1
|
Luecke S, Guo X, Sheu KM, Singh A, Lowe SC, Han M, Diaz J, Lopes F, Wollman R, Hoffmann A. Dynamical and combinatorial coding by MAPK p38 and NFκB in the inflammatory response of macrophages. Mol Syst Biol 2024; 20:898-932. [PMID: 38872050 PMCID: PMC11297158 DOI: 10.1038/s44320-024-00047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Macrophages sense pathogens and orchestrate specific immune responses. Stimulus specificity is thought to be achieved through combinatorial and dynamical coding by signaling pathways. While NFκB dynamics are known to encode stimulus information, dynamical coding in other signaling pathways and their combinatorial coordination remain unclear. Here, we established live-cell microscopy to investigate how NFκB and p38 dynamics interface in stimulated macrophages. Information theory and machine learning revealed that p38 dynamics distinguish cytokine TNF from pathogen-associated molecular patterns and high doses from low, but contributed little to information-rich NFκB dynamics when both pathways are considered. This suggests that immune response genes benefit from decoding immune signaling dynamics or combinatorics, but not both. We found that the heterogeneity of the two pathways is surprisingly uncorrelated. Mathematical modeling revealed potential sources of uncorrelated heterogeneity in the branched pathway network topology and predicted it to drive gene expression variability. Indeed, genes dependent on both p38 and NFκB showed high scRNAseq variability and bimodality. These results identify combinatorial signaling as a mechanism to restrict NFκB-AND-p38-responsive inflammatory cytokine expression to few cells.
Collapse
Affiliation(s)
- Stefanie Luecke
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaolu Guo
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Apeksha Singh
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sarina C Lowe
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Minhao Han
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jessica Diaz
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Francisco Lopes
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Grupo de Biologia do Desenvolvimento e Sistemas Dinamicos, Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, 25240-005, Brazil
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Goodnough LH, Ambrosi TH, Steininger HM, Butler MGK, Hoover MY, Choo H, Van Rysselberghe NL, Bellino MJ, Bishop JA, Gardner MJ, Chan CKF. Cross-species comparisons reveal resistance of human skeletal stem cells to inhibition by non-steroidal anti-inflammatory drugs. Front Endocrinol (Lausanne) 2022; 13:924927. [PMID: 36093067 PMCID: PMC9454294 DOI: 10.3389/fendo.2022.924927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fracture healing is highly dependent on an early inflammatory response in which prostaglandin production by cyclo-oxygenases (COX) plays a crucial role. Current patient analgesia regimens favor opioids over Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) since the latter have been implicated in delayed fracture healing. While animal studies broadly support a deleterious role of NSAID treatment to bone-regenerative processes, data for human fracture healing remains contradictory. In this study, we prospectively isolated mouse and human skeletal stem cells (SSCs) from fractures and compared the effect of various NSAIDs on their function. We found that osteochondrogenic differentiation of COX2-expressing mouse SSCs was impaired by NSAID treatment. In contrast, human SSCs (hSSC) downregulated COX2 expression during differentiation and showed impaired osteogenic capacity if COX2 was lentivirally overexpressed. Accordingly, short- and long-term treatment of hSSCs with non-selective and selective COX2 inhibitors did not affect colony forming ability, chondrogenic, and osteogenic differentiation potential in vitro. When hSSCs were transplanted ectopically into NSG mice treated with Indomethacin, graft mineralization was unaltered compared to vehicle injected mice. Thus, our results might contribute to understanding species-specific differences in NSAID sensitivity during fracture healing and support emerging clinical data which conflicts with other earlier observations that NSAID administration for post-operative analgesia for treatment of bone fractures are unsafe for patients.
