1
|
Canet G, Zussy C, Vitalis M, Morin F, Chevallier N, Hunt H, Claeysen S, Blaquière M, Marchi N, Planel E, Meijer OC, Desrumaux C, Givalois L. Advancing Alzheimer's disease pharmacotherapy: efficacy of glucocorticoid modulation with dazucorilant (CORT113176) in preclinical mouse models. Br J Pharmacol 2025; 182:1930-1956. [PMID: 39891319 DOI: 10.1111/bph.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Exposure to chronic stress and high levels of glucocorticoid hormones in adulthood has been associated with cognitive deficits and increased risk of Alzheimer's disease (AD). Dazucorilant has recently emerged as a selective glucocorticoid receptor (NR3C1) modulator, exhibiting efficacy in counteracting amyloid-β toxicity in an acute model of AD. We aim to assess the therapeutic potential of dazucorilant in reversing amyloid and tau pathologies through the inhibition of glucocorticoid receptor pathological activity, and providing additional evidence for its consideration in AD treatment. EXPERIMENTAL APPROACH The efficacy of dazucorilant was evaluated in two transgenic mouse models of amyloid pathology. The slowly progressing J20 and the aggressively pathological 5xFAD mice. Behavioural analysis was conducted to evaluate welfare, cognitive performances and anxiety levels. The activity of the glucocorticoid receptor system, neuroinflammation, amyloid burden and tau phosphorylation were examined in hippocampi. KEY RESULTS In both AD models, chronic treatment with dazucorilant improved working and long-term spatial memories along with the inhibition of glucocorticoid receptor-dependent pathogenic processes and the normalization of plasma glucocorticoid levels. Dazucorilant treatment also resulted in a reduction in tau hyperphosphorylation and amyloid production and aggregation. Additionally, dazucorilant seemed to mediate a specific re-localization of activated glial cells onto amyloid plaques in J20 mice, suggesting a restoration of physiological neuroinflammatory processes. CONCLUSION AND IMPLICATIONS Dazucorilant exhibited sustained disease-modifying effects in two AD models. Given that this compound has demonstrated safety and tolerability in human subjects, our results provide pre-clinical support for conducting clinical trials to evaluate its potential in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Charleine Zussy
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Françoise Morin
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | | | - Nicola Marchi
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Planel
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- LIPSTIC LabEx, Dijon, France
| | - Laurent Givalois
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
- CNRS, Paris, France
| |
Collapse
|
2
|
Vela Navarro N, De Nadai Mundim G, Cudic M. Implications of Mucin-Type O-Glycosylation in Alzheimer's Disease. Molecules 2025; 30:1895. [PMID: 40363702 PMCID: PMC12073284 DOI: 10.3390/molecules30091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which are intracellular aggregates of tau protein. Recent evidence indicates that disruptions in metal homeostasis and impaired immune recognition of these aggregates trigger neuroinflammation, ultimately driving disease progression. Therefore, a more comprehensive approach is needed to understand the underlying causes of the disease. Patients with AD present abnormal glycan profiles, and most known AD-related molecules are either modified with glycans or involved in glycan regulation. A deeper understanding of how O-glycosylation influences the balance between amyloid-beta peptide production and clearance, as well as microglia's pro- and anti-inflammatory responses, is crucial for deciphering the early pathogenic events of AD. This review aims to provide a comprehensive summary of the extensive research conducted on the role of mucin-type O-glycosylation in the pathogenesis of AD, discussing its role in disease onset and immune recognition.
Collapse
Affiliation(s)
| | | | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA; (N.V.N.); (G.D.N.M.)
| |
Collapse
|
3
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Pilat D, Paumier JM, Louis L, Manrique C, García-González L, Stephan D, Bernard A, Pardossi-Piquard R, Checler F, Khrestchatisky M, Di Pasquale E, Baranger K, Rivera S. Suppression of MT5-MMP Reveals Early Modulation of Alzheimer's Pathogenic Events in Primary Neuronal Cultures of 5xFAD Mice. Biomolecules 2024; 14:1645. [PMID: 39766352 PMCID: PMC11674474 DOI: 10.3390/biom14121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer's disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21-24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP-/- (MT5-/-), 5xFAD (Tg), and 5xFADxMT5-MMP-/- (TgMT5-/-) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors. We assessed neuroinflammation, APP metabolism, synaptic integrity, and electrophysiological properties using biochemical, imaging and whole-cell patch-clamp approaches. The absence of MT5-MMP impaired the IL-1β-mediated induction of inflammatory genes in TgMT5-/- cells compared to Tg cells. Furthermore, the reduced density of dendritic spines in Tg neurons was also prevented in TgMT5-/- neurons. IL-1β caused a strong decrease in the dendritic spine density of WT neurons, which was prevented in MT5-/- neurons. However, the latter exhibited fewer spines than the WT under untreated conditions. The spontaneous rhythmic firing frequency of the network was increased in MT5-/- neurons, but not in TgMT5-/- neurons, and IL-1β increased this parameter only in Tg neurons. In terms of induced somatic excitability, Tg and TgMT5-/- neurons exhibited lower excitability than WT and MT5-/-, while IL-1β impaired excitability only in non-AD backgrounds. The synaptic strength of miniature global synaptic currents was equivalent in all genotypes but increased dramatically in WT and MT5-/- neurons after IL-1β. MT5-MMP deficiency decreased endogenous and overexpressed C83 and C99 levels but did not affect Aβ levels. C99 appears to be cleared by several pathways, including γ-secretase, the autophagolysosomal system, and also α-secretase, via its conversion to C83. In summary, this study confirms that MT5-MMP is a pivotal factor affecting not only neuroinflammation and APP metabolism but also synaptogenesis and synaptic activity at early stages of the pathology, and reinforces the relevance of targeting MT5-MMP to fight AD.
