1
|
Al Delbany D, Ghosh MS, Krivec N, Huyghebaert A, Regin M, Duong MC, Lei Y, Sermon K, Olsen C, Spits C. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells 2024; 13:1395. [PMID: 39195283 PMCID: PMC11353044 DOI: 10.3390/cells13161395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) are pivotal in regenerative medicine, yet their in vitro expansion often leads to genetic abnormalities, raising concerns about their safety in clinical applications. This study analyzed ten human embryonic stem cell lines across multiple passages to elucidate the dynamics of chromosomal abnormalities and single-nucleotide variants (SNVs) in 380 cancer-related genes. Prolonged in vitro culture resulted in 80% of the lines acquiring gains of chromosome 20q or 1q, both known for conferring an in vitro growth advantage. 70% of lines also acquired other copy number variants (CNVs) outside the recurrent set. Additionally, we detected 122 SNVs in 88 genes, with all lines acquiring at least one de novo SNV during culture. Our findings showed higher loads of both CNVs and SNVs at later passages, which were due to the cumulative acquisition of mutations over a longer time in culture, and not to an increased rate of mutagenesis over time. Importantly, we observed that SNVs and rare CNVs followed the acquisition of chromosomal gains in 1q and 20q, while most of the low-passage and genetically balanced samples were devoid of cancer-associated mutations. This suggests that recurrent chromosomal abnormalities are potential drivers for the acquisition of other mutations.
Collapse
Affiliation(s)
- Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Manjusha S. Ghosh
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Nuša Krivec
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Anfien Huyghebaert
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Mai Chi Duong
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Department of Biochemistry, Military Hospital 175, 786 Nguyen Kiem Street, Ho Chi Minh City 71409, Vietnam
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Catharina Olsen
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB)-Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB)-Vrije Universiteit Brussel (VUB), La Plaine Campus Triomflaan, 1050 Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| |
Collapse
|
2
|
Tang AD, Felton C, Hrabeta-Robinson E, Volden R, Vollmers C, Brooks AN. Detecting haplotype-specific transcript variation in long reads with FLAIR2. Genome Biol 2024; 25:173. [PMID: 38956576 PMCID: PMC11218413 DOI: 10.1186/s13059-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme that mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung adenocarcinoma cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, the use of short-read RNA-seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. RESULTS We employ long-read sequencing technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We develop a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generate nanopore data with high sequence accuracy from H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We apply our workflow to identify key inosine isoform associations to help clarify the prominence of ADAR in tumorigenesis. CONCLUSIONS Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.
Collapse
Affiliation(s)
- Alison D Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Colette Felton
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Roger Volden
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA.
| |
Collapse
|
3
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhang Z, Bao X, Lin CP. Progress and Prospects of Gene Editing in Pluripotent Stem Cells. Biomedicines 2023; 11:2168. [PMID: 37626665 PMCID: PMC10452926 DOI: 10.3390/biomedicines11082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Applying programmable nucleases in gene editing has greatly shaped current research in basic biology and clinical translation. Gene editing in human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), is highly relevant to clinical cell therapy and thus should be examined with particular caution. First, since all mutations in PSCs will be carried to all their progenies, off-target edits of editors will be amplified. Second, due to the hypersensitivity of PSCs to DNA damage, double-strand breaks (DSBs) made by gene editing could lead to low editing efficiency and the enrichment of cell populations with defective genomic safeguards. In this regard, DSB-independent gene editing tools, such as base editors and prime editors, are favored due to their nature to avoid these consequences. With more understanding of the microbial world, new systems, such as Cas-related nucleases, transposons, and recombinases, are also expanding the toolbox for gene editing. In this review, we discuss current applications of programmable nucleases in PSCs for gene editing, the efforts researchers have made to optimize these systems, as well as new tools that can be potentially employed for differentiation modeling and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (Z.Z.); (X.B.)
| |
Collapse
|
5
|
Tang AD, Hrabeta-Robinson E, Volden R, Vollmers C, Brooks AN. Detecting haplotype-specific transcript variation in long reads with FLAIR2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544396. [PMID: 37398362 PMCID: PMC10312636 DOI: 10.1101/2023.06.09.544396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background RNA-Seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme which mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung ADC cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, short read RNA-Seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. Results We employed long-read technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We have developed a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generated nanopore data with high sequence accuracy of H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We applied our workflow to identify key inosine-isoform associations to help clarify the prominence of ADAR in tumorigenesis. Conclusions Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.