Collapse
Affiliation(s)
- L. Henry Goodnough
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Thomas H. Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Holly M. Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - M. Gohazrua K. Butler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Malachia Y. Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - HyeRan Choo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Michael J. Bellino
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Julius A. Bishop
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Michael J. Gardner
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Charles K. F. Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
4
|
Collard TJ, Fallatah HM, Greenhough A, Paraskeva C, Williams AC. BCL‑3 promotes cyclooxygenase‑2/prostaglandin E2 signalling in colorectal cancer. Int J Oncol 2020; 56:1304-1313. [PMID: 32319612 DOI: 10.3892/ijo.2020.5013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/26/2020] [Indexed: 11/05/2022] Open
Abstract
First discovered as an oncogene in leukaemia, recent reports highlight an emerging role for the proto‑oncogene BCL‑3 in solid tumours. Importantly, BCL‑3 expression is upregulated in >30% of colorectal cancer cases and is reported to be associated with a poor prognosis. However, the mechanism by which BCL‑3 regulates tumorigenesis in the large intestine is yet to be fully elucidated. In the present study, it was shown for the first time that knocking down BCL‑3 expression suppressed cyclooxygenase‑2 (COX‑2)/prostaglandin E2 (PGE2) signalling in colorectal cancer cells, a pathway known to drive several of the hallmarks of cancer. RNAi‑mediated suppression of BCL‑3 expression decreased COX‑2 expression in colorectal cancer cells both at the mRNA and protein level. This reduction in COX‑2 expression resulted in a significant and functional reduction (30‑50%) in the quantity of pro‑tumorigenic PGE2 produced by the cancer cells, as shown by enzyme linked immunoassays and medium exchange experiments. In addition, inhibition of BCL‑3 expression also significantly suppressed cytokine‑induced (TNF‑α or IL‑1β) COX‑2 expression. Taken together, the results of the present study identified a novel role for BCL‑3 in colorectal cancer and suggested that expression of BCL‑3 may be a key determinant in the COX‑2‑meditated response to inflammatory cytokines in colorectal tumour cells. These results suggest that targeting BCL‑3 to suppress PGE2 synthesis may represent an alternative or complementary approach to using non‑steroidal anti‑inflammatory drugs [(NSAIDs), which inhibit cyclooxygenase activity and suppress the conversion of arachidonic acid to prostaglandin], for prevention and/or recurrence in PGE2‑driven tumorigenesis.
Collapse
Affiliation(s)
- Tracey Jane Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hafsah Mohammed Fallatah
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alexander Greenhough
- Health and Applied Sciences, University of The West of England, Bristol BS16 1QY, United Kingdom
| | - Christos Paraskeva
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ann Caroline Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
5
|
Nagura N, Uchida K, Kenmoku T, Inoue G, Nakawaki M, Miyagi M, Takaso M. IL-1β mediates NGF and COX-2 expression through transforming growth factor-activating kinase 1 in subacromial bursa cells derived from rotator cuff tear patients. J Orthop Sci 2019; 24:925-929. [PMID: 30799163 DOI: 10.1016/j.jos.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/25/2018] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increased interleukin (IL)-1β expression in the subacromial bursa (SAB) is associated with severe pain in rotator cuff tears (RCTs). Additionally, transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is essential for cytokine-mediated cascades. TAK1 also regulates the expression of pain-associated molecules such as cycloxygenase-2 (COX-2) and nerve growth factor (NGF) in synovial fibroblasts; however, this regulation in the SAB is not fully understood. METHODS SAB samples were harvested from 18 subjects with RCTs. The expression and localization of NGF and COX-2 was determined using polymerase chain reaction (PCR) analysis and immunohistochemistry. Regulation of COX-2 and NGF by IL-1β in subacromial bursa cells (SABCs) was investigated by culturing and stimulating SABCs with vehicle control (culture medium), 50 ng/ml recombinant human IL-1β (rhIL1-β), 50 ng/ml rhIL-1β and 10 μM celecoxib (COX-2 inhibitor), or 10 μM prostaglandin E2 (PGE2) for 24 h. The effects of TAK1 inhibition on rhIL-1β stimulation were determined by culturing and treating SABCs with control, 50 ng/ml rhIL-1β, or 50 ng/ml rhIL-1β and 10 μM (5Z)-7-oxozeaenol (TAK1 inhibitor) for 24 h. NGF and COX-2 mRNA expression was monitored using quantitative PCR. RESULTS COX-2 and NGF mRNA expression was observed in all SAB specimens. Immunohistochemical analysis showed that COX-2-positive cells were in the lining and sublining layers. NGF-positive cells were observed in the sublining layer. rhIL-1β treatment significantly increased NGF and COX-2 mRNA levels compared with control cells. The COX-2 inhibitor did not suppress rhIL-1β-induced NGF expression, and PGE2 stimulation did not alter NGF mRNA expression. In contrast, the TAK1 inhibitor significantly reduced rhIL-1β-stimulated COX-2 and NGF mRNA expression. CONCLUSION IL-1β regulates the expression of NGF and COX-2, pain-related molecules in the SAB, through TAK1. Therefore, TAK1 may be one potential therapeutic target for reducing pain in patients with RCTs.