Collapse
Affiliation(s)
- Dominika Pilat
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Jean-Michel Paumier
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Laurence Louis
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Christine Manrique
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Laura García-González
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Delphine Stephan
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Anne Bernard
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | | | - Frédéric Checler
- IPMC, UMR 7275 CNRS-UCA, INSERM U1323, Labex DistAlz, 06560 Valbonne, France; (R.P.-P.); (F.C.)
| | - Michel Khrestchatisky
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Eric Di Pasquale
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Kévin Baranger
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| | - Santiago Rivera
- Inst Neurophysiopathol, CNRS, INP, Aix-Marseille Univ, 13005 Marseille, France; (D.P.); (J.-M.P.); (L.L.); (C.M.); (L.G.-G.); (D.S.); (A.B.); (M.K.); (E.D.P.)
| |
Collapse
|
5
|
Penalva YCM, Paschkowsky S, Recinto SJ, Duchesne A, Hammond T, Spiegler P, Jansen G, Levet C, Charron F, Freeman M, McKinney RA, Trempe JF, Munter LM. Eta-secretase-like processing of the amyloid precursor protein (APP) by the rhomboid protease RHBDL4. J Biol Chem 2024; 300:107541. [PMID: 38992438 PMCID: PMC11345391 DOI: 10.1016/j.jbc.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The amyloid precursor protein (APP) is a key protein in Alzheimer's disease synthesized in the endoplasmic reticulum (ER) and translocated to the plasma membrane where it undergoes proteolytic cleavages by several proteases. Conversely, to other known proteases, we previously elucidated rhomboid protease RHBDL4 as a novel APP processing enzyme where several cleavages likely occur already in the ER. Interestingly, the pattern of RHBDL4-derived large APP C-terminal fragments resembles those generated by the η-secretase or MT5-MMP, which was described to generate so-called Aη fragments. The similarity in large APP C-terminal fragments between both proteases raised the question of whether RHBDL4 may contribute to η-secretase activity and Aη-like fragments. Here, we identified two cleavage sites of RHBDL4 in APP by mass spectrometry, which, intriguingly, lie in close proximity to the MT5-MMP cleavage sites. Indeed, we observed that RHBDL4 generates Aη-like fragments in vitro without contributions of α-, β-, or γ-secretases. Such Aη-like fragments are likely generated in the ER since RHBDL4-derived APP-C-terminal fragments do not reach the cell surface. Inherited, familial APP mutations appear to not affect this processing pathway. In RHBDL4 knockout mice, we observed increased cerebral full-length APP in comparison to wild type (WT) in support of RHBDL4 being a physiologically relevant protease for APP. Furthermore, we found secreted Aη fragments in dissociated mixed cortical cultures from WT mice, however significantly fewer Aη fragments in RHBDL4 knockout cultures. Our data underscores that RHBDL4 contributes to the η-secretease-like processing of APP and that RHBDL4 is a physiologically relevant protease for APP.
Collapse
Affiliation(s)
- Ylauna Christine Mégane Penalva
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Sherilyn Junelle Recinto
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Anthony Duchesne
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Thomas Hammond
- School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Pascal Spiegler
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Gregor Jansen
- School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Clemence Levet
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, Québec, Canada
| | - Lisa Marie Munter
- Department of Pharmacology and Therapeutics, McGill University, Bellini Life Sciences, Complex, Montreal, Quebec, Canada; School of Biomedical Sciences (SBMS), McGill University, Bellini Life Sciences Complex, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Wang H, Lakshmana MK, Fields GB. Identification of binding partners that facilitate membrane-type 5 matrix metalloproteinase (MT5-MMP) processing of amyloid precursor protein. J Cell Physiol 2024; 239:e31218. [PMID: 38345408 DOI: 10.1002/jcp.31218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 06/14/2024]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular deposits of amyloid beta (Aβ) peptide. In addition to Aβ as the core component of the amyloid plaque, the amyloid precursor protein (APP) processing fragment Aβ was also found accumulated around the plaque. The APPη pathway, mainly mediated by membrane-type 5 matrix metalloproteinase (MT5-MMP), represents an important factor in AD pathogenesis. The proamyloidogenic features of MT5-MMP could result from interactions with APP when trafficking between organelles, so determination of the location within the cell of APPη cleavage and interacting proteins of MT5-MMP affecting this process will be of priority in understanding the role of MT5-MMP in AD. In the present study, MT5-MMP was found to be located in the nucleus, cytosol, and cytosolic subcellular granules of CHO cells that stably expressed wild-type human APP751. MT5-MMP fusion proteins were constructed that could localize enzyme production in the Golgi apparatus, endosome, ER, mitochondria, or plasma membrane. The fusion proteins significantly increased sAPPη when directed to the endosome, Golgi apparatus, plasma membrane, or mitochondria. Since the C-terminal region of MT5-MMP is responsible for its intracellular location and trafficking, this domain was used as the bait in a yeast two-hybrid screen to identify MT5-MMP protein partners in a human brain cDNA library. Identified binding partners included N4BP2L1, TMX3, EIG121, bridging Integrator 1 (BIN1), RUFY4, HTRA1, and TMEM199. The binding of N4BP2L1, EIG121, BIN1, or TMX3 to MT5-MMP resulted in the most significant increase in sAPPη production. Thus, the action of MT5-MMP on APP occurs in multiple locations within the cell and is facilitated by site-specific binding partners.
