1
|
Fernández-Domínguez IJ, Pérez-Cárdenas E, Taja-Chayeb L, Wegman-Ostrosky T, Caro-Sánchez CHS, Zentella-Dehesa A, Dueñas-González A, López-Basabe H, Morales-Bárcenas R, Trejo-Becerril C. Increased amounts of cell-free DNA released from a culture with a high content of cancer stem cells. Front Cell Dev Biol 2025; 13:1499936. [PMID: 40226589 PMCID: PMC11985834 DOI: 10.3389/fcell.2025.1499936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background The study and characterization of cell-free DNA (cfDNA) has gained significant importance due to its clinical applications as a diagnostic and prognostic marker. However, it remains unclear whether all cell populations within a tumor or culture contribute equally to its release. This pioneering research analyzes the contribution of cancer stem cells (CSCs) in colon cancer cell lines to the amount of cfDNA released and its role in cellular transformation. Methods The CSC population derived from the SW480 colon cancer cell line was enriched using a non-adhesive culture system to assess the quantity and electrophoretic profile of the released cfDNA. Subsequently, in vitro transformation assays were conducted to compare the transforming capacity of the cfDNA obtained from enriched cultures with that from non-enriched cultures. Group differences were analyzed using analysis of variance (ANOVA), followed by post hoc interpretation with Tukey's test. Results Our study revealed that cultures with CSCs released greater amounts of cfDNA, displaying a distinct fragment profile. Additionally, cfDNA from different cellular origins influenced the transformation characteristics of NIH3T3 cells. This is the first demonstration of a link between CSC proportions and cfDNA release, suggesting that CSCs and microenvironmental conditions can affect cfDNA quantity and its potential to induce transformation. Conclusion These findings highlight the importance of cfDNA in carcinogenesis and its potential as a biomarker and therapeutic target, especially given the role of CSCs in drug resistance and tumor aggressiveness.
Collapse
Affiliation(s)
- Ileana J. Fernández-Domínguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, México City, Mexico
| | - Enrique Pérez-Cárdenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | | | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Horacio López-Basabe
- Departamento de Gastroenterología del Instituto Nacional de Cancerología, México City, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Catalina Trejo-Becerril
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| |
Collapse
|
2
|
Pessei V, Macagno M, Mariella E, Congiusta N, Battaglieri V, Battuello P, Viviani M, Gionfriddo G, Lamba S, Lorenzato A, Oddo D, Idrees F, Cavaliere A, Bartolini A, Guarrera S, Linnebacher M, Monteonofrio L, Cardone L, Milella M, Bertotti A, Soddu S, Grassi E, Crisafulli G, Bardelli A, Barault L, Di Nicolantonio F. DNA demethylation triggers cell free DNA release in colorectal cancer cells. Genome Med 2024; 16:118. [PMID: 39385243 PMCID: PMC11462661 DOI: 10.1186/s13073-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.
