCID: PMC11309768 DOI: 10.7554/elife.94842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Devika Sangpal
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune UniversityPuneIndia
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| |
Collapse
|
16
|
Chakrabortty A, Mondal S, Bandyopadhyay S. Conformational Properties of Poly(A)-Binding Protein Complexed with Poly(A) RNA. J Phys Chem B 2024; 128:6449-6462. [PMID: 38941243 DOI: 10.1021/acs.jpcb.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| |
Collapse
|
17
|
Zhang J, Zhan C, Fan J, Wu D, Zhang R, Wu D, Chen X, Lu Y, Li M, Lin M, Gong J, Jiang D. Structural insights into double-stranded RNA recognition and transport by SID-1. Nat Struct Mol Biol 2024; 31:1095-1104. [PMID: 38664565 DOI: 10.1038/s41594-024-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/14/2024] [Indexed: 07/20/2024]
Abstract
RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.
Collapse
Affiliation(s)
- Jiangtao Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junping Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Dian Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixue Zhang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy Agricultural Sciences, Beijing, China
| | - Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyao Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lin
- Food Laboratory of Zhongyuan, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Paul J, Deshmukh MV. Chemical shift assignment of dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB3, an essential protein involved in RNAi-mediated antiviral defense. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:99-104. [PMID: 38668800 DOI: 10.1007/s12104-024-10174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
As sessile organisms, plants need to counteract different biotic and abiotic stresses to survive. RNA interference provides natural immunity against various plant pathogens, especially against viral infections via inhibition of viral genome replication or translation. In plants, DRB3, a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD), plays a vital role in RNA-directed DNA methylation of the geminiviral genome. Additionally, DRB3 arrests the replication of the viral genome in the viral replication complex of RNA viruses through a mechanism that has yet to be fully deciphered. Therefore, as a first step towards exploring the structural details of DRB3, we present a nearly complete backbone and side chain assignment of the two N-terminal dsRBD domains.
Collapse
Affiliation(s)
- Jaydeep Paul
- CSIR - Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandar V Deshmukh
- CSIR - Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
20
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
21
|
Mozumdar D, Roy RN. Origin of ribonucleotide recognition motifs through ligand mimicry at early earth. RNA Biol 2024; 21:107-121. [PMID: 39526332 PMCID: PMC11556283 DOI: 10.1080/15476286.2024.2423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In an RNA world, the emergence of template-specific self-replication and catalysis necessitated the presence of motifs facilitating reliable recognition between RNA molecules. What did these motifs entail, and how did they evolve into the proteinaceous RNA recognition entities observed today? Direct observation of these primordial entities is hindered by rapid degradation over geological time scales. To overcome this challenge, researchers employ diverse approaches, including scrutiny of conserved sequences and structural motifs across extant organisms and employing directed evolution experiments to generate RNA molecules with specific catalytic abilities. In this review, we delve into the theme of ribonucleotide recognition across key periods of early Earth's evolution. We explore scenarios of RNA interacting with small molecules and examine hypotheses regarding the role of minerals and metal ions in enabling structured ribonucleotide recognition and catalysis. Additionally, we highlight instances of RNA-protein mimicry in interactions with other RNA molecules. We propose a hypothesis where RNA initially recognizes small molecules and metal ions/minerals, with subsequent mimicry by proteins leading to the emergence of proteinaceous RNA binding domains.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology & Microbiology, University of California San Francisco, San Francisco, CA, USA
| | - Raktim N. Roy
- Department of pathology & laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
23
|
Deng T, Su S, Yuan X, He J, Huang Y, Ma J, Wang J. Structural mechanism of R2D2 and Loqs-PD synergistic modulation on DmDcr-2 oligomers. Nat Commun 2023; 14:5228. [PMID: 37633971 PMCID: PMC10460399 DOI: 10.1038/s41467-023-40919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Small interference RNAs are the key components of RNA interference, a conserved RNA silencing or viral defense mechanism in many eukaryotes. In Drosophila melanogaster, Dicer-2 (DmDcr-2)-mediated RNAi pathway plays important roles in defending against viral infections and protecting genome integrity. During the maturation of siRNAs, two cofactors can regulate DmDcr-2's functions: Loqs-PD that is required for dsRNA processing, and R2D2 that is essential for the subsequent loading of siRNAs into effector Ago2 to form RISC complexes. However, due to the lack of structural information, it is still unclear whether R2D2 and Loqs-PD affect the functions of DmDcr-2 simultaneously. Here we present several cryo-EM structures of DmDcr-2/R2D2/Loqs-PD complex bound to dsRNAs with various lengths by the Helicase domain. These structures revealed that R2D2 and Loqs-PD can bind to different regions of DmDcr-2 without interfering with each other. Furthermore, the cryo-EM results demonstrate that these complexes can form large oligomers and assemble into fibers. The formation and depolymerization of these oligomers are associated with ATP hydrolysis. These findings provide insights into the structural mechanism of DmDcr-2 and its cofactors during siRNA processing.
