1
|
Chung T, Choi YE, Song K, Jung H. How coat proteins shape autophagy in plant cells. PLANT PHYSIOLOGY 2024; 197:kiae426. [PMID: 39259569 DOI: 10.1093/plphys/kiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Autophagy is a membrane trafficking pathway through which eukaryotic cells target their own cytoplasmic constituents for degradation in the lytic compartment. Proper biogenesis of autophagic organelles requires a conserved set of autophagy-related (ATG) proteins and their interacting factors, such as signalling phospholipid phosphatidylinositol 3-phosphate (PI3P) and coat complex II (COPII). The COPII machinery, which was originally identified as a membrane coat involved in the formation of vesicles budding from the endoplasmic reticulum, contributes to the initiation of autophagic membrane formation in yeast, metazoan, and plant cells; however, the exact mechanisms remain elusive. Recent studies using the plant model species Arabidopsis thaliana have revealed that plant-specific PI3P effectors are involved in autophagy. The PI3P effector FYVE2 interacts with the conserved PI3P effector ATG18 and with COPII components, indicating an additional role for the COPII machinery in the later stages of autophagosome biogenesis. In this Update, we examined recent research on plant autophagosome biogenesis and proposed working models on the functions of the COPII machinery in autophagy, including its potential roles in stabilizing membrane curvature and sealing the phagophore.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Choi
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyoungjun Song
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Gestal-Mato U, Herhaus L. Autophagy-dependent regulation of MHC-I molecule presentation. J Cell Biochem 2024; 125:e30416. [PMID: 37126231 DOI: 10.1002/jcb.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
Collapse
Affiliation(s)
- Uxia Gestal-Mato
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Lina Herhaus
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Dong Y, Quan C. NPFs-mediated actin cytoskeleton: a new viewpoint on autophagy regulation. Cell Commun Signal 2024; 22:111. [PMID: 38347641 PMCID: PMC10860245 DOI: 10.1186/s12964-023-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic process induced by various cellular stress conditions, maintaining the homeostasis of cells, tissues and organs. Autophagy is a series of membrane-related events involving multiple autophagy-related (ATG) proteins. Most studies to date have focused on various signaling pathways affecting ATG proteins to control autophagy. However, mounting evidence reveals that the actin cytoskeleton acts on autophagy-associated membranes to regulate different events of autophagy. The actin cytoskeleton assists in vesicle formation and provides the mechanical forces for cellular activities that involve membrane deformation. Although the interaction between the actin cytoskeleton and membrane makes the role of actin in autophagy recognized, how the actin cytoskeleton is recruited and assembles on membranes during autophagy needs to be detailed. Nucleation-promoting factors (NPFs) activate the Arp2/3 complex to produce actin cytoskeleton. In this review, we summarize the important roles of the actin cytoskeleton in autophagy regulation and focus on the effect of NPFs on actin cytoskeleton assembly during autophagy, providing new insights into the occurrence and regulatory mechanisms of autophagy. Video Abstract.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China.
| |
Collapse
|
5
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
6
|
Martinek J, Cifrová P, Vosolsobě S, García-González J, Malínská K, Mauerová Z, Jelínková B, Krtková J, Sikorová L, Leaves I, Sparkes I, Schwarzerová K. ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants. NATURE PLANTS 2023; 9:1874-1889. [PMID: 37845336 DOI: 10.1038/s41477-023-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
Actin-related protein (ARP2/3) complex is a heteroheptameric protein complex, evolutionary conserved in all eukaryotic organisms. Its conserved role is based on the induction of actin polymerization at the interface between membranes and the cytoplasm. Plant ARP2/3 has been reported to participate in actin reorganization at the plasma membrane during polarized growth of trichomes and at the plasma membrane-endoplasmic reticulum contact sites. Here we demonstrate that individual plant subunits of ARP2/3 fused to fluorescent proteins form motile spot-like structures in the cytoplasm that are associated with peroxisomes in Arabidopsis and tobacco. ARP2/3 is found at the peroxisome periphery and contains the assembled ARP2/3 complex and the WAVE/SCAR complex subunit NAP1. This ARP2/3-positive peroxisomal domain colocalizes with the autophagosome and, under conditions that affect the autophagy, colocalization between ARP2/3 and the autophagosome increases. ARP2/3 subunits co-immunoprecipitate with ATG8f and peroxisome-associated ARP2/3 interact in vivo with the ATG8f marker. Since mutants lacking functional ARP2/3 complex have more peroxisomes than wild type, we suggest that ARP2/3 has a novel role in the process of peroxisome degradation by autophagy, called pexophagy.