Collapse
Affiliation(s)
- Naoshige Nagura
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomonori Kenmoku
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mitsufumi Nakawaki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Minami-ku Kitasato 1-15-1, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
6
|
Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater 2019; 35:501-510. [DOI: 10.1016/j.dental.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
|
7
|
Tseng HC, Lin CC, Wang CY, Yang CC, Hsiao LD, Yang CM. Lysophosphatidylcholine induces cyclooxygenase-2-dependent IL-6 expression in human cardiac fibroblasts. Cell Mol Life Sci 2018; 75:4599-4617. [PMID: 30229288 PMCID: PMC11105650 DOI: 10.1007/s00018-018-2916-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
- Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
8
|
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, Wang X, Zhang J, Zhang X, Zheng L, Du G, Xiao W, Tang B, Miao H, Li Y. A RIPK3-PGE 2 Circuit Mediates Myeloid-Derived Suppressor Cell-Potentiated Colorectal Carcinogenesis. Cancer Res 2018; 78:5586-5599. [PMID: 30012671 DOI: 10.1158/0008-5472.can-17-3962] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is essential for mucosal repair in inflammatory bowel diseases (IBD) and colorectal cancer. However, its role in tumor immunity is unknown. Here, we report that decreased RIPK3 in colorectal cancer correlates with the accumulation of myeloid-derived suppressor cells (MDSC). Deficiency of RIPK3 boosted tumorigenesis via accumulation and immunosuppressive activity of MDSCs. Reduction of RIPK3 in MDSC and colorectal cancer cells elicited NFκB-transcribed COX-2, which catalyzed the synthesis of prostaglandin E2 (PGE2). PGE2 exacerbated the immunosuppressive activity of MDSCs and accelerated tumor growth. Moreover, PGE2 suppressed RIPK3 expression while enhancing expression of NFκB and COX-2 in MDSCs and colorectal cancer cells. Inhibition of COX-2 or PGE2 receptors reversed the immunosuppressive activity of MDSCs and dampened tumorigenesis. Patient databases also delineated the correlation of RIPK3 and COX-2 expression with colorectal cancer survival. Our findings demonstrate a novel signaling circuit by which RIPK3 and PGE2 regulate tumor immunity, providing potential ideas for immunotherapy against colorectal cancer.Significance: A novel signaling circuit involving RIPK3 and PGE2 enhances accumulation and immunosuppressive activity of MDSCs, implicating its potential as a therapeutic target in anticancer immunotherapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/19/5586/F1.large.jpg Cancer Res; 78(19); 5586-99. ©2018 AACR.
Collapse
Affiliation(s)
- Guifang Yan
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huakan Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qi Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lei Wu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Juan Lei
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiang Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiangang Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guangsheng Du
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China.
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Usman HA, Hernowo BS, Tobing MDL, Hindritiani R. The Major Role of NF-κB in the Depth of Invasion on Acral Melanoma by Decreasing CD8 + T Cells. J Pathol Transl Med 2018; 52:164-170. [PMID: 29673240 PMCID: PMC5964292 DOI: 10.4132/jptm.2018.04.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The tumor microenvironment including immune surveillance affects malignant melanoma (MM) behavior. Nuclear factor κB (NF-κB) stimulates the transcription of various genes in the nucleus and plays a role in the inflammatory process and in tumorigenesis. CD8+ T cells have cytotoxic properties important in the elimination of tumors. However, inhibitory receptors on the cell surface will bind to programmed death-ligand 1 (PD-L1), causing CD8+ T cells to lose their ability to initiate an immune response. This study analyzed the association of NF-κB and PD-L1 expression levels and CD8+ T-cell counts with depth of invasion of acral MM, which may be a predictor of aggressiveness related to an increased risk of metastasis. METHODS A retrospective cross-sectional study was conducted in the Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin Hospital using 96 cases of acral melanoma. Immunohistochemical staining was performed on paraffin blocks using anti-NF-κB, -PD-L1, and -CD8 antibodies and invasion depth was measured using dotSlide-imaging software. RESULTS The study showed significant associations between the individual expression of NF-κB and PD-L1 and CD8+ T-cell number, with MM invasion depth. NF-κB was found to be a confounding variable of CD8+ T-cell number (p < .05), but not for PD-L1 expression (p = .154). Through multivariate analysis it was found that NF-κB had the greatest association with the depth of invasion (p < .001), whereas PD-L1 was unrelated to the depth of invasion because it depends on the number of CD8+ T cells (p = .870). CONCLUSIONS NF-κB plays a major role in acral MM invasion, by decreasing the number of CD8+ T cells in acral MM.