Collapse
Affiliation(s)
- Alison D. Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | | | - Roger Volden
- Department of Biomolecular Engineering, University of California, Santa Cruz
| | | | - Angela N. Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz
| |
Collapse
|
6
|
Augustyniak J, Kozlowska H, Buzanska L. Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions. Cells 2023; 12:cells12030390. [PMID: 36766732 PMCID: PMC9913246 DOI: 10.3390/cells12030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation.
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Technique, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| |
Collapse
|
7
|
Zhao Q, Liu K, Zhang L, Li Z, Wang L, Cao J, Xu Y, Zheng A, Chen Q, Zhao T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis 2022; 13:976. [PMID: 36402748 PMCID: PMC9675825 DOI: 10.1038/s41419-022-05413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) have a significantly lower mutation load compared to somatic cells, but the mechanisms that guard genomic integrity in ESCs remain largely unknown. Here we show that BNIP3-dependent mitophagy protects genomic integrity in mouse ESCs. Deletion of Bnip3 increases cellular reactive oxygen species (ROS) and decreases ATP generation. Increased ROS in Bnip3-/- ESCs compromised self-renewal and were partially rescued by either NAC treatment or p53 depletion. The decreased cellular ATP in Bnip3-/- ESCs induced AMPK activation and deteriorated homologous recombination, leading to elevated mutation load during long-term propagation. Whereas activation of AMPK in X-ray-treated Bnip3+/+ ESCs dramatically ascended mutation rates, inactivation of AMPK in Bnip3-/- ESCs under X-ray stress remarkably decreased the mutation load. In addition, enhancement of BNIP3-dependent mitophagy during reprogramming markedly decreased mutation accumulation in established iPSCs. In conclusion, we demonstrated a novel pathway in which BNIP3-dependent mitophagy safeguards ESC genomic stability, and that could potentially be targeted to improve pluripotent stem cell genomic integrity for regenerative medicine.
Collapse
Affiliation(s)
- Qian Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Kun Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Lin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zheng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Liang Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiani Cao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Youqing Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quan Chen
- grid.216938.70000 0000 9878 7032College of Life Sciences, Nankai University, Tianjin, 300073 China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Abstract
'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.
Collapse
Affiliation(s)
- Prim B. Singh
- Department of Medicine, Nazarbayev University School of Medicine, 5/1 Kerei Zhanibek Khandar Street, Astana 010000, Republic of Kazakhstan
| | - Assem Zhakupova
- Department of Medicine, Nazarbayev University School of Medicine, 5/1 Kerei Zhanibek Khandar Street, Astana 010000, Republic of Kazakhstan
| |
Collapse
|
9
|
A Novel Cell-Based Model for a Rare Disease: The Tks4-KO Human Embryonic Stem Cell Line as a Frank-Ter Haar Syndrome Model System. Int J Mol Sci 2022; 23:ijms23158803. [PMID: 35955935 PMCID: PMC9369304 DOI: 10.3390/ijms23158803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Tyrosine kinase substrate with four SH3 domains (Tks4) scaffold protein plays roles in cell migration and podosome formation and regulates systemic mechanisms such as adult bone homeostasis and adipogenesis. Mutations in the Tks4 gene (SH3PXD2b) cause a rare developmental disorder called Frank-Ter Haar syndrome (FTHS), which leads to heart abnormalities, bone tissue defects, and reduced adiposity. We aimed to produce a human stem cell-based in vitro FTHS model system to study the effects of the loss of the Tks4 protein in different cell lineages and the accompanying effects on the cell signalome. To this end, we used CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas9)) to knock out the SH3PXD2b gene in the HUES9 human embryonic stem cell line (hESC), and we obtained stable homo- and heterozygous knock out clones for use in studying the potential regulatory roles of Tks4 protein in embryonic stem cell biology. Based on pluripotency marker measurements and spontaneous differentiation capacity assays, we concluded that the newly generated Tks4-KO HUES9 cells retained their embryonic stem cell characteristics. We propose that the Tks4-KO HUES9 cells could serve as a tool for further cell differentiation studies to investigate the involvement of Tks4 in the complex disorder FTHS. Moreover, we successfully differentiated all of the clones into mesenchymal stem cells (MSCs). The derived MSC cultures showed mesenchymal morphology and expressed MSC markers, although the expression levels of mesodermal and osteogenic marker genes were reduced, and several EMT (epithelial mesenchymal transition)-related features were altered in the Tks4-KO MSCs. Our results suggest that the loss of Tks4 leads to FTHS by altering cell lineage differentiation and cell maturation processes, rather than by regulating embryonic stem cell potential.