Collapse
Affiliation(s)
- Hongjie Wang
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Florida International University, Miami, Florida, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
7
|
Xu M, Li J, Xia L, Du Y, Wu B, Shi X, Tian N, Pang Y, Yi L, Chen M, Song W, Dong Z. PCSK6 exacerbates Alzheimer's disease pathogenesis by promoting MT5-MMP maturation. Exp Neurol 2024; 374:114688. [PMID: 38216110 DOI: 10.1016/j.expneurol.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a calcium-dependent serine proteinase that regulates the proteolytic activity of various precursor proteins and facilitates protein maturation. Dysregulation of PCSK6 expression or function has been implicated in several pathological processes including nervous system diseases. However, whether and how PCSK6 is involved in the pathogenesis of Alzheimer's disease (AD) remains unclear. In this study, we reported that the expression of PCSK6 was significantly increased in the brain tissues of postmortem AD patients and APP23/PS45 transgenic AD model mice, as well as N2AAPP cells. Genetic knockdown of PCSK6 reduced amyloidogenic processing of APP in N2AAPP cells by suppressing the activation of membrane-type 5-matrix metalloproteinase (MT5-MMP), referred to as η-secretase. We further found that PCSK6 cleaved and activated MT5-MMP by recognizing the RRRNKR sequence in its N-terminal propeptide domain in N2A cells. The mutation or knockout of this cleavage motif prevented PCSK6 from interacting with MT5-MMP and performing cleavage. Importantly, genetic knockdown of PCSK6 with adeno-associated virus (AAV) reduced Aβ production and ameliorated hippocampal long-term potentiation (LTP) and long-term spatial learning and memory in APP23/PS45 transgenic mice. Taken together, these results demonstrate that genetic knockdown of PCSK6 effectively alleviate AD-related pathology and cognitive impairments by inactivating MT5-MMP, highlighting its potential as a novel therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Mingliang Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Na Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mulan Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
8
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Patil SA, Raufman JP. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front Oncol 2024; 13:1325095. [PMID: 38288108 PMCID: PMC10824561 DOI: 10.3389/fonc.2023.1325095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality. Therapeutic approaches for advanced CRC are limited and rarely provide long-term benefit. Enzymes comprising the 24-member matrix metalloproteinase (MMP) family of zinc- and calcium-dependent endopeptidases are key players in extracellular matrix degradation, a requirement for colon tumor expansion, invasion, and metastasis; hence, MMPs are an important research focus. Compared to sporadic CRC, less is known regarding the molecular mechanisms and the role of MMPs in the development and progression of colitis-associated cancer (CAC) - CRC on a background of chronic inflammatory bowel disease (IBD) - primarily ulcerative colitis and Crohn's disease. Hence, the potential of MMPs as biomarkers and therapeutic targets for CAC is uncertain. Our goal was to review data regarding the role of MMPs in the development and progression of CAC. We sought to identify promising prognostic and therapeutic opportunities and novel lines of investigation. A key observation is that since MMPs may be more active in early phases of CAC, using MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets for adjuvant therapy in those with advanced stage primary CAC rather than overt metastases may yield more favorable outcomes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A. Patil
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Medical Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
10
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Sziraki A, Lu Z, Lee J, Banyai G, Anderson S, Abdulraouf A, Metzner E, Liao A, Banfelder J, Epstein A, Schaefer C, Xu Z, Zhang Z, Gan L, Nelson PT, Zhou W, Cao J. A global view of aging and Alzheimer's pathogenesis-associated cell population dynamics and molecular signatures in human and mouse brains. Nat Genet 2023; 55:2104-2116. [PMID: 38036784 PMCID: PMC10703679 DOI: 10.1038/s41588-023-01572-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Conventional methods fall short in unraveling the dynamics of rare cell types related to aging and diseases. Here we introduce EasySci, an advanced single-cell combinatorial indexing strategy for exploring age-dependent cellular dynamics in the mammalian brain. Profiling approximately 1.5 million single-cell transcriptomes and 400,000 chromatin accessibility profiles across diverse mouse brains, we identified over 300 cell subtypes, uncovering their molecular characteristics and spatial locations. This comprehensive view elucidates rare cell types expanded or depleted upon aging. We also investigated cell-type-specific responses to genetic alterations linked to Alzheimer's disease, identifying associated rare cell types. Additionally, by profiling 118,240 human brain single-cell transcriptomes, we discerned cell- and region-specific transcriptomic changes tied to Alzheimer's pathogenesis. In conclusion, this research offers a valuable resource for probing cell-type-specific dynamics in both normal and pathological aging.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Gabor Banyai
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Eli Metzner
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Andrew Liao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Jason Banfelder
- High Performance Computing Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexander Epstein
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
13
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
14
|
Afram E, Lauritzen I, Bourgeois A, El Manaa W, Duplan E, Chami M, Valverde A, Charlotte B, Pardossi-Piquard R, Checler F. The η-secretase-derived APP fragment ηCTF is localized in Golgi, endosomes and extracellular vesicles and contributes to Aβ production. Cell Mol Life Sci 2023; 80:97. [PMID: 36930302 PMCID: PMC10023608 DOI: 10.1007/s00018-023-04737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
The processing of the amyloid precursor protein (APP) is one of the key events contributing to Alzheimer's disease (AD) etiology. Canonical cleavages by β- and γ-secretases lead to Aβ production which accumulate in amyloid plaques. Recently, the matrix metalloprotease MT5-MMP, referred to as η-secretase, has been identified as a novel APP cleaving enzyme producing a transmembrane fragment, ηCTF that undergoes subsequent cleavages by α- and β-secretases yielding the Aηα and Aηβ peptides, respectively. The functions and contributions of ηCTF and its related fragments to AD pathology are poorly understood. In this study, we designed a novel immunological probe referred to as ηCTF-NTer antibody that specifically interacts with the N-terminal part of ηCTF targeting ηCTF, Aηα, Aηβ but not C99, C83 and Aβ. We examined the fate and localization of ηCTF fragment in various cell models and in mice. We found that overexpressed ηCTF undergoes degradation in the proteasomal and autophagic pathways and accumulates mainly in the Golgi and in endosomes. Moreover, we observed the presence of ηCTF in small extracellular vesicles purified from neuroblastoma cells or from mouse brains expressing ηCTF. Importantly, the expression of ηCTF in fibroblasts devoid on APP leads to Aβ production demonstrating its contribution to the amyloidogenic pathway. Finally, we observed an ηCTF-like immunoreactivity around amyloid plaques and an age-dependent accumulation of ηCTF in the triple-transgenic mouse AD model. Thus, our study suggests that the ηCTF fragment likely contributes to AD pathology by its exosomal spreading and involvement in Aβ production.