Collapse
Affiliation(s)
- Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kateřina Malínská
- Imaging Facility of Institute of Experimental Botany AS CR, Prague, Czech Republic
| | - Zdeňka Mauerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Jelínková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Krtková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Sikorová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ian Leaves
- Biosciences, CLES, Exeter University, Exeter, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Zheng C, Zhang J, Jiang F, Li D, Huang C, Guo X, Zhu X, Tan S. Clinical Significance of TUBGCP4 Expression in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2022; 2022:9307468. [PMID: 36530949 PMCID: PMC9754849 DOI: 10.1155/2022/9307468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2025] Open
Abstract
We aim to investigate the expression and clinical significance of the tubulin gamma complex-associated protein 4 (TUBGCP4) in hepatocellular carcinoma (HCC). The mRNA expression of TUBGCP4 in HCC tissues was analyzed using The Cancer Genome Atlas (TCGA) database. Paired HCC and adjacent nontumor tissues were obtained from HCC patients to measure the protein expression of TUBGCP4 by immunohistochemistry (IHC) and to analyze the relationship between TUBGCP4 protein expression and the clinicopathological characteristics and the prognosis of HCC patients. We found that TUBGCP4 mRNA expression was upregulated in HCC tissues from TCGA database. IHC analysis showed that TUBGCP4 was positively expressed in 61.25% (49/80) of HCC tissues and 77.5% (62/80) of adjacent nontumor tissues. The Chi-square analysis indicated that the positive rate of TUBGCP4 expression between HCC tissues and the adjacent nontumor tissues was statistically different (P < 0.05). Furthermore, we found that TUBGCP4 protein expression was correlated with carbohydrate antigen (CA-199) levels of HCC patients (P < 0.05). Further, survival analysis showed that the overall survival time and tumor-free survival time in the TUBGCP4 positive group were significantly higher than those of the negative group (P < 0.05), indicating that the positive expression of TUBGCP4 was related to a better prognosis of HCC patients. COX model showed that TUBGCP4 was an independent prognostic factor for HCC patients. Our study indicates that TUBGCP4 protein expression is downregulated in HCC tissues and has a relationship with the prognosis of HCC patients.
Collapse
Affiliation(s)
- Chuanjun Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Jiaxi Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Fusheng Jiang
- Guilin Center for Disease Control and Prevention, Guilin, 541001 Guangxi, China
| | - Di Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Caimei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Xuefeng Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Xiaonian Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
| | - Shengkui Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin, 541199 Guangxi, China
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha 410005, China
| |
Collapse
|
8
|
Ni Z, Sun W, Li R, Yang M, Zhang F, Chang X, Li W, Zhou Z. Fluorochloridone induces autophagy in TM4 Sertoli cells: involvement of ROS-mediated AKT-mTOR signaling pathway. Reprod Biol Endocrinol 2021; 19:64. [PMID: 33902598 PMCID: PMC8073911 DOI: 10.1186/s12958-021-00739-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fluorochloridone (FLC), a selective pyrrolidone herbicide, has been recognized as a potential endocrine disruptor and reported to induce male reproductive toxicity, but the underlying mechanism is unclear. The aim of this study was to investigate the mechanism of FLC-induced reproductive toxicity on male mice with particular emphasis on the role of autophagy in mice' TM4 Sertoli cells. METHODS Adult C57BL/6 mice were divided into one control group (0.5% sodium carboxymethyl cellulose), and four FLC-treated groups (3,15,75,375 mg/kg). The animals (ten mice per group) received gavage for 28 days. After treatment, histological analysis, sperm parameters, the microstructure of autophagy and the expression of autophagy-associated proteins in testis were evaluated. Furthermore, to explore the autophagy mechanism, TM4 Sertoli cells were treated with FLC (0,40,80,160 μM) in vitro for 24 h. Cell activity and cytoskeletal changes were measured by MTT assay and F-actin immunofluorescence staining. The formation of autophagosome, accumulation of reactive oxygen species (ROS), expression of autophagy marker proteins (LC3, Beclin-1 and P62) and AKT-related pathway proteins (AKT, mTOR) were observed. The ROS scavenger N-acetylcysteine (NAC) and AKT agonist (SC79) were used to treat TM4 cells to observe the changes of AKT-mTOR pathway and autophagy. RESULTS In vivo, it showed that FLC exposure caused testicular injuries, abnormality in epididymal sperm. Moreover, FLC increased the formation of autophagosomes, the accumulation of LC3II/LC3I, Beclin-1 and P62 protein, which is related to the degradation of autophagy. In vitro, FLC triggered TM4 cell autophagy by increasing the formation of autophagosomes and upregulating of LC3II/LC3I, Beclin-1 and P62 levels. In addition, FLC induced ROS production and inhibited the activities of AKT and mTOR kinases. The Inhibition of AKT/mTOR signaling pathways and the activation of autophagy induced by FLC could be efficiently reversed by pretreatment of NAC. Additionally, decreased autophagy and increased cell viability were observed in TM4 cells treated with SC79 and FLC, compared with FLC alone, indicating that FLC-induced autophagy may be pro-death. CONCLUSION Taken together, our study provided the evidence that FLC promoted autophagy in TM4 Sertoli cells and that this process may involve ROS-mediated AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Zhijing Ni
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weiqi Sun
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Rui Li
- Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, 200032, China
| | - Fen Zhang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Okada T, Ogura T. Scanning Electron-Assisted Dielectric Microscopy Reveals Autophagosome Formation by LC3 and ATG12 in Cultured Mammalian Cells. Int J Mol Sci 2021; 22:ijms22041834. [PMID: 33673233 PMCID: PMC7917705 DOI: 10.3390/ijms22041834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular self-devouring system that plays a central role in cellular recycling. The formation of functional autophagosomes depends on several autophagy-related proteins, including the microtubule-associated proteins 1A/1B light chain 3 (LC3) and the conserved autophagy-related gene 12 (Atg12). We have recently developed a novel scanning electron-assisted dielectric microscope (SE-ADM) for nanoscale observations of intact cells. Here, we used the SE-ADM system to observe LC3- and Atg12-containing autophagosomes in cells labelled in the culture medium with antibodies conjugated to colloidal gold particles. We observed that, during autophagosome formation, Atg12 localized along the actin meshwork structure, whereas LC3 formed arcuate or circular alignments. Our system also showed a difference in the distribution of LC3 and Atg12; Atg12 was broadly distributed while LC3 was more localized. The difference in the spatial distribution demonstrated by our system explains the difference in the size of fluorescent spots due to the fluorescently labelled antibodies observed using optical microscopy. The direct SE-ADM observation of cells should thus be effective in analyses of autophagosome formation.
