1
|
Kim H, Yi X, Xue H, Yue G, Zhu J, Eh T, Wang S, Jin LH. Extracts ofHylotelephiumerythrostictum (miq.) H. Ohba ameliorate intestinal injury by scavenging ROS and inhibiting multiple signaling pathways in Drosophila. BMC Complement Med Ther 2024; 24:397. [PMID: 39543569 PMCID: PMC11566468 DOI: 10.1186/s12906-024-04686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the first line of defense against pathogens and noxious substances entering the body from the outside world. Through proliferation and differentiation, intestinal stem cells play vital roles in tissue regeneration, repair, and the maintenance of intestinal homeostasis. Inflammatory bowel disease (IBD) is caused by the disruption of intestinal homeostasis through the invasion of toxic compounds and pathogenic microorganisms. Hylotelephium erythrostictum (Miq.) H. Ohba (H. erythrostictum) is a plant with diverse pharmacological properties, including antioxidant, anti-inflammatory, antidiabetic, and antirheumatic properties. However, the roles of H. erythrostictum and its bioactive compounds in the treatment of intestinal injury are unknown. METHODS We examined the protective effects of H. erythrostictum water extract (HEWE) and H. erythrostictum butanol extract (HEBE) on Drosophila intestinal injury caused by dextran sodium sulfate (DSS) or Erwinia carotovoracarotovora 15 (Ecc15). RESULTS Our findings demonstrated that both HEWE and HEBE significantly prolonged the lifespan of flies fed toxic compounds, reduced cell mortality, and maintained intestinal integrity and gut acid‒base homeostasis. Furthermore, both HEWE and HEBE eliminated DSS-induced ROS accumulation, alleviated the increases in antimicrobial peptides(AMPs) and intestinal lipid droplets caused by Ecc15 infection, and prevented excessive ISC proliferation and differentiation by inhibiting the JNK, EGFR, and JAK/STAT pathways. In addition, they reversed the significant changes in the proportions of the gut microbiota induced by DSS. The bioactive compounds contained in H. erythrostictum extracts have sufficient potential for use as natural therapeutic agents for the treatment of IBD in humans. CONCLUSION Our results suggest that HEWE and HEBE are highly effective in reducing intestinal inflammation and thus have the potential to be viable therapeutic agents for the treatment of gut inflammation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hyonil Kim
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Xinyu Yi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Hongmei Xue
- Women and Children's Hospital, Peking University People's Hospital, Qingdao University, Qingdao, China
| | - Guanhua Yue
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Jiahua Zhu
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Tongju Eh
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Sihong Wang
- Analysis and Test Center, Yanbian University, Yanji, 133002, Jilin Province, PR China.
| | - Li Hua Jin
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Carpinteyro-Ponce J, Machado CA. The Complex Landscape of Structural Divergence Between the Drosophila pseudoobscura and D. persimilis Genomes. Genome Biol Evol 2024; 16:evae047. [PMID: 38482945 PMCID: PMC10980976 DOI: 10.1093/gbe/evae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.
Collapse
Affiliation(s)
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Kolesnikova TD, Nokhova AR, Shatskikh AS, Klenov MS, Zhimulev IF. Otu and Rif1 Double Mutant Enables Analysis of Satellite DNA in Polytene Chromosomes of Ovarian Germ Cells in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:S87-S91. [PMID: 38337102 DOI: 10.1134/s160767292360046x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 02/12/2024]
Abstract
Polytene chromosomes in Drosophila serve as a classical model for cytogenetic studies. However, heterochromatic regions of chromosomes are typically under-replicated, hindering their analysis. Mutations in the Rif1 gene lead to additional replication of heterochromatic sequences, including satellite DNA, in salivary gland cells. Here, we investigated the impact of the Rif1 mutation on heterochromatin in polytene chromosomes formed in ovarian germ cells due to the otu gene mutation. By the analysis of otu11; Rif11 double mutants, we found that, in the presence of the Rif1 mutation, ovarian cells undergo additional polytenization of pericentromeric regions. This includes the formation of large chromatin blocks composed of satellite DNA. Thus, the effects of the Rif1 mutation are similar in salivary gland and germ cells. The otu11; Rif11 system opens new possibilities for studying factors associated with heterochromatin during oogenesis.