Collapse
Affiliation(s)
- Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Elisa Mariella
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Vittorio Battaglieri
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Gionfriddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Simona Lamba
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, UMR, Rostock, Germany
| | - Laura Monteonofrio
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Luca Cardone
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Soddu
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Elena Grassi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
3
|
Tutanov O, Shefer A, Shefer E, Ruzankin P, Tsentalovich Y, Tamkovich S. DNA-Binding Proteins and Passenger Proteins in Plasma DNA-Protein Complexes: Imprint of Parental Cells or Key Mediators of Carcinogenesis Processes? Int J Mol Sci 2024; 25:5165. [PMID: 38791202 PMCID: PMC11121045 DOI: 10.3390/ijms25105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Knowledge of the composition of proteins that interact with plasma DNA will provide a better understanding of the homeostasis of circulating nucleic acids and the various modes of interaction with target cells, which may be useful in the development of gene targeted therapy approaches. The goal of the present study is to shed light on the composition and architecture of histone-containing nucleoprotein complexes (NPCs) from the blood plasma of healthy females (HFs) and breast cancer patients (BCPs) and to explore the relationship of proteins with crucial steps of tumor progression: epithelial-mesenchymal transition (EMT), cell proliferation, invasion, cell migration, stimulation of angiogenesis, and immune response. MALDI-TOF mass spectrometric analysis of NPCs isolated from blood samples using affine chromatography was performed. Bioinformatics analysis showed that the shares of DNA-binding proteins in the compositions of NPCs in normal and cancer patients are comparable and amount to 40% and 33%, respectively; in total, we identified 38 types of DNA-binding motifs. Functional enrichment analysis using FunRich 3.13 showed that, in BCP blood, the share of DNA-binding proteins involved in nucleic acid metabolism increased, while the proportion of proteins involved in intercellular communication and signal transduction decreased. The representation of NPC passenger proteins in breast cancer also changes: the proportion of proteins involved in transport increases and the share of proteins involved in energy biological pathways decreases. Moreover, in the HF blood, proteins involved in the processes of apoptosis were more represented in the composition of NPCs and in the BCP blood-in the processes of active secretion. For the first time, bioinformatics approaches were used to visualize the architecture of circulating NPCs in the blood and to show that breast cancer has an increased representation of passenger proteins involved in EMT, cell proliferation, invasion, cell migration, and immune response. Using breast cancer protein data from the Human Protein Atlas (HPA) and DEPC, we found that 86% of NPC proteins in the blood of BCPs were not previously annotated in these databases. The obtained data may indirectly indicate directed protein sorting in NPCs, which, along with extracellular vesicles, can not only be diagnostically significant molecules for liquid biopsy, but can also carry out the directed transfer of genetic material from donor cells to recipient cells.
Collapse
Affiliation(s)
- Oleg Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | - Aleksei Shefer
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii Shefer
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Applied Inverse Problems, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Ruzankin
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratory of Applied Inverse Problems, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yuri Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Svetlana Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
5
|
Tutanov O, Shefer A, Tsentalovich Y, Tamkovich S. Comparative Analysis of Molecular Functions and Biological Role of Proteins from Cell-Free DNA-Protein Complexes Circulating in Plasma of Healthy Females and Breast Cancer Patients. Int J Mol Sci 2023; 24:ijms24087279. [PMID: 37108441 PMCID: PMC10138639 DOI: 10.3390/ijms24087279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-free DNA (cfDNA) circulates in the bloodstream packed in membrane-coated structures (such as apoptotic bodies) or bound to proteins. To identify proteins involved in the formation of deoxyribonucleoprotein complexes circulating in the blood, native complexes were isolated using affinity chromatography with immobilized polyclonal anti-histone antibodies from plasma of healthy females (HFs) and breast cancer patients (BCPs). It was found that the nucleoprotein complexes (NPCs) from HF plasma samples contained shorter DNA fragments (~180 bp) than BCP NPCs. However, the share of DNA in the NPCs from cfDNA in blood plasma in HFs and BCPs did not differ significantly, as well as the share of NPC protein from blood plasma total protein. Proteins were separated by SDS-PAGE and identified by MALDI-TOF mass spectrometry. Bioinformatic analysis showed that in the presence of a malignant tumor, the proportion of proteins involved in ion channels, protein binding, transport, and signal transduction increased in the composition of blood-circulating NPCs. Moreover, 58 (35%) proteins are differentially expressed in a number of malignant neoplasms in the NPCs of BCPs. Identified NPC proteins from BCP blood can be recommended for further testing as breast cancer diagnostic/prognostic biomarkers or as being useful in developing gene-targeted therapy approaches.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
