1
|
Dunlap C, Zhao N, Ertl LS, Schall TJ, Sullivan KMC. C5aR expression in kidney tubules, macrophages and fibrosis. J Histotechnol 2025; 48:27-45. [PMID: 39607065 DOI: 10.1080/01478885.2024.2430041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The anaphylatoxin C5a and its receptor C5aR (CD88) are complement pathway effectors implicated in renal diseases, including ANCA-associated vasculitis. We investigated the kidney expression of C5aR and a second C5a receptor C5L2 by using immunohistochemistry, in situ hybridization, and spatial gene expression on formalin-fixed, paraffin-embedded human and mouse kidney. C5aR was detected on interstitial macrophages and in multiple tubular regions, including distal and proximal; C5L2 had a similar expression pattern. The 5/6 nephrectomy model of chronic kidney injury exhibited increased C5aR expression by infiltrating cells within the fibrotic regions. C5aR expression was confirmed on human leukocytes and in vitro differentiated macrophages by flow cytometry, and treatment with C5a induced the expression of chemokines and remodeling factors by macrophages, including CCL-3/-4/-7, -20, MMP-1/-3/-8/-12, and F3, and promoted leukocyte survival. C5a activity was C5aR dependent, as demonstrated by reversal with the C5aR inhibitor avacopan. Collectively, these results suggest that myeloid C5aR may induce excessive inflammation in the kidney via immune cell recruitment, extracellular matrix destruction, and remodeling, resulting in fibrotic tissue deposition.
Collapse
Affiliation(s)
- Carolyn Dunlap
- Department of Biology, ChemoCentryx Inc., San Carlos, CA, USA
| | - Niky Zhao
- Department of Biology, ChemoCentryx Inc., San Carlos, CA, USA
| | - Linda S Ertl
- Department of Biology, ChemoCentryx Inc., San Carlos, CA, USA
| | - Thomas J Schall
- Department of Biology, ChemoCentryx Inc., San Carlos, CA, USA
| | | |
Collapse
|
2
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Liu J, Wei X, Hu J, Tan X, Kang X, Gao L, Li N, Shi X, Yuan M, Hu W, Liu M. Different concentrations of C5a affect human dental pulp mesenchymal stem cells differentiation. BMC Oral Health 2021; 21:470. [PMID: 34560867 PMCID: PMC8464103 DOI: 10.1186/s12903-021-01833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background During the process of deep decay, when decay approaches the pulp, an immune response is triggered inside the pulp, which activates the complement cascade. The effect of complement component 5a (C5a) on the differentiation of dental pulp mesenchymal stem cells (DPSCs) is related to dentin reparation. The aim of the present study was to stimulate DPSCs with different concentrations of C5a and evaluate the differentiation of odontoblasts using dentin sialoprotein (DSP). Methods DPSCs were divided into the following six groups: (i) Control; (ii) DPSCs treated with 50 ng/ml C5a; (iii) DPSCs treated with 100 ng/ml C5a; (iv) DPSCs treated with 200 ng/ml C5a; (v) DPSCs treated with 300 ng/ml C5a; and (vi) DPSCs treated with 400 ng/ml C5a. Flow cytometry and multilineage differentiation potential were used to identify DPSCs. Mineralization induction, Real-time PCR and Western blot were conducted to evaluate the differentiation of odontoblast in the 6 groups. Result DPSCs can express mesenchymal stem cell markers, including CD105, CD90, CD73 and, a less common marker, mesenchymal stromal cell antigen-1. In addition, DPSCs can differentiate into adipocytes, neurocytes, chondrocytes and odontoblasts. All six groups formed mineralized nodules after 28 days of culture. Reverse transcription-quantitative PCR and western blotting indicated that the high concentration C5a groups expressed higher DSP levels and promoted DPSC differentiation, whereas the low concentration C5a groups displayed an inhibitory effect. Conclusion In this study, the increasing concentration of C5a, which accompanies the immune process in the dental pulp, has demonstrated an enhancing effect on odontoblast differentiation at higher C5a concentrations in vitro.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xiaoling Wei
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Junlong Hu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaohan Tan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xiaocui Kang
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Ning Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Xin Shi