Collapse
Affiliation(s)
- Elissa Afram
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Inger Lauritzen
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Alexandre Bourgeois
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Wejdane El Manaa
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Audrey Valverde
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
- Fonds de Dotation CLINATEC, 17 rue des Martyrs, Bat 43, 38054, Grenoble, France
| | - Bauer Charlotte
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| | - Frederic Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
15
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
16
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
17
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
18
|
Migliorati M, Manrique C, Rahrah M, Escoffier G, El Ahmadi A, Girard SD, Khrestchatisky M, Rivera S, Baranger K, Roman FS. The Helico Maze Detects Early Impairment of Reference Memory at Three Months of Age in the 5XFAD Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:251-262. [DOI: 10.3233/jad-220281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The 5XFAD model of Alzheimer’s disease (AD) bearing five familial mutations of Alzheimer’s disease on human APP and PSEN1 transgenes shows deposits of amyloid-β peptide (Aβ) as early as 2 months, while deficits in long-term memory can be detected at 4 months using the highly sensitive olfactory-dependent tests that we previously reported. Objective: Given that detecting early dysfunctions in AD prior to overt pathology is of major interest in the field, we sought to detect memory deficits at earlier stages of the disease in 3-month-old male 5XFAD mice. Methods: To this end, we used the Helico Maze, a behavioral task that was recently developed and patented. This device allows deeper analysis of learning and subcategories of hippocampal-dependent long-term memory using olfactory cues. Results: Eight male 5XFAD and 6 male wild-type (WT: C57Bl6 background) mice of 3 months of age were tested in the Helico Maze. The results demonstrated, for the first time, a starting deficit of pure reference long-term memory. Interestingly, memory impairment was clearly correlated with Aβ deposits in the hippocampus. While we also found significant differences in astrogliosis between 5XFAD and WT mice, this was not correlated with memory abilities. Conclusion: Our results underline the efficiency of this new olfactory-dependent behavioral task, which is easy to use, with a small cohort of mice. Using the Helico Maze may open new avenues to validate the efficacy of treatments that target early events related to the amyloid-dependent pathway of the disease and AD progression.
Collapse
Affiliation(s)
- Martine Migliorati
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Christine Manrique
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Melinda Rahrah
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Guy Escoffier
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | | | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - François S. Roman
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
19
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
20
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
21
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
22
|
Pilat D, Paumier JM, García-González L, Louis L, Stephan D, Manrique C, Khrestchatisky M, Di Pasquale E, Baranger K, Rivera S. MT5-MMP promotes neuroinflammation, neuronal excitability and Aβ production in primary neuron/astrocyte cultures from the 5xFAD mouse model of Alzheimer’s disease. J Neuroinflammation 2022; 19:65. [PMID: 35277173 PMCID: PMC8915472 DOI: 10.1186/s12974-022-02407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1β)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1β tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation.
Methods
To test this hypothesis, we used 11–14 day in vitro primary cortical cultures from wild type, MT5-MMP−/−, 5xFAD and 5xFAD/MT5-MMP−/− mice, and evaluated the impact of MT5-MMP deficiency and IL-1β treatment for 24 h, by performing whole cell patch-clamp recordings, RT-qPCR, western blot, gel zymography, ELISA, immunocytochemistry and adeno-associated virus (AAV)-mediated transduction.
Results
5xFAD cells showed higher levels of MT5-MMP than wild type, concomitant with higher basal levels of inflammatory mediators. Moreover, MT5-MMP-deficient cultures had strong decrease of the inflammatory response to IL-1β, as well as decreased stability of recombinant IL-1β. The levels of amyloid beta peptide (Aβ) were similar in 5xFAD and wild-type cultures, and IL-1β treatment did not affect Aβ levels. Instead, the absence of MT5-MMP significantly reduced Aβ by more than 40% while sparing APP metabolism, suggesting altogether no functional crosstalk between IL-1β and APP/Aβ, as well as independent control of their levels by MT5-MMP. The lack of MT5-MMP strongly downregulated the AAV-induced neuronal accumulation of the C-terminal APP fragment, C99, and subsequently that of Aβ. Finally, MT5-MMP deficiency prevented basal hyperexcitability observed in 5xFAD neurons, but not hyperexcitability induced by IL-1β treatment.
Conclusions
Neuroinflammation and hyperexcitability precede Aβ accumulation in developing neural cells with nascent expression of AD transgenes. MT5-MMP deletion is able to tune down basal neuronal inflammation and hyperexcitability, as well as APP/Aβ metabolism. In addition, MT5-MMP deficiency prevents IL-1β-mediated effects in brain cells, except hyperexcitability. Overall, this work reinforces the idea that MT5-MMP is at the crossroads of pathogenic AD pathways that are already incipiently activated in developing neural cells, and that targeting MT5-MMP opens interesting therapeutic prospects.