Collapse
|
10
|
Pathak S, Parkar H, Tripathi S, Kale A. Ofloxacin as a Disruptor of Actin Aggresome "Hirano Bodies": A Potential Repurposed Drug for the Treatment of Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:591579. [PMID: 33132905 PMCID: PMC7573105 DOI: 10.3389/fnagi.2020.591579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
There is a growing number of aging populations that are more prone to the prevalence of neuropathological disorders. Two major diseases that show a late onset of the symptoms include Alzheimer’s disorder (AD) and Parkinson’s disorder (PD), which are causing an unexpected social and economic impact on the families. A large number of researches in the last decade have focused upon the role of amyloid precursor protein, Aβ-plaque, and intraneuronal neurofibrillary tangles (tau-proteins). However, there is very few understanding of actin-associated paracrystalline structures formed in the hippocampus region of the brain and are called Hirano bodies. These actin-rich inclusion bodies are known to modulate the synaptic plasticity and employ conspicuous effects on long-term potentiation and paired-pulse paradigms. Since the currently known drugs have very little effect in controlling the progression of these diseases, there is a need to develop therapeutic agents, which can have improved efficacy and bioavailability, and can transport across the blood–brain barrier. Moreover, finding novel targets involving compound screening is both laborious and is an expensive process in itself followed by equally tedious Food and Drug Administration (FDA) approval exercise. Finding alternative functions to the already existing FDA-approved molecules for reversing the progression of age-related proteinopathies is of utmost importance. In the current study, we decipher the role of a broad-spectrum general antibiotic (Ofloxacin) on actin polymerization dynamics using various biophysical techniques like right-angle light scattering, dynamic light scattering, circular dichroism spectrometry, isothermal titration calorimetry, scanning electron microscopy, etc. We have also performed in silico docking studies to deduce a plausible mechanism of the drug binding to the actin. We report that actin gets disrupted upon binding to Ofloxacin in a concentration-dependent manner. We have inferred that Ofloxacin, when attached to a drug delivery system, can act as a good candidate for the treatment of neuropathological diseases.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Haifa Parkar
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Sarita Tripathi
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Avinash Kale
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| |
Collapse
|
11
|
Rivers E, Rai R, Lötscher J, Hollinshead M, Markelj G, Thaventhiran J, Worth A, Cavazza A, Hess C, Bajaj-Elliott M, Thrasher AJ. Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells. eLife 2020; 9:55547. [PMID: 33135633 PMCID: PMC7673780 DOI: 10.7554/elife.55547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeletal regulator Wiskott Aldrich syndrome protein (WASp) has been implicated in maintenance of the autophagy-inflammasome axis in innate murine immune cells. Here, we show that WASp deficiency is associated with impaired rapamycin-induced autophagosome formation and trafficking to lysosomes in primary human monocyte-derived macrophages (MDMs). WASp reconstitution in vitro and in WAS patients following clinical gene therapy restores autophagic flux and is dependent on the actin-related protein complex ARP2/3. Induction of mitochondrial damage with CCCP, as a model of selective autophagy, also reveals a novel ARP2/3-dependent role for WASp in formation of sequestrating actin cages and maintenance of mitochondrial network integrity. Furthermore, mitochondrial respiration is suppressed in WAS patient MDMs and unable to achieve normal maximal activity when stressed, indicating profound intrinsic metabolic dysfunction. Taken together, we provide evidence of new and important roles of human WASp in autophagic processes and immunometabolic regulation, which may mechanistically contribute to the complex WAS immunophenotype.