Collapse
Affiliation(s)
- Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Xun Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
The solution structure of Dead End bound to AU-rich RNA reveals an unusual mode of tandem RRM-RNA recognition required for mRNA regulation. Nat Commun 2022; 13:5892. [PMID: 36202814 PMCID: PMC9537309 DOI: 10.1038/s41467-022-33552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Dead End (DND1) is an RNA-binding protein essential for germline development through its role in post-transcriptional gene regulation. The molecular mechanisms behind selection and regulation of its targets are unknown. Here, we present the solution structure of DND1's tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is specifically recognized, reconciling seemingly contradictory sequence motifs discovered in recent genome-wide studies. RRM1 acts as a main binding platform, including atypical extensions to the canonical RRM fold. RRM2 acts cooperatively with RRM1, capping the RNA using an unusual binding pocket, leading to an unusual mode of tandem RRM-RNA recognition. We show that the consensus motif is sufficient to mediate upregulation of a reporter gene in human cells and that this process depends not only on RNA binding by the RRMs, but also on DND1's double-stranded RNA binding domain (dsRBD), which is dispensable for binding of a subset of targets in cellulo. Our results point to a model where DND1 target selection is mediated by a non-canonical mode of AU-rich RNA recognition by the tandem RRMs and a role for the dsRBD in the recruitment of effector complexes responsible for target regulation.
Collapse
|
26
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
27
|
Crocodilepox Virus Protein 157 Is an Independently Evolved Inhibitor of Protein Kinase R. Viruses 2022; 14:v14071564. [PMID: 35891544 PMCID: PMC9318007 DOI: 10.3390/v14071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.
Collapse
|
28
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
29
|
Comparative phylogeny and evolutionary analysis of Dicer-like protein family in two plant monophyletic lineages. J Genet Eng Biotechnol 2022; 20:103. [PMID: 35821291 PMCID: PMC9276914 DOI: 10.1186/s43141-022-00380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Small RNAs (sRNAs) that do not get untranslated into proteins exhibit a pivotal role in the expression regulation of their cognate gene(s) in almost all eukaryotic lineages, including plants. Hitherto, numerous protein families such as Dicer, a unique class of Ribonuclease III, have been reported to be involved in sRNAs processing pathways and silencing. In this study, we aimed to investigate the phylogenetic relationship and evolutionary history of the DCL protein family. RESULTS Our results illustrated the DCL family of proteins grouped into four main subfamilies (DCLs 1-4) presented in either Eudicotyledons or Liliopsids. The accurate observation of the phylogenetic trees supports the independent expansion of DCL proteins among the Eudicotyledons and Liliopsids species. They share the common origin, and the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsids split from their ancestral DCL. In addition, shreds of evidence revealed that the divergence happened when multicellularization started and since the need for complex gene regulation considered being a necessity by organisms. At that time, they have evolved independently among the monophyletic lineages. The other finding was that the combination of DCL protein subfamilies bears several highly conserved functional domains in plant species that originated from their ancestor architecture. The conservation of these domains happens to be both lineage-specific and inter lineage-specific. CONCLUSIONS DCL subfamilies (i.e., DCL1-DCL4) distribute in their single clades after diverging from their common ancestor and before emerging into higher plants. Therefore, it seems that the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsida split and before the appearance of moss, and after the single-cell green algae. We also observed the same trends among the main DCL subfamilies from functional unit composition and architecture. Despite the long evolutionary course from the divergence of Liliopsida lineage from the Eudicotyledons, a significant diversifying force to domain composition and orientation was absent. The results of this study provide a deeper insight into DCL protein evolutionary history and possible sequence and structural relationships between DCL protein subfamilies in the main higher plant monophyletic lineages; i.e., Eudicotyledons and Liliopsida.