Collapse
|
23
|
Checler F, Valverde A. Aminopeptidase A and dipeptidyl peptidase 4: a pathogenic duo in Alzheimer's disease? Neural Regen Res 2022; 17:2215-2217. [PMID: 35259836 PMCID: PMC9083140 DOI: 10.4103/1673-5374.335818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labelled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| | - Audrey Valverde
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labelled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| |
Collapse
|
24
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
LI Z, LI J, LI M, CAI A, LIU H, MIAO G, SHAN T, MA J. Research of therapeutic basis of Astragalus P.E intervention based on the content of matrix metalloproteinase (MMP) protein in the serum of patients with Alzheimer's disease (AD). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Hong LIU
- Hebei Engineering University, China
| | | | | | | |
Collapse
|
27
|
Secretases Related to Amyloid Precursor Protein Processing. MEMBRANES 2021; 11:membranes11120983. [PMID: 34940484 PMCID: PMC8706128 DOI: 10.3390/membranes11120983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease whose prevalence increases with age. An increasing number of findings suggest that abnormalities in the metabolism of amyloid precursor protein (APP), a single transmembrane aspartic protein that is cleaved by β- and γ-secretases to produce β-amyloid protein (Aβ), are a major pathological feature of AD. In recent years, a large number of studies have been conducted on the APP processing pathways and the role of secretion. This paper provides a summary of the involvement of secretases in the processing of APP and the potential drug targets that could provide new directions for AD therapy.
Collapse
|
28
|
Pagnon de la Vega M, Giedraitis V, Michno W, Kilander L, Güner G, Zielinski M, Löwenmark M, Brundin R, Danfors T, Söderberg L, Alafuzoff I, Nilsson LNG, Erlandsson A, Willbold D, Müller SA, Schröder GF, Hanrieder J, Lichtenthaler SF, Lannfelt L, Sehlin D, Ingelsson M. The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation. Sci Transl Med 2021; 13:13/606/eabc6184. [PMID: 34380771 DOI: 10.1126/scitranslmed.abc6184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 02/05/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid β (Aβ). Here, we describe the Uppsala APP mutation (Δ690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) Aβ42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing β-secretase cleavage and affecting α-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated Aβ, AβUpp1-42Δ19-24, accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 43180 Gothenburg, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany
| | - Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Radiology, Uppsala University, 75185 Uppsala, Sweden
| | | | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Lars N G Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, 0316 Oslo, Norway
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 43180 Gothenburg, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) and Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
29
|
García-González L, Paumier JM, Louis L, Pilat D, Bernard A, Stephan D, Jullien N, Checler F, Nivet E, Khrestchatisky M, Baranger K, Rivera S. MT5-MMP controls APP and β-CTF/C99 metabolism through proteolytic-dependent and -independent mechanisms relevant for Alzheimer's disease. FASEB J 2021; 35:e21727. [PMID: 34117802 DOI: 10.1096/fj.202100593r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aβ) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95). Catalytically inactive MT5-MMP variants increased the levels of Aβ and promoted APP/C99 sorting in the endolysosomal system, likely through interactions of the proteinase C-terminal portion with C99. Most interestingly, the deletion of the C-terminal domain of MT5-MMP caused a strong degradation of C99 by the proteasome and prevented Aβ accumulation. These discoveries reveal new control of MT5-MMP over APP by proteolytic and non-proteolytic mechanisms driven by the C-terminal domains of the proteinase. The targeting of these non-catalytic domains of MT5-MMP could, therefore, provide new insights into the therapeutic regulation of APP-related pathology in AD.
Collapse
Affiliation(s)
| | | | - Laurence Louis
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Anne Bernard
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Delphine Stephan
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Nicolas Jullien
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Emmanuel Nivet
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
30
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
31
|
Mensch M, Dunot J, Yishan SM, Harris SS, Blistein A, Avdiu A, Pousinha PA, Giudici C, Busche MA, Jedlicka P, Willem M, Marie H. Aη-α and Aη-β peptides impair LTP ex vivo within the low nanomolar range and impact neuronal activity in vivo. Alzheimers Res Ther 2021; 13:125. [PMID: 34238366 PMCID: PMC8268417 DOI: 10.1186/s13195-021-00860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Amyloid precursor protein (APP) processing is central to Alzheimer's disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη-α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. METHODS With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. RESULTS We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη-α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη-α in vivo. CONCLUSIONS These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.