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Mingyue Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University and The Key Laboratory of Myocardial Ischemia Ministry of Education, No. 246, Xuefu Road, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Yiu WH, Li RX, Wong DWL, Wu HJ, Chan KW, Chan LYY, Leung JCK, Lai KN, Sacks SH, Zhou W, Tang SCW. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol Dial Transplant 2019; 33:1323-1332. [PMID: 29294056 DOI: 10.1093/ndt/gfx336] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Background Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis. Methods Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components. Renal function and tubulointerstitial injury were compared between db/m mice, vehicle-treated mice and C5a inhibitor-treated db/db mice. A cell culture model of tubule epithelial cells (HK-2) was used to demonstrate the effect of C5a on the renal fibrotic pathway. Results Increased levels of C5a, but not of its receptor C5aR, were detected in renal tubules from patients with DN. The intensity of C5a staining was positively correlated with the progression of the disease. In db/db mice, administration of a novel C5a inhibitor, NOX-D21, reduced the serum triglyceride level and attenuated the upregulation of diacylglycerolacyltransferase-1 and sterol-regulatory element binding protein-1 expression and lipid accumulation in diabetic kidney. NOX-D21-treated diabetic mice also had reduced serum blood urea nitrogen and creatinine levels with less glomerular and tubulointerstitial damage. Renal transforming growth factor beta 1 (TGF-β1), fibronectin and collagen type I expressions were reduced by NOX-D21. In HK-2 cells, C5a stimulated TGF-β production through the activation of the PI3K/Akt signalling pathway. Conclusions Blockade of C5a signalling by NOX-D21 moderates altered lipid metabolism in diabetes and improved tubulointerstitial fibrosis by reduction of lipid accumulation and TGF-β-driven fibrosis in diabetic kidney.
Collapse
Affiliation(s)
- Wai Han Yiu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Rui Xi Li
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Dickson W L Wong
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Hao Jia Wu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
6
|
Tsai IJ, Lin WC, Yang YH, Tseng YL, Lin YH, Chou CH, Tsau YK. High Concentration of C5a-Induced Mitochondria-Dependent Apoptosis in Murine Kidney Endothelial Cells. Int J Mol Sci 2019; 20:ijms20184465. [PMID: 31510052 PMCID: PMC6770645 DOI: 10.3390/ijms20184465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with a relapse of idiopathic nephrotic syndrome have significantly increased levels of serum complement component 5a (C5a), and proteinuria has been noted in mice treated with C5a via changes in permeability of kidney endothelial cells (KECs) in established animal models. However, the apoptosis of KECs treated with high concentrations of C5a has also been observed. As mitochondrial damage is known to be important in cell apoptosis, the aim of this study was to examine the association between C5a-induced mouse KEC apoptosis and mitochondrial damage. Mouse KECs were isolated and treated with different concentrations of C5a. Cell viability assays showed that a high-concentration mouse recombinant protein C5a (rmC5a) treatment reduced mouse KEC growth. Cell cycle phase analysis, including apoptosis (sub-G1 phase) showed an increased percentage of the subG1 phase with a high-concentration rmC5a treatment. Cytochrome c and caspase 3/9 activities were significantly induced in the mouse KECs after a high-dose rmC5a (50 ng/mL) treatment, and this was rescued by pretreatment with the C5a receptor (C5aR) inhibitor (W-54011) and N-acetylcysteine (NAC). Reactive oxygen species (ROS) formation was detected in C5a-treated mouse KECs; however, W-54011 or NAC pretreatment inhibited high-dose rmC5a-induced ROS formation and also reduced cytochrome c release, apoptotic cell formation, and apoptotic DNA fragmentation. These factors determined the apoptosis of mouse KECs treated with high-dose C5a through C5aR and subsequently led to apoptosis via ROS regeneration and cytochrome c release. The results showed that high concentrations of C5a induced mouse KEC apoptosis via a C5aR/ROS/mitochondria-dependent pathway. These findings may shed light on the potential mechanism of glomerular sclerosis, a process in idiopathic nephrotic syndrome causing renal function impairment.
Collapse
Affiliation(s)
- I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yu-Lin Tseng
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Yong-Kwei Tsau
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|