Collapse
|
30
|
Gabryelska MM, Badrock AP, Lau JY, O'Keefe RT, Crow YJ, Kudla G. Global mapping of RNA homodimers in living cells. Genome Res 2022; 32:956-967. [PMID: 35332098 PMCID: PMC9104694 DOI: 10.1101/gr.275900.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as "overlapping" chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies.
Collapse
Affiliation(s)
- Marta M. Gabryelska
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom;,Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew P. Badrock
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Raymond T. O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yanick J. Crow
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
31
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
32
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
33
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
34
|
Wei S, Dai S, Zhang C, Zhao R, Zhao Z, Song Y, Shan B, Zhao L. LncRNA NR038975, A Serum-Based Biomarker, Promotes Gastric Tumorigenesis by Interacting With NF90/NF45 Complex. Front Oncol 2021; 11:721604. [PMID: 34900675 PMCID: PMC8660099 DOI: 10.3389/fonc.2021.721604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) have been reported to be the important regulators during the occurrence and development of GC. The present study identified a novel and functional lncRNA in GC, named NR038975, which was confirmed to be markedly upregulated in the Gene Expression Profiling Interactive Analysis (GEPIA) dataset and our independent cohort of GC tissues. We firstly characterized the full-length sequence and subcellular location of NR038975 in GC cells. Our data demonstrated that upregulated NR038975 expression was significantly related to lymph node metastasis and TNM stage. In addition, knockdown of NR038975 inhibited GC cell proliferation, migration, invasion, and clonogenicity and vice versa. Mechanistically, RNA pull-down and mass spectrometry assays identified the NR038975-binding proteins and NF90/NF45 complex, and the binding was also confirmed by RNA immunoprecipitation and confocal experiments. We further demonstrated that genetic deficiency of NR038975 abrogated the interaction between NF45 and NF90. Moreover, NF90 increased the stability of NR038975. Thus, NR038975-NF90/NF45 will be an important combinational target of GC. Finally, we detected NR038975 in serum exosomes and serum of GC patients. Our results indicated that NR038975 was a biomarker for gastric tumorigenesis. The current study demonstrated that NR038975 is a novel lncRNA that is clinically and functionally engaged in GC progression and might be a novel diagnostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruinian Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
RGS4 RNA Secondary Structure Mediates Staufen2 RNP Assembly in Neurons. Int J Mol Sci 2021; 22:ijms222313021. [PMID: 34884825 PMCID: PMC8657808 DOI: 10.3390/ijms222313021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored. Here, we show that Staufen2 binds complex, long-ranged RNA hairpins in the 3′-untranslated region (UTR) of its targets. These structures are involved in the assembly of Staufen2 into RNA granules. Furthermore, we provide direct evidence that a defined Rgs4 RNA duplex regulates Staufen2-dependent RNA localization to distal dendrites. Importantly, disrupting the RNA hairpin impairs the observed effects. Finally, we show that these secondary structures differently affect protein expression in neurons. In conclusion, our data reveal the importance of RNA secondary structure in regulating RNA granule assembly, localization and eventually translation. It is therefore tempting to speculate that secondary structures represent an important code for cells to control the intracellular fate of their mRNAs.