Collapse
Affiliation(s)
- Maria Mensch
- Université Côte d'Azur, CNRS, IPMC, 660 Route des Lucioles, 06560, Valbonne, France
| | - Jade Dunot
- Université Côte d'Azur, CNRS, IPMC, 660 Route des Lucioles, 06560, Valbonne, France
| | - Sandy M Yishan
- Université Côte d'Azur, CNRS, IPMC, 660 Route des Lucioles, 06560, Valbonne, France
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Samuel S Harris
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
| | - Aline Blistein
- Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany
| | - Alban Avdiu
- Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, IPMC, 660 Route des Lucioles, 06560, Valbonne, France
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE-Munich), 81377, Munich, Germany
| | - Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Institute of Neuroscience, Technische Universität München, 80802, Munich, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Hélène Marie
- Université Côte d'Azur, CNRS, IPMC, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
32
|
Arnst N, Belio-Mairal P, García-González L, Arnaud L, Greetham L, Nivet E, Rivera S, Dityatev A. Deficiency in MT5-MMP Supports Branching of Human iPSCs-Derived Neurons and Reduces Expression of GLAST/S100 in iPSCs-Derived Astrocytes. Cells 2021; 10:cells10071705. [PMID: 34359875 PMCID: PMC8307207 DOI: 10.3390/cells10071705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
For some time, it has been accepted that the β-site APP cleaving enzyme 1 (BACE1) and the γ-secretase are two main players in the amyloidogenic processing of the β-amyloid precursor protein (APP). Recently, the membrane-type 5 matrix metalloproteinase (MT5-MMP/MMP-24), mainly expressed in the nervous system, has been highlighted as a new key player in APP-processing, able to stimulate amyloidogenesis and also to generate a neurotoxic APP derivative. In addition, the loss of MT5-MMP has been demonstrated to abrogate pathological hallmarks in a mouse model of Alzheimer’s disease (AD), thus shedding light on MT5-MMP as an attractive new therapeutic target. However, a more comprehensive analysis of the role of MT5-MMP is necessary to evaluate how its targeting affects neurons and glia in pathological and physiological situations. In this study, leveraging on CRISPR-Cas9 genome editing strategy, we established cultures of human-induced pluripotent stem cells (hiPSC)-derived neurons and astrocytes to investigate the impact of MT5-MMP deficiency on their phenotypes. We found that MT5-MMP-deficient neurons exhibited an increased number of primary and secondary neurites, as compared to isogenic hiPSC-derived neurons. Moreover, MT5-MMP-deficient astrocytes displayed higher surface area and volume compared to control astrocytes. The MT5-MMP-deficient astrocytes also exhibited decreased GLAST and S100β expression. These findings provide novel insights into the physiological role of MT5-MMP in human neurons and astrocytes, suggesting that therapeutic strategies targeting MT5-MMP should be controlled for potential side effects on astrocytic physiology and neuronal morphology.
Collapse
Affiliation(s)
- Nikita Arnst
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (N.A.); (P.B.-M.)
| | - Pedro Belio-Mairal
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (N.A.); (P.B.-M.)
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Laura García-González
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Laurie Arnaud
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Louise Greetham
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Emmanuel Nivet
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Santiago Rivera
- Inst Neurophysiopathol, CNRS, INP, Aix Marseille Université, 13385 Marseille, France; (L.G.-G.); (L.A.); (L.G.); (E.N.); (S.R.)
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; (N.A.); (P.B.-M.)
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-24526
| |
Collapse
|
33
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Lacas-Gervais S, Roques BP, Chami M, Checler F. Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer's disease (AD) mouse model and is increased at early stage in sporadic AD brain. Acta Neuropathol 2021; 141:823-839. [PMID: 33881611 PMCID: PMC8113186 DOI: 10.1007/s00401-021-02308-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aβ peptide species harboring a pyroglutamate at position three pE3-Aβ. Several studies indicated that pE3-Aβ is toxic, prone to aggregation and serves as a seed of Aβ aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aβ N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aβ and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aβ1-40 to yield Aβ2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aβ-precursor protein (βAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aβ- and Aβ1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aβ-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aβ N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.
Collapse
Affiliation(s)
- Audrey Valverde
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Julie Dunys
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Thomas Lorivel
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Delphine Debayle
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Anne-Sophie Gay
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | | | - Bernard P Roques
- Faculté de Pharmacie, Université Paris-Descartes, 75006, Paris, France
| | - Mounia Chami
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labelled "Laboratory of Excellence (LABEX) DistAlz", Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, 660 route des Lucioles, Sophia-Antipolis, 06560, Valbonne, France.
| |
Collapse
|
34
|
Hoogmartens J, Hens E, Engelborghs S, De Deyn PP, van der Zee J, Van Broeckhoven C, Cacace R. Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer's disease. Neurobiol Aging 2021; 104:105.e1-105.e6. [PMID: 33892965 DOI: 10.1016/j.neurobiolaging.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are a multigene family of proteinases regulating the functions of a large number of signaling and scaffolding molecules that are involved in neuro-inflammation, synaptic dysfunction and neuronal death. MMPs have been associated with neurological conditions, such as Alzheimer's disease (AD), through a sudden and massive upregulation of particular members of the MMP family. Evidence for this hypothesis can be found in the clinical observation of increased MMP1 and MMP3 expression levels in plasma of AD patients compared to control individuals and in the pro-amyloidogenic effects that have been described for additional MMP family members like MMP13, MT1-MMP, and MT5-MMP. Consequently, we investigated the role of MMP1, 3, 13, MT1-MMP, and MT5-MMP in the genetic etiology of AD. We performed full exonic resequencing of these 5 MMPs in 1278 AD patients (mean age at onset [AAO]: 74.88 ± 9.10, range: 29-96) and 797 age-matched control individuals (mean age at inclusion [AAI]: 74.92 ± 6.48, range: 65-100) from Flanders-Belgium and identified MMP13 as most promising candidate gene. We identified 6 ultra-rare (≤0.01%) MMP13 missense mutations in 6 patients that were absent from the control cohort. We observed in one control individual a frameshift mutation (p.G269Qfs*2) leading to a premature termination codon. Based on previously described functional evidence, suggesting that MMP13 regulates BACE1 processing, and our genetic findings, we hypothesize a gain-of-function disease mechanism for the missense mutations found in patients. Functional experimental studies remain essential to assess the effect of these mutations on disease related processes and genetic replication studies are needed to corroborate our findings.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Hens
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Edegem, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology, UZ Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium; Institute Born-Bunge, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
35
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
36
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
37
|
Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21249521. [PMID: 33327665 PMCID: PMC7765134 DOI: 10.3390/ijms21249521] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative pathology characterized by a progressive decline of cognitive functions. Alteration of various signaling cascades affecting distinct subcellular compartment functions and their communication likely contribute to AD progression. Among others, the alteration of the physical association between the endoplasmic reticulum (ER) and mitochondria, also referred as mitochondria-associated membranes (MAMs), impacts various cellular housekeeping functions such as phospholipids-, glucose-, cholesterol-, and fatty-acid-metabolism, as well as calcium signaling, which are all altered in AD. Our review describes the physical and functional proteome crosstalk between the ER and mitochondria and highlights the contribution of distinct molecular components of MAMs to mitochondrial and ER dysfunctions in AD progression. We also discuss potential strategies targeting MAMs to improve mitochondria and ER functions in AD.