Collapse
Affiliation(s)
- Elizabeth Rivers
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | | - Gasper Markelj
- Department of Allergy, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - James Thaventhiran
- Medical Research Council-Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Austen Worth
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, Lee D, Roy P, Buchser WJ, Appleman LJ, Maranchie J, Storkus WJ, Lotze MT. Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. ACTA ACUST UNITED AC 2020; 25:165-177. [PMID: 31135523 PMCID: PMC10395074 DOI: 10.1097/ppo.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clear cell subtype of kidney cancer encompasses most renal cell carcinoma cases and is associated with the loss of von Hippel-Lindau gene function or expression. Subsequent loss or mutation of the other allele influences cellular stress responses involving nutrient and hypoxia sensing. Autophagy is an important regulatory process promoting the disposal of unnecessary or degraded cellular components, tightly linked to almost all cellular processes. Organelles and proteins that become damaged or that are no longer needed in the cell are sequestered and digested in autophagosomes upon fusing with lysosomes, or alternatively, released via vesicular exocytosis. Tumor development tends to disrupt the regulation of the balance between this process and apoptosis, permitting prolonged cell survival and increased replication. Completed trials of autophagic inhibitors using hydroxychloroquine in combination with other anticancer agents including rapalogues and high-dose interleukin 2 have now been reported. The complex nature of autophagy and the unique biology of clear cell renal cell carcinoma warrant further understanding to better develop the next generation of relevant anticancer agents.
Collapse
Affiliation(s)
| | | | - Abigail Allen
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
13
|
Xie L, Li H, Zhang L, Ma X, Dang Y, Guo J, Liu J, Ge L, Nan F, Dong H, Yan Z, Guo X. Autophagy-related gene P4HB: a novel diagnosis and prognosis marker for kidney renal clear cell carcinoma. Aging (Albany NY) 2020; 12:1828-1842. [PMID: 32003756 PMCID: PMC7053637 DOI: 10.18632/aging.102715] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Autophagy can protect cells and organisms from stressors such as nutrient deprivation, and is involved in many pathological processes including human cancer. Therefore, it is necessary to investigate the role of autophagy-related genes (ARGs) in cancer. In this study, we investigated the gene expression of 222 ARGs in 1048 Kidney Renal Clear Cell Carcinoma (KIRC) cases, from 5 independent cohorts. The gene expression of ARGs were first evaluated in the The Cancer Genome Atlas (TCGA) by Recevier Operating Characteristic (ROC) analysis to select potential biomarkers with extremely high ability in KIRC detection (AUC≥0.85 and p<0.0001). Then in silico procedure progressively leads to the selection of two genes in a three rounds of validation performed in four human KIRC-patients datasets including two independent Gene Expression Omnibus (GEO) datasets, Oncomine dataset and Human Protein Atlas dataset. Finally, only P4HB (Prolyl 4-hydroxylase, beta polypeptide) gene was experimentally validated by RT-PCR between control kidney cells and cancer cells. Following univariate and multivariate analyses of TCGA-KIRC clinical data showed that P4HB expression is an independent prognostic indicator of unfavorable overall survival (OS) for KIRC patients. Based on these findings, we proposed that P4HB might be one potential novel KIRC diagnostic and prognostic biomarker at both mRNA and protein levels.
Collapse
Affiliation(s)
- Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Huimin Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyu Ma
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yifang Dang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jinshuai Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jiahao Liu
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linna Ge
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fangmei Nan
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhongyi Yan
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Pathak S, Tripathi S, Deori N, Ahmad B, Verma H, Lokhande R, Nagotu S, Kale A. Effect of tetracycline family of antibiotics on actin aggregation, resulting in the formation of Hirano bodies responsible for neuropathological disorders. J Biomol Struct Dyn 2020; 39:236-253. [PMID: 31948361 DOI: 10.1080/07391102.2020.1717629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Actin, an ATPase superfamily protein, regulates some vital biological functions like cell locomotion, cytokinesis, synaptic plasticity and cell signaling in higher eukaryotes, and is dependent on the dynamics of actin polymerization process. Impaired regulation of actin polymerization has been implicated in the formation and deposition of rod-like paracrystalline structures called as Hirano bodies in neuronal cells of patients suffering from Alzheimer's disease, Pick's disease, Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. Aggregation of actin forming amorphous deposition in the brain cells is also associated with chronic alcoholism and aging of the neurons. In the current article, we propose the breaking of the highly amorphous and dysregulated actin aggregates using generic compounds like tetracycline, oxytetracycline, doxycycline and minocycline which are used as antibiotics against tuberculosis and infection caused due to various Gram-negative bacteria. We have investigated the effect and affinity of binding of these four compounds to that of actin aggregates using 90° light scattering, size exclusion chromatography, dynamic light scattering, circular dichroism, scanning electron microscopy, transmission electron microscopy imaging and kinetic analysis. The isothermal calorimetric measurements showed that the binding constant for the cycline family molecules used in this study range from 9.8 E4 M-1 to 1.3 E4 M-1. To understand the in vivo effect, we also studied the effect of these drugs on Saccharomyces cerevisiae Δend3 mutant cells. Our data suggest that these generic compounds can plausibly be used for the treatment of various neurodegenerative diseases occurring due to Hirano body formation in brain cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Sarita Tripathi
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Nayan Deori
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Basir Ahmad
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India.,Protein Assembly Laboratory, JH-Institute of Molecular Medicine, New Delhi, India
| | - Hriday Verma
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Rama Lokhande