7
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
8
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: from snapshot to temporal genome analysis. J LAB MED 2022; 46:207-224. [DOI: 10.1515/labmed-2022-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
Genomes of diverse origins are continuously shed into human body fluids in the form of fragmented cell-free DNA (cfDNA). These molecules maintain the genetic and epigenetic codes of their originating source, and often carry additional layers of unique information in newly discovered physico-chemical features. Characterization of cfDNA thus presents the opportunity to non-invasively reconstruct major parts of the host- and metagenome in silico. Data from a single specimen can be leveraged to detect a broad range of disease-specific signatures and has already enabled the development of many pioneering diagnostic tests. Moreover, data from serial sampling may allow unparalleled mapping of the scantily explored landscape of temporal genomic changes as it relates to various changes in different physiological and pathological states of individuals. In this review, we explore how this vast dimension of biological information accessible through cfDNA analysis is being tapped towards the development of increasingly powerful molecular assays and how it is shaping emerging technologies. We also discuss how this departure from traditional paradigms of snapshot genetic testing may pave the way for an onrush of new and exciting discoveries in human biology.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Vida Ungerer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Angela Oberhofer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| |
Collapse
|
9
|
Cell-Free DNA Fragmentation Patterns in a Cancer Cell Line. Diagnostics (Basel) 2022; 12:diagnostics12081896. [PMID: 36010246 PMCID: PMC9406536 DOI: 10.3390/diagnostics12081896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/20/2022] Open
Abstract
Unique bits of genetic, biological and pathological information occur in differently sized cell-free DNA (cfDNA) populations. This is a significant discovery, but much of the phenomenon remains to be explored. We investigated cfDNA fragmentation patterns in cultured human bone cancer (143B) cells using increasingly sensitive electrophoresis assays, including four automated microfluidic capillary electrophoresis assays from Agilent, i.e., DNA 1000, High Sensitivity DNA, dsDNA 915 and dsDNA 930, and an optimized manual agarose gel electrophoresis protocol. This comparison showed that (i) as the sensitivity and resolution of the sizing methods increase incrementally, additional nucleosomal multiples are revealed (hepta-nucleosomes were detectable with manual agarose gel electrophoresis), while the estimated size range of high molecular weight (HMW) cfDNA fragments narrow correspondingly; (ii) the cfDNA laddering pattern extends well beyond the 1–3 nucleosomal multiples detected by commonly used methods; and (iii) the modal size of HMW cfDNA populations is exaggerated due to the limited resolving power of electrophoresis, and instead consists of several poly-nucleosomal subpopulations that continue the series of DNA laddering. Furthermore, the most sensitive automated assay used in this study (Agilent dsDNA 930) revealed an exponential decay in the relative contribution of increasingly longer cfDNA populations. This power-law distribution suggests the involvement of a stochastic inter-nucleosomal DNA cleavage process, wherein shorter populations accumulate rapidly as they are fed by the degradation of all larger populations. This may explain why similar size profiles have historically been reported for cfDNA populations originating from different processes, such as apoptosis, necrosis, accidental cell lysis and purported active release. These results not only demonstrate the diversity of size profiles generated by different methods, but also highlight the importance of caution when drawing conclusions on the mechanisms that generate different cfDNA size populations, especially when only a single method is used for sizing.
Collapse
|
10
|
Oberhofer A, Bronkhorst AJ, Uhlig C, Ungerer V, Holdenrieder S. Tracing the Origin of Cell-Free DNA Molecules through Tissue-Specific Epigenetic Signatures. Diagnostics (Basel) 2022; 12:diagnostics12081834. [PMID: 36010184 PMCID: PMC9406971 DOI: 10.3390/diagnostics12081834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
All cell and tissue types constantly release DNA fragments into human body fluids by various mechanisms including programmed cell death, accidental cell degradation and active extrusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nucleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point out the next steps towards clinical implementation.