Collapse
|
36
|
Vergani-Junior CA, Tonon-da-Silva G, Inan MD, Mori MA. DICER: structure, function, and regulation. Biophys Rev 2021; 13:1081-1090. [DOI: 10.1007/s12551-021-00902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
|
37
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
38
|
Nikulin AD. Characteristic Features of Protein Interaction with Single- and Double-Stranded RNA. BIOCHEMISTRY (MOSCOW) 2021; 86:1025-1040. [PMID: 34488578 DOI: 10.1134/s0006297921080125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses differences between the specific protein interactions with single- and double-stranded RNA molecules using the data on the structure of RNA-protein complexes. Proteins interacting with the single-stranded RNAs form contacts with RNA bases, which ensures recognition of specific nucleotide sequences. Formation of such contacts with the double-stranded RNAs is hindered, so that the proteins recognize unique conformations of the RNA spatial structure and interact mainly with the RNA sugar-phosphate backbone.
Collapse
Affiliation(s)
- Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
39
|
Song Z, Gremminger T, Singh G, Cheng Y, Li J, Qiu L, Ji J, Lange MJ, Zuo X, Chen SJ, Zou X, Boris-Lawrie K, Heng X. The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Res 2021; 49:5925-5942. [PMID: 33978756 PMCID: PMC8191761 DOI: 10.1093/nar/gkab342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 reverse transcription initiates at the primer binding site (PBS) in the viral genomic RNA (gRNA). Although the structure of the PBS-segment undergoes substantial rearrangement upon tRNALys3 annealing, the proper folding of the PBS-segment during gRNA packaging is important as it ensures loading of beneficial host factors. DHX9/RNA helicase A (RHA) is recruited to gRNA to enhance the processivity of reverse transcriptase. Because the molecular details of the interactions have yet to be defined, we solved the solution structure of the PBS-segment preferentially bound by RHA. Evidence is provided that PBS-segment adopts a previously undefined adenosine-rich three-way junction structure encompassing the primer activation stem (PAS), tRNA-like element (TLE) and tRNA annealing arm. Disruption of the PBS-segment three-way junction structure diminished reverse transcription products and led to reduced viral infectivity. Because of the existence of the tRNA annealing arm, the TLE and PAS form a bent helical structure that undergoes shape-dependent recognition by RHA double-stranded RNA binding domain 1 (dsRBD1). Mutagenesis and phylogenetic analyses provide evidence for conservation of the PBS-segment three-way junction structure that is preferentially bound by RHA in support of efficient reverse transcription, the hallmark step of HIV-1 replication.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas Gremminger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Cheng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Jun Li
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Liming Qiu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
40
|
Cánovas-Márquez JT, Falk S, Nicolás FE, Padmanabhan S, Zapata-Pérez R, Sánchez-Ferrer Á, Navarro E, Garre V. A ribonuclease III involved in virulence of Mucorales fungi has evolved to cut exclusively single-stranded RNA. Nucleic Acids Res 2021; 49:5294-5307. [PMID: 33877360 PMCID: PMC8136814 DOI: 10.1093/nar/gkab238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.
Collapse
Affiliation(s)
- José Tomás Cánovas-Márquez
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, A-1030 Vienna, Austria
| | - Francisco E Nicolás
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Subramanian Padmanabhan
- Instituto de Química Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum,” University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Eusebio Navarro
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Department of Genetics and Microbiology (Associated Unit to IQFR-CSIC), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
41
|
Hesler S, Angeliadis M, Husain B, Cole JL. Contribution of dsRBD2 to PKR Activation. ACS OMEGA 2021; 6:11367-11374. [PMID: 34056292 PMCID: PMC8153938 DOI: 10.1021/acsomega.1c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Protein kinase R (PKR) is a key pattern recognition receptor of the innate immune pathway. PKR is activated by double-stranded RNA (dsRNA) that is often produced during viral genome replication and transcription. PKR contains two tandem double-stranded RNA binding domains at the N-terminus, dsRBD1 and dsRBD2, and a C-terminal kinase domain. In the canonical model for activation, RNAs that bind multiple PKRs induce dimerization of the kinase domain that promotes an active conformation. However, there is evidence that dimerization of the kinase domain is not sufficient to mediate activation and PKR activation is modulated by the RNA-binding mode. dsRBD2 lacks most of the consensus RNA-binding residues, and it has been suggested to function as a modulator of PKR activation. Here, we demonstrate that dsRBD2 regulates PKR activation and identify the N-terminal helix as a critical region for modulating kinase activity. Mutations in dsRBD2 that have minor effects on overall dsRNA-binding affinity strongly inhibit the activation of PKR by dsRNA. These mutations also inhibit RNA-independent PKR activation. These data support a model where dsRBD2 has evolved to function as a regulator of the kinase.