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Zhang Y, Jiang X, Deng Q, Gao Z, Tang X, Fu R, Hu J, Li Y, Li L, Gao N. Downregulation of MYO1C mediated by cepharanthine inhibits autophagosome-lysosome fusion through blockade of the F-actin network. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:457. [PMID: 31699152 PMCID: PMC6836678 DOI: 10.1186/s13046-019-1449-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Background MYO1C, an actin-based motor protein, is involved in the late stages of autophagosome maturation and fusion with the lysosome. The molecular mechanism by which MYO1C regulates autophagosome-lysosome fusion remains largely unclear. Methods Western blotting was used to determine the expression of autophagy-related proteins. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes. An immunoprecipitation assay was utilized to detect protein-protein interactions. Immunofluorescence analysis was used to detect autophagosome-lysosome fusion and colocalization of autophagy-related molecules. An overexpression plasmid or siRNA against MYO1C were sequentially introduced into human breast cancer MDA-MB-231 cells. Results We show here that cepharanthine (CEP), a novel autophagy inhibitor, inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. Mechanistically, we found for the first time that MYO1C was downregulated by CEP treatment. Furthermore, the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 was inhibited by CEP treatment. Knockdown of MYO1C further decreased the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment, leading to blockade of autophagosome-lysosome fusion. In contrast, overexpression of MYO1C significantly restored the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment. Conclusion These findings highlight a key role of MYO1C in the regulation of autophagosome-lysosome fusion through F-actin remodeling. Our findings also suggest that CEP could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of CEP with classic chemotherapeutic drugs could become a promising treatment for breast cancer.
Collapse
Affiliation(s)
- Yanhao Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qin Deng
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ziyi Gao
- Greater Philadelphia Pharmacy, Philadelphia, USA
| | - Xiangyu Tang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Ruoqiu Fu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jinjiao Hu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yunong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lirong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Xu X, Shang D, Cheng H, Klionsky DJ, Zhou R. Gene essentiality of Tubgcp4: dosage effect and autophagy regulation in retinal photoreceptors. Autophagy 2019; 15:1834-1837. [PMID: 31345090 DOI: 10.1080/15548627.2019.1647023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoreceptor degeneration and damages often lead to blindness, and the underlying molecular mechanisms are largely unknown. There is also a lot of missing information for establishing the role of macroautophagy/autophagy in the retinopathy. We recently generated knockout mouse lines of the essential gene Tubgcp4 (tubulin, gamma complex associated protein 4) and revealed an interplay between essential genes and autophagy regulation. Complete knockout of Tubgcp4 in mice results in early embryonic lethality due to abnormal spindle assembly, whereas heterozygotes are viable through dosage compensation from one wild-type allele, suggesting a dosage effect of the essential gene. However, haploinsufficiency of TUBGCP4 impairs assembly of TUBG/γ-tubulin ring complexes and disturbs autophagy homeostasis of the retina, with pathological phenotypes of photoreceptor degeneration and a decrease of electroretinography responses. TUBGCP4 can inhibit autophagy by competing with ATG3 to interact with ATG7, thus interfering with lipidation of LC3B. Taken together, these findings demonstrate dosage effect of the essential gene Tubgcp4 for viability of mutant mice, and suggest key roles of TUBGCP4 in embryo development and retinal homeostasis by autophagy regulation. Abbreviations: ATG3: autophagy related 3; ATG7: autophagy related 7; CRISPR: clustered regularly interspaced short palindromic repeats; ERG: electroretinography; HCQ: hydroxychloroquine; LC3B: microtubule-associated protein 1 light chain 3 beta; NFE2L2: nuclear factor, erythroid 2 like 2; ONL: outer nuclear layer; PPARGC1A: peroxisome proliferator-activated receptor gamma coactivator-1 alpha; RB1CC1: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TUBGCP: tubulin, gamma complex associated protein; TUBGRC/γ: TuRCs gamma-tubulin ring complexes.
Collapse
Affiliation(s)
- Xu Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor , MI , USA
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
| |
Collapse
|
17
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
18
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
19
|
Purnell MC. Bio-Field Array: The Influence of Junction Mediating and Regulatory Protein Expression on Cytoskeletal Filament Behavior During Apoptosis in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419830981. [PMID: 30833811 PMCID: PMC6396045 DOI: 10.1177/1178223419830981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022]
Abstract
Introduction: The Bio-Field Array (BFA) is a device that generates a dielectrophoretic electromagnetic field (DEP-EMF) when placed in a hypotonic saline solution and a direct current (dc) of ~3 amperes is applied. Human triple-negative breast cancer (MDA-MB-231 cells) is known to have a high percentage of apoptotic (P53) deficient cells and some patients can have poor outcomes with current treatments. Objectives: Previously, we reported a strong upregulation of the apoptotic arm of the unfolded protein response, via reverse transcription–quantitative polymerase chain reaction (RT-qPCR), as well as positive annexin staining in this human breast carcinoma, when grown in media prepared with BFA’s dc DEP-EMF treated saline. Here we will examine and discuss cytoskeletal microtubule changes that were noted in the treated breast carcinoma that are strongly suggestive of apoptosis and the possible correlation of these microtubule changes to the upregulation of Junction Mediating and Regulatory Protein (JMY, a P53/TP53 cofactor) that is known to drive cytoskeleton microfilaments (actin) function. Methods: In addition to microarray and RT-qPCR analyses, we conducted 7 days of fluorescent microscopic analyses of tubulin assays in these treated versus control MDA-MB-231 cells. Results: These data suggest 2 possible forms of apoptosis, rounded and irregular, may be occurring and possibly facilitated by the significant upregulation (via microarray and RT-qPCR) of an important but poorly understood Nucleation-Promoting Factor (NPF), JMY. Conclusions: The ability of the BFA dc DEP-EMF to significantly upregulate JMY and possibly influence the regulation of unbranched (nucleation-microtubule spikes) and branched forms (autophagy) of actin in the cytoplasmic domains may facilitate a “two coffins” or round and irregular necrosis-like apoptosis for this highly aggressive and often apoptotic-deficient breast cancer cell line.