Collapse
|
38
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
39
|
Bécot A, Volgers C, van Niel G. Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines 2020; 8:biomedicines8080272. [PMID: 32759666 PMCID: PMC7459801 DOI: 10.3390/biomedicines8080272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer′s disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including β-amyloid (Aβ) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.
Collapse
|
40
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
41
|
Metformin Ameliorates A β Pathology by Insulin-Degrading Enzyme in a Transgenic Mouse Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2315106. [PMID: 32377293 PMCID: PMC7191377 DOI: 10.1155/2020/2315106] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The accumulation of amyloid beta (Aβ) is the main pathology of AD. Metformin, a well-known antidiabetic drug, has been reported to have AD-protective effect. However, the mechanism is still unclear. In this study, we tried to figure out whether metformin could activate insulin-degrading enzyme (IDE) to ameliorate Aβ-induced pathology. Morris water maze and Y-maze results indicated that metformin could improve the learning and memory ability in APPswe/PS1dE9 (APP/PS1) transgenic mice. 18F-FDG PET-CT result showed that metformin could ameliorate the neural dysfunction in APP/PS1 transgenic mice. PCR analysis showed that metformin could effectively improve the mRNA expression level of nerve and synapse-related genes (Syp, Ngf, and Bdnf) in the brain. Metformin decreased oxidative stress (malondialdehyde and superoxide dismutase) and neuroinflammation (IL-1β and IL-6) in APP/PS1 mice. In addition, metformin obviously reduced the Aβ level in the brain of APP/PS1 mice. Metformin did not affect the enzyme activities and mRNA expression levels of Aβ-related secretases (ADAM10, BACE1, and PS1). Meanwhile, metformin also did not affect the mRNA expression levels of Aβ-related transporters (LRP1 and RAGE). Metformin increased the protein levels of p-AMPK and IDE in the brain of APP/PS1 mice, which might be the key mechanism of metformin on AD. In conclusion, the well-known antidiabetic drug, metformin, could be a promising drug for AD treatment.
Collapse
|
42
|
Kaminski AR, Moore ET, Daseke MJ, Valerio FM, Flynn ER, Lindsey ML. The compendium of matrix metalloproteinase expression in the left ventricle of mice following myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 318:H706-H714. [PMID: 32083973 PMCID: PMC7099447 DOI: 10.1152/ajpheart.00679.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that break down extracellular matrix (ECM) components and have shown to be highly active in the myocardial infarction (MI) landscape. In addition to breaking down ECM products, MMPs modulate cytokine signaling and mediate leukocyte cell physiology. MMP-2, -7, -8, -9, -12, -14, and -28 are well studied as effectors of cardiac remodeling after MI. Whereas 13 MMPs have been evaluated in the MI setting, 13 MMPs have not been investigated during cardiac remodeling. Here, we measure the remaining MMPs across the MI time continuum to provide the full catalog of MMP expression in the left ventricle after MI in mice. We found that MMP-10, -11, -16, -24, -25, and -27 increase after MI, whereas MMP-15, -17, -19, -21, -23b, and -26 did not change with MI. For the MMPs increased with MI, the macrophage was the predominant cell source. This work provides targets for investigation to understand the full complement of specific MMP roles in cardiac remodeling.NEW & NOTEWORTHY To date, a number of matrix metalloproteinases (MMPs) have not been evaluated in the left ventricle after myocardial infarction (MI). This article supplies the missing knowledge to provide a complete MI MMP compendium.
Collapse
Affiliation(s)
- Amanda R Kaminski
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Edwin T Moore
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Daseke
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Center for Heart and Vascular Research, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fritz M Valerio
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Merry L Lindsey
- Center for Heart and Vascular Research, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
43
|
Rochais C, Lecoutey C, Hamidouche K, Giannoni P, Gaven F, Cem E, Mignani S, Baranger K, Freret T, Bockaert J, Rivera S, Boulouard M, Dallemagne P, Claeysen S. Donecopride, a Swiss army knife with potential against Alzheimer's disease. Br J Pharmacol 2020; 177:1988-2005. [PMID: 31881553 DOI: 10.1111/bph.14964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We recently identified donecopride as a pleiotropic compound able to inhibit AChE and to activate 5-HT4 receptors. Here, we have assessed the potential therapeutic effects of donecopride in treating Alzheimer's disease (AD). EXPERIMENTAL APPROACH We used two in vivo animal models of AD, transgenic 5XFAD mice and mice exposed to soluble amyloid-β peptides and, in vitro, primary cultures of rat hippocampal neurons. Pro-cognitive and anti-amnesic effects were evaluated with novel object recognition, Y-maze, and Morris water maze tests. Amyloid load in mouse brain was measured ex vivo and effects of soluble amyloid-β peptides on neuronal survival and neurite formation determined in vitro. KEY RESULTS In vivo, chronic (3 months) administration of donecopride displayed potent anti-amnesic properties in the two mouse models of AD, preserving learning capacities, including working and long-term spatial memories. These behavioural effects were accompanied by decreased amyloid aggregation in the brain of 5XFAD mice and, in cultures of rat hippocampal neurons, reduced tau hyperphosphorylation. In vitro, donecopride increased survival in neuronal cultures exposed to soluble amyloid-β peptides, improved the neurite network and provided neurotrophic benefits, expressed as the formation of new synapses. CONCLUSIONS AND IMPLICATIONS Donecopride acts like a Swiss army knife, exhibiting a range of sustainable symptomatic therapeutic effects and potential disease-modifying effects in models of AD. Clinical trials with this promising drug candidate will soon be undertaken to confirm its therapeutic potential in humans.