Collapse
|
10
|
Baran V, Pisko J. Cleavage of Early Mouse Embryo with Damaged DNA. Int J Mol Sci 2022; 23:3516. [PMID: 35408877 PMCID: PMC8998204 DOI: 10.3390/ijms23073516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
The preimplantation period of embryogenesis is crucial during mammalian ontogenesis. During this period, the mitotic cycles are initiated, the embryonic genome is activated, and the primary differentiation of embryonic cells occurs. All cellular abnormalities occurring in this period are the primary cause of fetal developmental disorders. DNA damage is a serious cause of developmental failure. In the context of DNA damage response on the cellular level, we analyzed the course of embryogenesis and phenotypic changes during the cleavage of a preimplantation embryo. Our results document that DNA damage induced before the resumption of DNA synthesis in a zygote can significantly affect the preimplantation development of the embryo. This developmental ability is related to the level of the DNA damage. We showed that one-cell embryos can correct the first cleavage cycle despite low DNA damage and incomplete replication. It seems that the phenomenon creates a predisposition to a segregation disorder of condensed chromatin that results in the formation of micronuclei in the developmental stages following the first cleavage. We conclude that zygote tolerates a certain degree of DNA damage and considers its priority to complete the first cleavage stage and continue embryogenesis as far as possible.
Collapse
Affiliation(s)
- Vladimír Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4, 040 00 Košice, Slovakia;
| | | |
Collapse
|
11
|
Park JC, Jang HK, Kim J, Han JH, Jung Y, Kim K, Bae S, Cha HJ. High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:175-183. [PMID: 34976436 PMCID: PMC8688811 DOI: 10.1016/j.omtn.2021.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/28/2021] [Indexed: 10/29/2022]
Abstract
Precise genome editing of human pluripotent stem cells (hPSCs) is crucial not only for basic science but also for biomedical applications such as ex vivo stem cell therapy and genetic disease modeling. However, hPSCs have unique cellular properties compared to somatic cells. For instance, hPSCs are extremely susceptible to DNA damage, and therefore Cas9-mediated DNA double-strand breaks (DSB) induce p53-dependent cell death, resulting in low Cas9 editing efficiency. Unlike Cas9 nucleases, base editors including cytosine base editor (CBE) and adenine base editor (ABE) can efficiently substitute single nucleotides without generating DSBs at target sites. Here, we found that the editing efficiency of CBE was significantly lower than that of ABE in human embryonic stem cells (hESCs), which are associated with high expression of DNA glycosylases, the key component of the base excision repair pathway. Sequential depletion of DNA glycosylases revealed that high expression of uracil DNA glycosylase (UNG) not only resulted in low editing efficiency but also affected CBE product purity (i.e., C to T) in hESCs. Therefore, additional suppression of UNG via transient knockdown would also improve C to T base substitutions in hESCs. These data suggest that the unique cellular characteristics of hPSCs could determine the efficiency of precise genome editing.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyeon-Ki Jang
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jumee Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Keuntae Kim
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangsu Bae
- Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemistry, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Strategies for effective neural circuit reconstruction after spinal cord injury: use of stem cells and biomaterials. World Neurosurg 2022; 161:82-89. [PMID: 35144032 DOI: 10.1016/j.wneu.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI), a serious disease of the central nervous system, often with irreversible loss of motor or sensory functions. Failure of axon connection and inhibition of microenvironment after SCI severely hinder the regeneration of damaged tissue and neuron function. Therefore, the new perspective of treatment of spinal cord injury is the reconstruction of neural circuit. Stem cells are a kind of cells with differentiation potential. They reconstruct local circulation by differentiating into neurons to replace damaged cells. It can also secrete various factors to regulate the host microenvironment and play a therapeutic role. Biomaterials can fill the cavity at the site of spinal cord injury, load therapeutic drugs, provide adsorption sites for transplanted cells and play a bridging role. In this review, the therapeutic role of stem cells and biomaterials is discussed, together with their properties, advantages, limitations, and future perspectives, providing a reference for basic and clinical research on SCI treatment.
Collapse
|
13
|
Mianné J, Nasri A, Van CN, Bourguignon C, Fieldès M, Ahmed E, Duthoit C, Martin N, Parrinello H, Louis A, Iché A, Gayon R, Samain F, Lamouroux L, Bouillé P, Bourdin A, Assou S, De Vos J. CRISPR/Cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells using non-integrative bacteriophage-chimeric retrovirus-like particles. BMC Biol 2022; 20:8. [PMID: 34996449 PMCID: PMC8742436 DOI: 10.1186/s12915-021-01214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.