Collapse
Affiliation(s)
- Hermin Aminah Usman
- Department of Anatomical Pathology, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Bethy S Hernowo
- Department of Anatomical Pathology, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | | | - Reti Hindritiani
- Department of Dermatovenerology, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
10
|
Cavadas MAS, Taylor CT, Cheong A. Acquisition of Temporal HIF Transcriptional Activity Using a Secreted Luciferase Assay. Methods Mol Biol 2018; 1742:37-44. [PMID: 29330788 DOI: 10.1007/978-1-4939-7665-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here we describe a simple method based on secreted luciferase driven by a hypoxia-inducible factor (HIF) response element (HRE) that allows the acquisition of dynamic and high-throughput data on HIF transcriptional activity during hypoxia and pharmacological activation of HIF. The sensitivity of the assay allows for the secreted luciferase to be consecutively sampled (as little as 1% of the total supernatant) over an extended time period, thus allowing the acquisition of time-resolved HIF transcriptional activity.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
- Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
11
|
Yu M, Guo G, Zhang X, Li L, Yang W, Bollag R, Cui Y. Fibroblastic reticular cells of the lymphoid tissues modulate T cell activation threshold during homeostasis via hyperactive cyclooxygenase-2/prostaglandin E 2 axis. Sci Rep 2017; 7:3350. [PMID: 28611431 PMCID: PMC5469856 DOI: 10.1038/s41598-017-03459-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) in the T cell zone of lymph nodes (LNs) are pivotal for T cell survival, mobility, and peripheral tolerance. Here, we demonstrate that during homeostasis, FRCs also suppress T cell activation via producing high level of prostaglandin E2 (PGE2) due to their thousands-fold higher cyclooxygenase-2 (COX-2) expression than immune cells. This hyperactive COX-2/PGE2-induced suppression is evident during antigen-specific and non-antigen-specific activations. It is implicated as suppressed TCR-signaling cascades, reduced alterations in activation markers, and inhibited cytokine production of freshly isolated T cells or T cells co-cultured with FRCs compared with those cultured without FRCs. Different from T cell dysfunction, this FRC-mediated suppression is surmountable by enhancing the strength of stimulation and is reversible by COX-2 inhibitors. Furthermore, T cells in the FRC environment where Cox-2 is genetic inactivated are more sensitive and rapidly activated upon stimulations than those in WT environment. Significantly, FRCs of human lymphoid organs manifest similar COX-2/PGE2 hyperactivity and T cell suppression. Together, this study identifies a previously unappreciated intrinsic mechanism of FRCs shared between mice and humans for suppressing T cell sensitivity to activation via PGE2, underscoring the importance of FRCs in shaping the suppressive milieu of lymphoid organs during homeostasis.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Xin Zhang
- Institution of Translational Research, Gayle & Tom Benson Cancer Center, 1N505A, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Li Li
- Institution of Translational Research, Gayle & Tom Benson Cancer Center, 1N505A, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA, 70121, USA
| | - Wei Yang
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.,Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Roni Bollag
- Tumor Tissue and Serum Biorepository, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
12
|
Kolb H, von Herrath M. Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process? Cell Metab 2017; 25:233-241. [PMID: 27839907 DOI: 10.1016/j.cmet.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation.
Collapse
Affiliation(s)
- Hubert Kolb
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Düsseldorf, Germany; Faculty of Medicine, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92014, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98191, USA.
| |
Collapse
|
13
|
Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LMA, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016; 6:31355. [PMID: 27531581 PMCID: PMC4987654 DOI: 10.1038/srep31355] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Marion Mesnieres
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Andrew C Selfridge
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Ciara E Keogh
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zsolt Fabian
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Liliane M A Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Danielle Corbett
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin P Cummins
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
14
|
Widowati W, Darsono L, Suherman J, Fauziah N, Maesaroh M, Erawijantari PP. Anti-inflammatory Effect of Mangosteen (Garcinia mangostanaL.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.20307/nps.2016.22.3.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Lusiana Darsono
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Jo Suherman
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Nurul Fauziah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, West Java, Indonesia
| | - Maesaroh Maesaroh
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, West Java, Indonesia
| | - Pande Putu Erawijantari
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, West Java, Indonesia
| |
Collapse
|
15
|
REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep 2015; 5:17851. [PMID: 26647819 PMCID: PMC4673454 DOI: 10.1038/srep17851] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1α expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1α mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1α protein response and the suppression of HIF-1α mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1α promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1α mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1α- (but not HIF-2α-) dependent manner. Finally, REST promotes the resolution of HIF-1α protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1α in prolonged hypoxia, thus contributing to the resolution of the HIF-1α response.
Collapse
|
16
|
Giurdanella G, Anfuso CD, Olivieri M, Lupo G, Caporarello N, Eandi CM, Drago F, Bucolo C, Salomone S. Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway. Biochem Pharmacol 2015; 96:278-87. [PMID: 26056075 DOI: 10.1016/j.bcp.2015.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022]
|