Collapse
Affiliation(s)
- Marcy C Purnell
- The Loewenberg College of Nursing, University of Memphis, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
20
|
Izdebska M, Hałas-Wiśniewska M, Zielińska W, Klimaszewska-Wiśniewska A, Grzanka D, Gagat M. Lidocaine induces protective autophagy in rat C6 glioma cell line. Int J Oncol 2018; 54:1099-1111. [PMID: 30569147 PMCID: PMC6365045 DOI: 10.3892/ijo.2018.4668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant glioma is the most common type of brain cancer with poor prognosis. Surgical resection, chemotherapy and radiotherapy are the main therapeutic options; however, in addition to their insufficient efficacy, they are associated with the pain experienced by patients. To relieve pain, local anesthetics, such as lidocaine can be used. In the present study, the effects of lidocaine on the C6 rat glioma cell line were investigated. An MTT assay and Annexin V/propidium iodide analysis indicated the increase in the percentage of apoptotic and necrotic cells in response to lidocaine. Furthermore, light microscopy analysis on the ultrastructural level presented the occurrence of vacuole-like structures associated with autophagy, which was supported by the analysis of autophagy markers (microtubule-associated protein 1A/1B-light chain 3, acridine orange and Beclin-1). Additionally, reorganization of the cytoskeleton was observed following treatment with lidocaine, which serves an important role in the course of autophagy. To determine the nature of autophagy, an inhibitor, bafilomycin A1 was applied. This compound suppressed the fusion of autophagosomes with lysosomes and increased the percentage of apoptotic cells. These results demonstrated that lidocaine may induce cytoprotective autophagy and that manipulation of this process could be an alternative therapeutic strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
21
|
Assembling actin filaments for protrusion. Curr Opin Cell Biol 2018; 56:53-63. [PMID: 30278304 DOI: 10.1016/j.ceb.2018.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Cell migration entails a plethora of activities combining the productive exertion of protrusive and contractile forces to allow cells to push and squeeze themselves through cell clumps, interstitial tissues or tissue borders. All these activities require the generation and turnover of actin filaments that arrange into specific, subcellular structures. The most prominent structures mediating the protrusion at the leading edges of cells include lamellipodia and filopodia as well as plasma membrane blebs. Moreover, in cells migrating on planar substratum, mechanical support is being provided by an additional, more proximally located structure termed the lamella. Here, we systematically dissect the literature concerning the mechanisms driving actin filament nucleation and elongation in the best-studied protrusive structure, the lamellipodium. Recent work has shed light on open questions in lamellipodium protrusion, including the relative contributions of nucleation versus elongation to the assembly of both individual filaments and the lamellipodial network as a whole. However, much remains to be learned concerning the specificity and relevance of individual factors, their cooperation and their site-specific functions relative to the importance of global actin monomer and filament homeostasis.
Collapse
|
22
|
Bednarczyk M, Zmarzły N, Grabarek B, Mazurek U, Muc-Wierzgoń M. Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 2018; 9:34413-34428. [PMID: 30344951 PMCID: PMC6188136 DOI: 10.18632/oncotarget.26126] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved mechanism of self-digestion that removes damaged organelles and proteins from cells. Depending on the way the protein is delivered to the lysosome, four basic types of autophagy can be distinguished: macroautophagy, selective autophagy, chaperone-mediated autophagy and microautophagy. Macroautophagy involves formation of autophagosomes and is controlled by specific autophagy-related genes. The steps in macroautophagy are initiation, phagophore elongation, autophagosome maturation, autophagosome fusion with the lysosome, and proteolytic degradation of the contents. Selective autophagy is macroautophagy of a specific cellular component. This work focuses on mitophagy (selective autophagy of abnormal and damaged mitochondria), in which the main participating protein is PINK1 (phosphatase and tensin homolog-induced putative kinase 1). In chaperone-mediated autophagy, the substrate is bound to a heat shock protein 70 chaperone before it is delivered to the lysosome. The least characterized type of autophagy is microautophagy, which is the degradation of very small molecules without participation of an autophagosome. Autophagy can promote or inhibit tumor development, depending on the severity of the disease, the type of cancer, and the age of the patient. This paper describes the molecular basis of the different types of autophagy and their importance in cancer pathogenesis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| |
Collapse
|
23
|
Wei Y, Liu M, Li X, Liu J, Li H. Origin of the Autophagosome Membrane in Mammals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1012789. [PMID: 30345294 PMCID: PMC6174804 DOI: 10.1155/2018/1012789] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Autophagy begins with the nucleation of phagophores, which then expand to give rise to the double-membrane autophagosomes. Autophagosomes ultimately fuse with lysosomes, where the cytosolic cargoes are degraded. Accumulation of autophagosomes is a hallmark of autophagy and neurodegenerative disorders including Alzheimer's and Huntington's disease. In recent years, the sources of autophagosome membrane have attracted a great deal of interests, even so, the membrane donors for autophagosomes are still under debate. In this review, we describe the probable sources of autophagosome membrane.