Collapse
Affiliation(s)
- Stephen Hesler
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs 06269, Connecticut, United States
| | - Matthew Angeliadis
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs 06269, Connecticut, United States
| | - Bushra Husain
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs 06269, Connecticut, United States
| | - James L. Cole
- Department
of Molecular and Cell Biology, University
of Connecticut, Storrs 06269, Connecticut, United States
- Department
of Chemistry, University of Connecticut, Storrs 06269, Connecticut, United States
| |
Collapse
|
42
|
Giannerini S, Gonzalez DL, Goracci G, Danielli A. A role for circular code properties in translation. Sci Rep 2021; 11:9218. [PMID: 33911089 PMCID: PMC8080828 DOI: 10.1038/s41598-021-87534-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Circular codes represent a form of coding allowing detection/correction of frame-shift errors. Building on recent theoretical advances on circular codes, we provide evidence that protein coding sequences exhibit in-frame circular code marks, that are absent in introns and are intimately linked to the keto-amino transformation of codon bases. These properties strongly correlate with translation speed, codon influence and protein synthesis levels. Strikingly, circular code marks are absent at the beginning of coding sequences, but stably occur 40 codons after the initiator codon, hinting at the translation elongation process. Finally, we use the lens of circular codes to show that codon influence on translation correlates with the strong-weak dichotomy of the first two bases of the codon. The results can lead to defining new universal tools for sequence indicators and sequence optimization for bioinformatics and biotechnological applications, and can shed light on the molecular mechanisms behind the decoding process.
Collapse
Affiliation(s)
- Simone Giannerini
- Department of Statistical Sciences, University of Bologna, Bologna, 40126, Italy.
| | - Diego Luis Gonzalez
- Department of Statistical Sciences, University of Bologna, Bologna, 40126, Italy.,Institute for Microelectronics and Microsystems - Bologna Unit, CNR, Bologna, 40129, Italy
| | - Greta Goracci
- Department of Statistical Sciences, University of Bologna, Bologna, 40126, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
43
|
Willbanks A, Wood S, Cheng JX. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes (Basel) 2021; 12:genes12050627. [PMID: 33922187 PMCID: PMC8145807 DOI: 10.3390/genes12050627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases.
Collapse
|
44
|
He W, Chen YL, Pollack L, Kirmizialtin S. The structural plasticity of nucleic acid duplexes revealed by WAXS and MD. SCIENCE ADVANCES 2021; 7:7/17/eabf6106. [PMID: 33893104 PMCID: PMC8064643 DOI: 10.1126/sciadv.abf6106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA's diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, NY, USA
| | - Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
45
|
CircRNA-Protein Interactions in Muscle Development and Diseases. Int J Mol Sci 2021; 22:ijms22063262. [PMID: 33806945 PMCID: PMC8005172 DOI: 10.3390/ijms22063262] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNA (circRNA) is a kind of novel endogenous noncoding RNA formed through back-splicing of mRNA precursor. The biogenesis, degradation, nucleus-cytoplasm transport, location, and even translation of circRNA are controlled by RNA-binding proteins (RBPs). Therefore, circRNAs and the chaperoned RBPs play critical roles in biological functions that significantly contribute to normal animal development and disease. In this review, we systematically characterize the possible molecular mechanism of circRNA-protein interactions, summarize the latest research on circRNA-protein interactions in muscle development and myocardial disease, and discuss the future application of circRNA in treating muscle diseases. Finally, we provide several valid prediction methods and experimental verification approaches. Our review reveals the significance of circRNAs and their protein chaperones and provides a reference for further study in this field.