Collapse
Affiliation(s)
- T D Kolesnikova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the RAS, Novosibirsk, Russia.
| | - A R Nokhova
- Novosibirsk State University, Novosibirsk, Russia
| | - A S Shatskikh
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - M S Klenov
- Institute of Molecular Genetics RAS, Moscow, Russia
| | - I F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
5
|
Liu XZ, Guo H, Long GJ, Ma YF, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Liu LW, He M, He P. Functional characterization of five developmental signaling network genes in the white-backed planthopper: Potential application for pest management. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942746 DOI: 10.1002/ps.7464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| |
Collapse
|
6
|
Zattera ML, Bruschi DP. Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells 2022; 11:3373. [PMID: 36359770 PMCID: PMC9659126 DOI: 10.3390/cells11213373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| | - Daniel Pacheco Bruschi
- Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil
| |
Collapse
|
7
|
Lei X, Zhou Z, Wang S, Jin LH. The protective effect of safranal against intestinal tissue damage in Drosophila. Toxicol Appl Pharmacol 2022; 439:115939. [PMID: 35217026 DOI: 10.1016/j.taap.2022.115939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Drosophila is often exposed to harmful environments, and the intestinal epithelium is the first line of defense against external infection. Intestinal stem cells (ISCs) in the Drosophila midgut play a crucial role in maintaining tissue homeostasis and compensating for cell loss caused by tissue damage. Crocus sativus L. (saffron) can protect against intestinal injury in response to inflammation; however, the specific protective components of saffron and the related mechanisms remain unclear. Safranal is one of the main components of saffron. Here, we used dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15) to create an intestinal injury model and explored the protective effect of safranal against tissue damage. Excessive proliferation and differentiation of ISCs in the Drosophila midgut were observed after DSS or Ecc15 feeding; however, these phenotypes were rescued after safranal feeding. In addition, we found that this process occurred through inhibition of the c-Jun N-terminal kinase (JNK), epidermal growth factor receptor (EGFR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Furthermore, safranal inhibited the Ecc15- and DSS-induced increases in antimicrobial peptide (AMP) and reactive oxygen species (ROS) levels and intestinal epithelial cell death, thereby protecting gut integrity. In summary, safranal was found to have a significant protective effect and maintain intestinal homeostasis in Drosophila; these findings provide a foundation for the application of safranal in clinical research and the treatment of intestinal injury.
Collapse
Affiliation(s)
- Xue Lei
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Ziqian Zhou
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Sihong Wang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian Province, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
8
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
9
|
Vidaurre V, Chen X. Epigenetic regulation of drosophila germline stem cell maintenance and differentiation. Dev Biol 2021; 473:105-118. [PMID: 33610541 DOI: 10.1016/j.ydbio.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Zhang H, Wang S, Jin LH. Acanthopanax senticosus polysaccharide regulates the intestinal homeostasis disruption induced by toxic chemicals in Drosophila. Phytother Res 2019; 34:193-200. [PMID: 31736181 DOI: 10.1002/ptr.6522] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium provides the first line of defense against pathogens and toxic compounds. The ingestion of toxic compounds causes an enhanced epithelial cell death and an excessive proliferation of intestinal stem cells, eventually resulting in the disruption of gut homeostasis. In this study, Drosophila gut inflammation model induced by toxic compounds was exploited to analyze the ameliorative effect of Acanthopanax senticosus polysaccharide on the disruption of gut homeostasis. As a result, it was found that A. senticosus polysaccharide can significantly increase the survival rate of Drosophila adults as well as reduce the excessive proliferation and differentiation of intestinal stem cells through epidermal growth factor receptor, jun-N-terminal kinase, and Notch signaling pathways under the exposure to toxic compounds dextran sodium sulfate. Moreover, the polysaccharide effectively decreased the epithelial cell death and the accumulation of reactive oxygen species and antimicrobial peptides induced by sodium dodecyl sulfate. In addition, it was found that A. senticosus polysaccharide can extend the lifespan of only female flies but not male flies. In conclusion, A. senticosus polysaccharide has an obvious protective effect on the gut homeostasis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Sihong Wang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecules, Ministry of education, Yanbian University, Yanji, Jilin Province, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
11
|
Spermatozoal mRNAs expression implicated in embryonic development were influenced by dietary folate supplementation of breeder roosters by altering spermatozoal piRNA expression profiles. Theriogenology 2019; 138:102-110. [PMID: 31325740 DOI: 10.1016/j.theriogenology.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022]
Abstract
Dietary folate intake, together with changes in its metabolism process, have effects on male reproduction, sperm epigenetic patterning and offspring outcome. Previous studies have proven that PIWI-interacting RNAs (piRNAs) play important roles in successful spermatogenesis and regulating genes expression of sperm and offspring embryo. Herein, we fed breeder roosters with five different levels (0, 0.25, 1.25, 2.50, and 5.00 mg/kg) of folate throughout life and found that paternal folate supplementation was beneficial to the growth and organ development of offspring broilers. Further spermatozoal mRNAs sequencing analyses implied that the dietary folate supplementation could regulate the spermatozoal mRNA abundance of genes related to the fetal development. Furthermore, global piRNAs analyses of breeder roosters' sperm revealed that differential concentration of dietary folate supplementation could change piRNAs profiles. Combined mRNAs sequencing and target gene prediction of differentially expressed gene-derived piRNAs, embryonic development and metabolism related pathways and biological processes, which were consisted to the regulatory roles of paternal folate supplementations, were significantly affected by the differentially expressed gene-derived piRNAs based on the GO and KEGG analyses. Overall, our results provided a novel insight into the role of piRNAs in response to folate intake, which will broaden the understanding about the relationship between folate and sperm epigenetic patterning of breeder roosters.