Collapse
|
11
|
Stefanov M. Primo Vascular System: Before the Past, Bizarre Present and Peek After the Future. J Acupunct Meridian Stud 2022; 15:61-73. [DOI: 10.51507/j.jams.2022.15.1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Miroslav Stefanov
- Department of Morphology, Physiology and Nutrition, Agricultural Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
12
|
Boniface CT, Spellman PT. Blood, Toil, and Taxoteres: Biological Determinates of Treatment-Induce ctDNA Dynamics for Interpreting Tumor Response. Pathol Oncol Res 2022; 28:1610103. [PMID: 35665409 PMCID: PMC9160182 DOI: 10.3389/pore.2022.1610103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Collection and analysis of circulating tumor DNA (ctDNA) is one of the few methods of liquid biopsy that measures generalizable and tumor specific molecules, and is one of the most promising approaches in assessing the effectiveness of cancer care. Clinical assays that utilize ctDNA are commercially available for the identification of actionable mutations prior to treatment and to assess minimal residual disease after treatment. There is currently no clinical ctDNA assay specifically intended to monitor disease response during treatment, partially due to the complex challenge of understanding the biological sources of ctDNA and the underlying principles that govern its release. Although studies have shown pre- and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more accurate in predicting response. Yet, these results also vary widely among cohorts, cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking toward the fundamental biological underpinnings of ctDNA release and dissemination from merely seeking convenient clinical correlates.
Collapse
Affiliation(s)
- Christopher T. Boniface
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| |
Collapse
|
13
|
Jain M, Kamalov D, Tivtikyan A, Balatsky A, Samokhodskaya L, Okhobotov D, Kozlova P, Pisarev E, Zvereva M, Kamalov A. Urine TERT promoter mutations-based tumor DNA detection in patients with bladder cancer: A pilot study. Mol Clin Oncol 2021; 15:253. [PMID: 34712485 PMCID: PMC8548999 DOI: 10.3892/mco.2021.2415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations are the most frequent genetic events in bladder cancer (BC). The aim of the present pilot study was to evaluate the diagnostic potential of urine TERT promoter mutations-based liquid biopsy in patients with an ongoing oncological process, as well as in post-resection patients at risk of BC recurrence. A total of 60 patients were enrolled, of whom 27 patients had histologically proven BC; 23 had no signs of BC (control group); and 10 patients underwent transurethral malignancy resection 3-6 months prior to urine donation ('second look' group). Urine TERT promoter mutations were detected using Droplet Digital PCR. Receiver operating characteristic curve analysis revealed significant diagnostic power of the present approach (area under the curve: -0.768). At the cut-off value of tumor DNA fraction 0.34%, the sensitivity and specificity were 55.56 and 100%, respectively. In the positive samples, tumor DNA fraction varied significantly from 0.59 to 48.77%. In the 'second look' group, tumor DNA was detected in 4/10 patients, highlighting the possibility of BC recurrence with its fraction ranging only from 0.90 to 6.61%. Therefore, urine TERT promoter mutations-based liquid biopsy appears to be a promising tool for BC diagnosis and surveillance. The main study will include recruitment of additional patients, extension of the mutation panel, prolonged follow-up of the post-resection patients, as well as screening of industrial workers exposed to specific carcinogens.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - David Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Tivtikyan
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander Balatsky
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry Okhobotov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Polina Kozlova
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eduard Pisarev
- Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Armais Kamalov
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
14
|
Krasic J, Abramovic I, Vrtaric A, Nikolac Gabaj N, Kralik-Oguic S, Katusic Bojanac A, Jezek D, Sincic N. Impact of Preanalytical and Analytical Methods on Cell-Free DNA Diagnostics. Front Cell Dev Biol 2021; 9:686149. [PMID: 34552921 PMCID: PMC8451956 DOI: 10.3389/fcell.2021.686149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