Collapse
Affiliation(s)
- Joffrey Mianné
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Amel Nasri
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Nguyen Van
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Chloé Bourguignon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Mathieu Fieldès
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - Engi Ahmed
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Hugues Parrinello
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Anaïs Louis
- Univ. Montpellier, CNRS, INSERM, Montpellier, France
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | | | | | - Arnaud Bourdin
- PhyMedExp, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France
| | - John De Vos
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Hôpital St Eloi, 80 avenue Augustin Fliche, 34295, Montpellier, France.
- Department of Cell and Tissue Engineering, Univ Montpellier, CHU Montpellier, Montpellier, France.
| |
Collapse
|
14
|
Chen W, Chen X, Zhang X, Chen C, Dan S, Hu J, Kang B, Wang YJ. DNA repair proteins cooperate with SOX2 in regulating the transition of human embryonic stem cells to neural progenitor cells. Biochem Biophys Res Commun 2022; 586:163-170. [PMID: 34852960 DOI: 10.1016/j.bbrc.2021.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/14/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022]
Abstract
SOX2, a well-established pluripotency factor supporting the self-renewal of pluripotent stem cells (PSCs), is also a crucial factor for maintaining the properties and functionalities of neural progenitor cells (NPCs). It regulates the transcription of target genes by forming complexes with its partner factors, but systematic comparison of SOX2 binding partners in human PSCs versus NPCs is lacking. Here, by deciphering and comparing the SOX2-protein interactomes in human embryonic stem cells (hESCs) versus the NPCs derived from them, we identified 23 proteins with high reproducibility that are most differentially associated with SOX2, of which 9 are DNA repair proteins (PARP1, PARP2, PRKDC, XRCC1, XRCC5, XRCC6, RPA1, LIG3, DDB1). Genetic knocking-down or pharmacological inhibiting two of the DNA repair proteins (PARP1 and PRKDC) significantly up-regulated certain NPC or ectodermal biomarkers that are transcriptionally-suppressed by the SOX2/DNA repair protein complexes. These findings point to a crucial role of DNA repair proteins in pluripotent state transition and neural induction.
Collapse
Affiliation(s)
- Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianwen Hu
- Shanghai Bioprofile Technology Co., Ltd., Shanghai, 200241, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Khokhlova EV, Fesenko ZS, Sopova JV, Leonova EI. Features of DNA Repair in the Early Stages of Mammalian Embryonic Development. Genes (Basel) 2020; 11:genes11101138. [PMID: 32992616 PMCID: PMC7599644 DOI: 10.3390/genes11101138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Cell repair machinery is responsible for protecting the genome from endogenous and exogenous effects that induce DNA damage. Mutations that occur in somatic cells lead to dysfunction in certain tissues or organs, while a violation of genomic integrity during the embryonic period often leads to death. A mammalian embryo’s ability to respond to damaged DNA and repair it, as well as its sensitivity to specific lesions, is still not well understood. In this review, we combine disparate data on repair processes in the early stages of preimplantation development in mammalian embryos.
Collapse
Affiliation(s)
- Evgenia V. Khokhlova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Zoia S. Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
| | - Julia V. Sopova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Preclinical Research Center, University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: ; Tel.: +8-(999)-232-92-58
| |
Collapse
|
16
|
Cops5 safeguards genomic stability of embryonic stem cells through regulating cellular metabolism and DNA repair. Proc Natl Acad Sci U S A 2020; 117:2519-2525. [PMID: 31964807 DOI: 10.1073/pnas.1915079117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The highly conserved COP9 signalosome (CSN), composed of 8 subunits (Cops1 to Cops8), has been implicated in pluripotency maintenance of human embryonic stem cells (ESCs). Yet, the mechanism for the CSN to regulate pluripotency remains elusive. We previously showed that Cops2, independent of the CSN, is essential for the pluripotency maintenance of mouse ESCs. In this study, we set out to investigate how Cops5 and Cops8 regulate ESC differentiation and tried to establish Cops5 and Cops8 knockout (KO) ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones were identified out of 127 clones, while three Cops8 KO ESC lines were established out of 70 clones. We then constructed an inducible Cops5 KO ESC line. Cops5 KO leads to decreased expression of the pluripotency marker Nanog, proliferation defect, G2/M cell-cycle arrest, and apoptosis of ESCs. Further analysis revealed dual roles of Cops5 in maintaining genomic stability of ESCs. On one hand, Cops5 suppresses the autophagic degradation of Mtch2 to direct cellular metabolism toward glycolysis and minimize reactive oxygen species (ROS) production, thereby reducing endogenous DNA damage. On the other hand, Cops5 is required for high DNA damage repair (DDR) activities in ESCs. Without Cops5, elevated ROS and reduced DDR activities lead to DNA damage accumulation in ESCs. Subsequently, p53 is activated to trigger G2/M arrest and apoptosis. Altogether, our studies reveal an essential role of Cops5 in maintaining genome integrity and self-renewal of ESCs by regulating cellular metabolism and DDR pathways.