Collapse
Affiliation(s)
- Yun Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meixia Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xianxiao Li
- Department of Oncology, Air Force General Hospital, Beijing 100142, China
| | - Jiangang Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
24
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
25
|
Jati S, Kundu S, Chakraborty A, Mahata SK, Nizet V, Sen M. Wnt5A Signaling Promotes Defense Against Bacterial Pathogens by Activating a Host Autophagy Circuit. Front Immunol 2018; 9:679. [PMID: 29686674 PMCID: PMC5900007 DOI: 10.3389/fimmu.2018.00679] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial pathogens are associated with severe infections (e.g., sepsis) and exacerbation of debilitating conditions such as chronic obstructive pulmonary disease (COPD). The interactions of bacterial pathogens with macrophages, a key component of innate immunity and host defense, are not clearly understood and continue to be intensively studied. Having previously demonstrated a role of Wnt5A signaling in phagocytosis, we proceeded to decipher the connection of Wnt5A signaling with infection by pathogenic bacteria, namely Pseudomonas aeruginosa (PA) and Streptococcus pneumoniae (SP), which are related with the progression of COPD and sepsis. We found that during the initial hours of infection with PA and SP, there is decrease in the steady state levels of the Wnt5A protein in macrophages. Suppression of Wnt5A signaling, moreover, impairs macrophage clearance of the bacterial infection both in vitro and in vivo. Activation of Wnt5A signaling, on the other hand, enhances clearance of the infection. Macrophage-mediated containment of bacterial infection in our study is dependant on Wnt5A-induced Rac1/Disheveled activation and cytochalasin D inhibitable actin assembly, which is associated with ULK1 kinase activity and LC3BII accumulation. Our experimental findings are consistent with Wnt5A signaling-dependent induction of autophagic killing (xenophagy) of PA and SP, as further substantiated by transmission electron microscopy. Overall, our study unveils the prevalence of a Wnt5A-Rac1-Disheveled-mediated actin-associated autophagy circuit as an important component of innate immunity in host macrophages that may turn out crucial for restricting infection by leading bacterial pathogens.
Collapse
Affiliation(s)
- Suborno Jati
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Suman Kundu
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Chakraborty
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sushil Kumar Mahata
- Department of Medicine, VA San Diego Healthcare System and University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
26
|
Abstract
Recent publications illustrate an extensive crosstalk between the actin cytoskeleton and autophagy, a program for self-digestion. Actin polymerization provides a pushing force for organelle shaping and trafficking during autophagy, but the cytoskeleton is also targeted by autophagy under mechanical strain.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
27
|
Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol 2018; 78:283-297. [PMID: 28884504 PMCID: PMC5816708 DOI: 10.1002/dneu.22534] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022]
Abstract
Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
- Graduate School of Biomedical SciencesUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Ferdi Ridvan Kiral
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| | - Peter Robin Hiesinger
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| |
Collapse
|
28
|
Takanezawa Y, Nakamura R, Sone Y, Uraguchi S, Kobayashi K, Tomoda H, Kiyono M. Variation in the activity of distinct cytochalasins as autophagy inhibitiors in human lung A549 cells. Biochem Biophys Res Commun 2017; 494:641-647. [DOI: 10.1016/j.bbrc.2017.10.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
|
29
|
Lee PP, Lobato-Márquez D, Pramanik N, Sirianni A, Daza-Cajigal V, Rivers E, Cavazza A, Bouma G, Moulding D, Hultenby K, Westerberg LS, Hollinshead M, Lau YL, Burns SO, Mostowy S, Bajaj-Elliott M, Thrasher AJ. Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nat Commun 2017; 8:1576. [PMID: 29146903 PMCID: PMC5691069 DOI: 10.1038/s41467-017-01676-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of autophagy and inflammasome activity contributes to the development of auto-inflammatory diseases. Emerging evidence highlights the importance of the actin cytoskeleton in modulating inflammatory responses. Here we show that deficiency of Wiskott-Aldrich syndrome protein (WASp), which signals to the actin cytoskeleton, modulates autophagy and inflammasome function. In a model of sterile inflammation utilizing TLR4 ligation followed by ATP or nigericin treatment, inflammasome activation is enhanced in monocytes from WAS patients and in WAS-knockout mouse dendritic cells. In ex vivo models of enteropathogenic Escherichia coli and Shigella flexneri infection, WASp deficiency causes defective bacterial clearance, excessive inflammasome activation and host cell death that are associated with dysregulated septin cage-like formation, impaired autophagic p62/LC3 recruitment and defective formation of canonical autophagosomes. Taken together, we propose that dysregulation of autophagy and inflammasome activities contribute to the autoinflammatory manifestations of WAS, thereby identifying potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pamela P Lee
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.,Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre of Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Nayani Pramanik
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Andrea Sirianni