Collapse
|
12
|
Yang F, Quan Z, Huang H, He M, Liu X, Cai T, Xi R. Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing. eLife 2019; 8:40806. [PMID: 30648969 PMCID: PMC6335052 DOI: 10.7554/elife.40806] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). The complete set of genetic material within a cell is known as a genome. The genomes of human and other animal cells have regions of active genes interspersed with ‘dark’ regions known as heterochromatin, which contain genes and other types of genetic material that have been inactivated. Heterochromatin commonly contains sections of genetic material known as transposons. When a transposon is active it is able to move around the genome, therefore, inactivating (or ‘silencing’) transposons helps to maintain the integrity of the genetic material in a cell. It is particularly important to silence transposons in the stem cells that produce sperm and egg cells – known as germline stem cells – to ensure genetic information is faithfully passed on to the next generation. A protein called HP1a plays a major role in directing where heterochromatin forms in the genome. This process requires an enzyme called dLsd1 to remove a small tag from the genetic material but it is not clear how HP1a regulates the activity of dLsd1. To address this question, Yang et al. studied how egg cells form in fruit flies, which are often used as models of animal biology in experiments. The team screened a population of fruit flies that carried mutations in many different genes to identify genes that affect the fertility of female flies. This revealed a gene named as ovaries absent (or ova for short) is required for egg cells to form. In germline stem cells ova silences transposons and in the surrounding tissue it represses a specific signal that usually maintains stem cells to allow the stem cells to divide to make egg cells. Further experiments using biochemical techniques found that the protein encoded by ova acts as a bridge to bring HP1a and dLsd1 together to silence genes in heterochromatin. The next step would be to identify the functional counterpart of the ova gene in mammals, including humans, which may help to discover causes of infertility and develop new fertility treatment.
Collapse
Affiliation(s)
- Fu Yang
- National Institute of Biological Sciences, Beijing, China
| | - Zhenghui Quan
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Minghui He
- National Institute of Biological Sciences, Beijing, China
| | - Xicheng Liu
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
14
|
Lee CC, Wang J. Rapid Expansion of a Highly Germline-Expressed Mariner Element Acquired by Horizontal Transfer in the Fire Ant Genome. Genome Biol Evol 2018; 10:3262-3278. [PMID: 30304394 PMCID: PMC6307670 DOI: 10.1093/gbe/evy220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are present in almost all organisms and affect the host in various ways. TE activity can increase genomic variation and thereby affect host evolution. Currently active TEs are particularly interesting because they are likely generating new genomic diversity. These active TEs have been poorly studied outside of model organisms. In this study, we aimed to identify currently active TEs of a notorious invasive species, the red imported fire ant Solenopsis invicta. Using RNA profiling of male and female germline tissues, we found that the majority of TE-containing transcripts in the fire ant germline belong to the IS630-Tc1-Mariner superfamily. Subsequent genomic characterization of fire ant mariner content, molecular evolution analysis, and population comparisons revealed a highly expressed and highly polymorphic mariner element that is rapidly expanding in the fire ant genome. Additionally, using comparative genomics of multiple insect species we showed that this mariner has undergone several recent horizontal transfer events (<5.1 My). Our results document a rare case of a currently active TE originating from horizontal transfer.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Ugolini I, Halic M. Fidelity in RNA-based recognition of transposable elements. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0168. [PMID: 30397104 PMCID: PMC6232588 DOI: 10.1098/rstb.2018.0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Genomes are under constant threat of invasion by transposable elements and other genomic parasites. How can host genomes recognize these elements and target them for degradation? This requires a system that is highly adaptable, and at the same time highly specific. Current data suggest that perturbation of transcription patterns by transposon insertions could be detected by the RNAi surveillance pathway. Multiple transposon insertions might generate sufficient amounts of primal small RNAs to initiate generation of secondary small RNAs and silencing. At the same time primal small RNAs need to be constantly degraded to reduce the level of noise small RNAs below the threshold required for initiation of silencing. Failure in RNA degradation results in loss of fidelity of small RNA pathways and silencing of ectopic targets. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Ilaria Ugolini
- Department of Biochemistry and Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mario Halic
- Department of Biochemistry and Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
16
|
Elsner D, Meusemann K, Korb J. Longevity and transposon defense, the case of termite reproductives. Proc Natl Acad Sci U S A 2018; 115:5504-5509. [PMID: 29735660 PMCID: PMC6003524 DOI: 10.1073/pnas.1804046115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Social insects are promising new models in aging research. Within single colonies, longevity differences of several magnitudes exist that can be found elsewhere only between different species. Reproducing queens (and, in termites, also kings) can live for several decades, whereas sterile workers often have a lifespan of a few weeks only. We studied aging in the wild in a highly social insect, the termite Macrotermes bellicosus, which has one of the most pronounced longevity differences between reproductives and workers. We show that gene-expression patterns differed little between young and old reproductives, implying negligible aging. By contrast, old major workers had many genes up-regulated that are related to transposable elements (TEs), which can cause aging. Strikingly, genes from the PIWI-interacting RNA (piRNA) pathway, which are generally known to silence TEs in the germline of multicellular animals, were down-regulated only in old major workers but not in reproductives. Continued up-regulation of the piRNA defense commonly found in the germline of animals can explain the long life of termite reproductives, implying somatic cooption of germline defense during social evolution. This presents a striking germline/soma analogy as envisioned by the superorganism concept: the reproductives and workers of a colony reflect the germline and soma of multicellular animals, respectively. Our results provide support for the disposable soma theory of aging.