Collapse
|
46
|
Sadeq S, Al-Hashimi S, Cusack CM, Werner A. Endogenous Double-Stranded RNA. Noncoding RNA 2021; 7:15. [PMID: 33669629 PMCID: PMC7930956 DOI: 10.3390/ncrna7010015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The birth of long non-coding RNAs (lncRNAs) is closely associated with the presence and activation of repetitive elements in the genome. The transcription of endogenous retroviruses as well as long and short interspersed elements is not only essential for evolving lncRNAs but is also a significant source of double-stranded RNA (dsRNA). From an lncRNA-centric point of view, the latter is a minor source of bother in the context of the entire cell; however, dsRNA is an essential threat. A viral infection is associated with cytoplasmic dsRNA, and endogenous RNA hybrids only differ from viral dsRNA by the 5' cap structure. Hence, a multi-layered defense network is in place to protect cells from viral infections but tolerates endogenous dsRNA structures. A first line of defense is established with compartmentalization; whereas endogenous dsRNA is found predominantly confined to the nucleus and the mitochondria, exogenous dsRNA reaches the cytoplasm. Here, various sensor proteins recognize features of dsRNA including the 5' phosphate group of viral RNAs or hybrids with a particular length but not specific nucleotide sequences. The sensors trigger cellular stress pathways and innate immunity via interferon signaling but also induce apoptosis via caspase activation. Because of its central role in viral recognition and immune activation, dsRNA sensing is implicated in autoimmune diseases and used to treat cancer.
Collapse
Affiliation(s)
| | | | | | - Andreas Werner
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.); (C.M.C.)
| |
Collapse
|
47
|
Marin-Gonzalez A, Aicart-Ramos C, Marin-Baquero M, Martín-González A, Suomalainen M, Kannan A, Vilhena JG, Greber UF, Moreno-Herrero F, Pérez R. Double-stranded RNA bending by AU-tract sequences. Nucleic Acids Res 2021; 48:12917-12928. [PMID: 33245767 PMCID: PMC7736806 DOI: 10.1093/nar/gkaa1128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Mikel Marin-Baquero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abhilash Kannan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.,Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,IFIMAC - Condensed Matter Physics Center, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
48
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
49
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
50
|
Zhang L, Chen L, Chen J, Shen W, Meng A. Mini-III RNase-based dual-color system for in vivo mRNA tracking. Development 2020; 147:dev.190728. [PMID: 33093152 PMCID: PMC7725608 DOI: 10.1242/dev.190728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
Mini-III RNase (mR3), a member of RNase III endonuclease family, can bind to and cleave double-stranded RNAs (dsRNAs). Inactive mR3 protein without the α5β-α6 loop loses the dsRNA cleavage activity, but retains dsRNA binding activity. Here, we establish an inactive mR3-based non-engineered mR3/dsRNA system for RNA tracking in zebrafish embryos. In vitro binding experiments show that inactive Staphylococcus epidermidis mR3 (dSmR3) protein possesses the highest binding affinity with dsRNAs among mR3s from other related species, and its binding property is retained in zebrafish embryos. Combined with a fluorescein-labeled antisense RNA probe recognizing the target mRNAs, dSmR3 tagged with a nuclear localization sequence and a fluorescent protein could allow visualization of the dynamics of endogenous target mRNAs. The dSmR3/antisense probe dual-color system provides a new approach for tracking non-engineered RNAs in real-time, which will help understand how endogenous RNAs dynamically move during embryonic development. Summary: A fluorescent antisense probe and the inactive form of Staphylococcus epidermidis Mini-III RNase with a fluorescent tag may be used together to visualize endogenous mRNAs in zebrafish embryos.
Collapse
Affiliation(s)
- Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|