- Section of Microbiology, MRC Centre of Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Vanessa Daza-Cajigal
- University College London Institute of Immunity and Transplantation, London, NW3 2PF, UK
| | - Elizabeth Rivers
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Gerben Bouma
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dale Moulding
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Kjell Hultenby
- Karolinska Institutet, Department of Laboratory Medicine, 14186, Stockholm, Sweden
| | - Lisa S Westerberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, 171 77, Stockholm, Sweden
| | - Michael Hollinshead
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1AP, UK
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Siobhan O Burns
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.,University College London Institute of Immunity and Transplantation, London, NW3 2PF, UK
| | - Serge Mostowy
- Section of Microbiology, MRC Centre of Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK. .,Great Ormond Street Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
30
|
Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 2017. [PMID: 28368018 DOI: 10.1038/ncomms14816)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Human actin-related protein 2/3 complex (Arp2/3), required for actin filament branching, has two ARPC1 component isoforms, with ARPC1B prominently expressed in blood cells. Here we show in a child with microthrombocytopenia, eosinophilia and inflammatory disease, a homozygous frameshift mutation in ARPC1B (p.Val91Trpfs*30). Platelet lysates reveal no ARPC1B protein and greatly reduced Arp2/3 complex. Missense ARPC1B mutations are identified in an unrelated patient with similar symptoms and ARPC1B deficiency. ARPC1B-deficient platelets are microthrombocytes similar to those seen in Wiskott-Aldrich syndrome that show aberrant spreading consistent with loss of Arp2/3 function. Knockout of ARPC1B in megakaryocytic cells results in decreased proplatelet formation, and as observed in platelets from patients, increased ARPC1A expression. Thus loss of ARPC1B produces a unique set of platelet abnormalities, and is associated with haematopoietic/immune symptoms affecting cell lineages where this isoform predominates. In agreement with recent experimental studies, our findings suggest that ARPC1 isoforms are not functionally interchangeable.
Collapse
|
31
|
Kahr WHA, Pluthero FG, Elkadri A, Warner N, Drobac M, Chen CH, Lo RW, Li L, Li R, Li Q, Thoeni C, Pan J, Leung G, Lara-Corrales I, Murchie R, Cutz E, Laxer RM, Upton J, Roifman CM, Yeung RSM, Brumell JH, Muise AM. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 2017; 8:14816. [PMID: 28368018 PMCID: PMC5382316 DOI: 10.1038/ncomms14816] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Human actin-related protein 2/3 complex (Arp2/3), required for actin filament branching, has two ARPC1 component isoforms, with ARPC1B prominently expressed in blood cells. Here we show in a child with microthrombocytopenia, eosinophilia and inflammatory disease, a homozygous frameshift mutation in ARPC1B (p.Val91Trpfs*30). Platelet lysates reveal no ARPC1B protein and greatly reduced Arp2/3 complex. Missense ARPC1B mutations are identified in an unrelated patient with similar symptoms and ARPC1B deficiency. ARPC1B-deficient platelets are microthrombocytes similar to those seen in Wiskott–Aldrich syndrome that show aberrant spreading consistent with loss of Arp2/3 function. Knockout of ARPC1B in megakaryocytic cells results in decreased proplatelet formation, and as observed in platelets from patients, increased ARPC1A expression. Thus loss of ARPC1B produces a unique set of platelet abnormalities, and is associated with haematopoietic/immune symptoms affecting cell lineages where this isoform predominates. In agreement with recent experimental studies, our findings suggest that ARPC1 isoforms are not functionally interchangeable. ARPC1B is a component of the actin-related protein 2/3 complex (Arp2/3), which is required for actin filament branching. Kahr et al. show that ARPC1B deficiency in humans is associated with severe multisystem disease that includes platelet abnormalities, eosinophilia, eczema and other indicators of immune disease.
Collapse
Affiliation(s)
- Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Abdul Elkadri
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Neil Warner
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Marko Drobac
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Chang Hua Chen
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Richard W Lo
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Ren Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Qi Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Cornelia Thoeni
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Jie Pan
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Gabriella Leung
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Irene Lara-Corrales
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ryan Murchie
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ronald M Laxer
- Division of Rheumatology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Julia Upton
- Division of Immunology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Chaim M Roifman
- Division of Immunology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Rae S M Yeung
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Division of Rheumatology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - John H Brumell
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Aleixo M Muise
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,SickKids Inflammatory Bowel Disease Center and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
32
|
|