Collapse
Affiliation(s)
- Daniel Elsner
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg D-79104, Germany
| | - Karen Meusemann
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg D-79104, Germany
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
17
|
Lakhotia SC. Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0221-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Fefelova EA, Stolyarenko AD, Yakushev EY, Gvozdev VA, Klenov MS. Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli. Mol Biol 2017. [DOI: 10.1134/s0026893317050089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Castillejo-López C, Cai X, Fahmy K, Baumgartner S. Drosophila exoribonuclease nibbler is a tumor suppressor, acts within the RNA i machinery and is not enriched in the nuage during early oogenesis. Hereditas 2017; 155:12. [PMID: 28974923 PMCID: PMC5622571 DOI: 10.1186/s41065-017-0047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Background micro RNAs (miRNAs) are important regulators of many biological pathways. A plethora of steps are required to form, from a precursor, the mature miRNA that eventually acts on its target RNA to repress its expression or to inhibit translation. Recently, Drosophila nibbler (nbr) has been shown to be an important player in the maturation process of miRNA and piRNA. Nbr is an exoribonuclease which helps to shape the 3′ end of miRNAs by trimming the 3′ overhang to a final length. Results In contrast to previous reports on the localization of Nbr, we report that 1) Nbr is expressed only during a short time of oogenesis and appears ubiquitously localized within oocytes, and that 2) Nbr was is not enriched in the nuage where it was shown to be involved in piwi-mediated mechanisms. To date, there is little information available on the function of nbr for cellular and developmental processes. Due to the fact that nbr mutants are viable with minor deleterious effects, we used the GAL4/UAS over-expression system to define novel functions of nbr. We disclose hitherto unknown functions of nbr 1) as a tumor suppressor and 2) as a suppressor of RNAi. Finally, we confirm that nbr is a suppressor of transposon activity. Conclusions Our data suggest that nbr exerts much more widespread functions than previously reported from trimming 3′ ends of miRNAs only.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden.,Present address: Department of Molecular Epidemiology, Uppsala University, 75185 Uppsala, Sweden
| | - Xiaoli Cai
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden
| | - Khalid Fahmy
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden.,Present address: Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Stefan Baumgartner
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden
| |
Collapse
|
20
|
Jakšić AM, Kofler R, Schlötterer C. Regulation of transposable elements: Interplay between TE-encoded regulatory sequences and host-specific trans-acting factors in Drosophila melanogaster. Mol Ecol 2017; 26:5149-5159. [PMID: 28742942 DOI: 10.1111/mec.14259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are mobile genetic elements that can move around the genome, and their expression is one precondition for this mobility. Because the insertion of TEs in new genomic positions is largely deleterious, the molecular mechanisms for transcriptional suppression have been extensively studied. In contrast, very little is known about their primary transcriptional regulation. Here, we characterize the expression dynamics of TE families in Drosophila melanogaster across a broad temperature range (13-29°C). In 71% of the expressed TE families, the expression is modulated by temperature. We show that this temperature-dependent regulation is specific for TE families and strongly affected by the genetic background. We deduce that TEs carry family-specific regulatory sequences, which are targeted by host-specific trans-acting factors, such as transcription factors. Consistent with the widespread dominant inheritance of gene expression, we also find the prevailing dominance of TE family expression. We conclude that TE family expression across a range of temperatures is regulated by an interaction between TE family-specific regulatory elements and trans-acting factors of the host.
Collapse
Affiliation(s)
- Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
21
|
High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila. Biochem Biophys Res Commun 2017; 487:910-916. [DOI: 10.1016/j.bbrc.2017.04.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/06/2023]
|