Collapse
|
17
|
Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, Chen L, Liu L. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res 2019; 46:3468-3486. [PMID: 29447390 PMCID: PMC6283425 DOI: 10.1093/nar/gky098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem cells (ESCs) and meiosis are featured by relatively higher frequent homologous recombination associated with DNA double strand breaks (DSB) repair. Here, we show that Pold3 plays important roles in DSB repair, telomere maintenance and genomic stability of both ESCs and spermatocytes in mice. By attempting to generate Pold3 deficient mice using CRISPR/Cas9 or transcription activator-like effector nucleases, we show that complete loss of Pold3 (Pold3−/−) resulted in early embryonic lethality at E6.5. Rapid DNA damage response and massive apoptosis occurred in both outgrowths of Pold3-null (Pold3−/−) blastocysts and Pold3 inducible knockout (iKO) ESCs. While Pold3−/− ESCs were not achievable, Pold3 iKO led to increased DNA damage response, telomere loss and chromosome breaks accompanied by extended S phase. Meanwhile, loss of Pold3 resulted in replicative stress, micronucleation and aneuploidy. Also, DNA repair was impaired in Pold3+/− or Pold3 knockdown ESCs. Moreover, Pold3 mediates DNA replication and repair by regulating 53BP1, RIF1, ATR and ATM pathways. Furthermore, spermatocytes of Pold3 haploinsufficient (Pold3+/−) mice with increasing age displayed impaired DSB repair, telomere shortening and loss, and chromosome breaks, like Pold3 iKO ESCs. These data suggest that Pold3 maintains telomere integrity and genomic stability of both ESCs and meiosis by suppressing replicative stress.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingling Wang
- Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feixiang Ge
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Liu X, Wang M, Jiang T, He J, Fu X, Xu Y. IDO1 Maintains Pluripotency of Primed Human Embryonic Stem Cells by Promoting Glycolysis. Stem Cells 2019; 37:1158-1165. [PMID: 31145821 DOI: 10.1002/stem.3044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022]
Abstract
Human embryonic stem cells (hESCs) depend on glycolysis for energy supply and pluripotency and switch to oxidative phosphorylation upon differentiation. The underlying mechanisms remain unclear. Here, we demonstrate that indoleamine 2,3-dioxygenase 1 (IDO1) is expressed in primed hESCs and its expression rapidly downregulated upon hESC differentiation. IDO1 is required to maintain pluripotency by suppressing mitochondria activity and promoting glycolysis through the increase of NAD+ /NADH ratio. The upregulation of IDO1 during hESC differentiation suppresses the differentiation of hESCs into certain lineages of cells such as cardiomyocytes, which depend on oxidative phosphorylation to satisfy their high energy demand. Therefore, IDO1 plays important roles in maintaining the pluripotency of hESCs. Stem Cells 2019;37:1158-1165.
Collapse
Affiliation(s)
- Xin Liu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Meiyan Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Tao Jiang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Kim J, Yu L, Chen W, Xu Y, Wu M, Todorova D, Tang Q, Feng B, Jiang L, He J, Chen G, Fu X, Xu Y. Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation. Cancer Cell 2019; 35:191-203.e8. [PMID: 30712844 DOI: 10.1016/j.ccell.2018.12.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 01/18/2023]
Abstract
The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.
Collapse
Affiliation(s)
- Jinchul Kim
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | - Lili Yu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wancheng Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanxia Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meng Wu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dilyana Todorova
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | - Qingshuang Tang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bingbing Feng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Jiang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Guihua Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| | - Yang Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China; Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
20
|
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 2018; 284:91-101. [DOI: 10.1016/j.jbiotec.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
|
21
|
Hintzsche H, Montag G, Stopper H. Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells. Sci Rep 2018; 8:3371. [PMID: 29463873 PMCID: PMC5820321 DOI: 10.1038/s41598-018-21680-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.
Collapse
Affiliation(s)
- Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany.,Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058, Erlangen, Germany
| | - Gracia Montag
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078, Wuerzburg, Germany.
| |
Collapse
|
22
|
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy.
Collapse
Affiliation(s)
- Xin Liu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Wenjuan Li
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|