Collapse
Affiliation(s)
- Christophe Rochais
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Katia Hamidouche
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrizia Giannoni
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,Equipe Chrome, EA7352, Université de Nîmes, Nîmes, France
| | - Florence Gaven
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,CRBM, CNRS UMR5237, Montpellier, France
| | - Eleazere Cem
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Mignani
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Thomas Freret
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Joël Bockaert
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Michel Boulouard
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrick Dallemagne
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | | |
Collapse
|
44
|
Du Y, Du Y, Zhang Y, Huang Z, Fu M, Li J, Pang Y, Lei P, Wang YT, Song W, He G, Dong Z. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduct Target Ther 2019; 4:58. [PMID: 31840000 PMCID: PMC6895219 DOI: 10.1038/s41392-019-0091-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer's disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.
Collapse
Affiliation(s)
- Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Zhilin Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Min Fu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Peng Lei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yu Tian Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Brain Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| |
Collapse
|
45
|
Lauritzen I, Bécot A, Bourgeois A, Pardossi-Piquard R, Biferi MG, Barkats M, Checler F. Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl Neurodegener 2019; 8:35. [PMID: 31827783 PMCID: PMC6894230 DOI: 10.1186/s40035-019-0176-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We recently demonstrated an endolysosomal accumulation of the β-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.
Collapse
Affiliation(s)
- Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Anaïs Bécot
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Alexandre Bourgeois
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | - Raphaëlle Pardossi-Piquard
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| | | | | | - Fréderic Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, team labeled «Fondation pour la Recherche Médicale» et «Laboratoire d’excellence Distalz», Université de Nice-Sophia-Antipolis, Sophia-Antipolis, France
| |
Collapse
|
46
|
Boguszewska-Czubara A, Budzynska B, Skalicka-Wozniak K, Kurzepa J. Perspectives and New Aspects of Metalloproteinases' Inhibitors in the Therapy of CNS Disorders: From Chemistry to Medicine. Curr Med Chem 2019; 26:3208-3224. [PMID: 29756562 DOI: 10.2174/0929867325666180514111500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/31/2017] [Accepted: 04/05/2018] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in remodeling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation, and survival. Their importance in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain but only some pathological ones. Numerous neurodegenerative diseases are a consequence of or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development of these diseases. In the present review, we discuss the role of metalloproteinase inhibitors, from the wellknown natural endogenous tissue inhibitors of metalloproteinases (TIMPs) to the exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplastic diseases, the knowledge about the enzymatic system in mammalian brain tissue still remains poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of the physiological function of the adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries, and others.
Collapse
Affiliation(s)
| | - Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
47
|
Baranger K, van Gijsel-Bonnello M, Stephan D, Carpentier W, Rivera S, Khrestchatisky M, Gharib B, De Reggi M, Benech P. Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics 2019; 16:1237-1254. [PMID: 31267473 PMCID: PMC6985318 DOI: 10.1007/s13311-019-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
Collapse
Affiliation(s)
- Kevin Baranger
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Manuel van Gijsel-Bonnello
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
- Present Address: MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre and School of Life Science - Division of Cell Signalling and Immunology, Welcome Trust Building, University of Dundee, Dundee, DD1 5EH UK
| | - Delphine Stephan
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013 Paris, France
| | - Santiago Rivera
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | | | - Bouchra Gharib
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Max De Reggi
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| | - Philippe Benech
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
48
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
49
|
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2019; 74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Extracellular matrices (ECMs) are maintained by tightly coupled processes of continuous synthesis and degradation. The degradative arm is mediated by a family of proteolytic enzymes called the matrix metalloproteinases (MMPs). These enzymes are released as latent proteins (pro-MMPs) and on activation are capable of degrading most components of an ECM. Activity of these enzymes is checked by the presence of tissue inhibitors of MMPs (TIMPs) and current opinion holds that the ratio of TIMPs/MMPs determines the relative rate of degradation. Thus, elevated ratios are thought to compromise degradation leading to the accumulation of abnormal ECM material, whilst diminished ratios are thought to lead to excessive ECM degradation (facilitating angiogenesis and the spread of cancer cells). Our recent work has shown this system to be far more complex. MMP species tend to undergo covalent modification leading to homo- and hetero-dimerization and aggregation resulting in the formation of very large macromolecular weight MMP complexes (LMMCs). In addition, the various MMP species also show a bound-free compartmentalisation. The net result of these changes is to reduce the availability of the latent forms of MMPs for the activation process. An assessment of the degradation potential of the MMP system in any tissue must therefore take into account the degree of sequestration of the latent MMP species, a protocol that has not previously been addressed. Taking into consideration the complexities already described, we will present an analysis of the MMP system in two common neurodegenerative disorders, namely age-related macular degeneration (AMD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ali A Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| | - Yunhee Lee
- Alt-Regen Co., Ltd, Heungdeok IT Valley, Yongin, Republic of Korea.
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
50
|
Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76:3167-3191. [PMID: 31197405 PMCID: PMC11105182 DOI: 10.1007/s00018-019-03178-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS). These multigenic and multifunctional proteinase families regulate the functions of an increasing number of signalling and scaffolding molecules involved in neuroinflammation, blood-brain barrier disruption, protein misfolding, synaptic dysfunction or neuronal death. Metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are therefore, at the crossroads of molecular and cellular mechanisms that support neurodegenerative processes, and emerge as potential new therapeutic targets. We provide an overview of current knowledge on the role and regulation of metalloproteinases and TIMPs in four major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
Collapse
Affiliation(s)
- Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| | | | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|