While tissue biopsy has for the longest time been the gold-standard in biomedicine, precision/personalized medicine is making the shift toward liquid biopsies. Cell-free DNA (cfDNA) based genetic and epigenetic biomarkers reflect the molecular status of its tissue-of-origin allowing for early and non-invasive diagnostics of different pathologies. However, selection of preanalytical procedures (including cfDNA isolation) as well as analytical methods are known to impact the downstream results. Calls for greater standardization are made continuously, yet comprehensive assessments of the impact on diagnostic parameters are lacking. This study aims to evaluate the preanalytic and analytic factors that influence cfDNA diagnostic parameters in blood and semen. Text mining analysis has been performed to assess cfDNA research trends, and identify studies on isolation methods, preanalytical and analytical impact. Seminal and blood plasma were tested as liquid biopsy sources. Traditional methods of cfDNA isolation, commercial kits (CKs), and an in-house developed protocol were tested, as well as the impact of dithiothreitol (DTT) on cfDNA isolation performance. Fluorimetry, qPCR, digital droplet PCR (ddPCR), and bioanalyzer were compared as cfDNA quantification methods. Fragment analysis was performed by qPCR and bioanalyzer while the downstream application (cfDNA methylation) was analyzed by pyrosequencing. In contrast to blood, semen as a liquid biopsy source has only recently begun to be reported as a liquid biopsy source, with almost half of all publications on it being review articles. Experimental data revealed that cfDNA isolation protocols give a wide range of cfDNA yields, both from blood and seminal plasma. The addition of DTT to CKs has improved yields in seminal plasma and had a neutral/negative impact in blood plasma. Capillary electrophoresis and fluorometry reported much higher yields than PCR methods. While cfDNA yield and integrity were highly impacted, cfDNA methylation was not affected by isolation methodology or DTT. In conclusion, NucleoSnap was recognized as the kit with the best overall performance. DTT improved CK yields in seminal plasma. The in-house developed protocol has shown near-kit isolation performance. ddPCR LINE-1 assay for absolute detection of minute amounts of cfDNA was established and allowed for quantification of samples inhibited in qPCR. cfDNA methylation was recognized as a stable biomarker unimpacted by cfDNA isolation method. Finally, semen was found to be an abundant source of cfDNA offering potential research opportunities and benefits for cfDNA based biomarkers development related to male reproductive health.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Irena Abramovic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sasa Kralik-Oguic
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
16
|
Ungerer V, Bronkhorst AJ, Van den Ackerveken P, Herzog M, Holdenrieder S. Serial profiling of cell-free DNA and nucleosome histone modifications in cell cultures. Sci Rep 2021; 11:9460. [PMID: 33947882 PMCID: PMC8096822 DOI: 10.1038/s41598-021-88866-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in basic research have unveiled several strategies for improving the sensitivity and specificity of cell-free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico-chemical properties of cfDNA towards the identification of better disease-defining features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifications with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three different cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non-cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High-resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo-nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute significantly to the pool of mono-nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profiling. Furthermore, since active steps are often taken to exclude longer oligo-nucleosomes from clinical biospecimens and subsequent assays this raises the question of whether important pathological information is lost.
Collapse
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Abel J Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | | | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany.
| |
Collapse
|
17
|
Koval AP, Blagodatskikh KA, Kushlinskii NE, Shcherbo DS. The Detection of Cancer Epigenetic Traces in Cell-Free DNA. Front Oncol 2021; 11:662094. [PMID: 33996585 PMCID: PMC8118693 DOI: 10.3389/fonc.2021.662094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Nucleic acid fragments found in blood circulation originate mostly from dying cells and carry signs pointing to specific features of the parental cell types. Deciphering these clues may be transformative for numerous research and clinical applications but strongly depends on the development and implementation of robust analytical methods. Remarkable progress has been achieved in the reliable detection of sequence alterations in cell-free DNA while decoding epigenetic information from methylation and fragmentation patterns requires more sophisticated approaches. This review discusses the currently available strategies for detecting and analyzing the epigenetic marks in the liquid biopsies.
Collapse
Affiliation(s)
- Anastasia P Koval
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin A Blagodatskikh
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay E Kushlinskii
- Laboratory of Clinical Biochemistry, N.N. Blokhin Cancer Research Medical Center of Oncology, Moscow, Russia
| | - Dmitry S Shcherbo
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Circulating Cell-Free DNA in Breast Cancer: Searching for Hidden Information towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13040728. [PMID: 33578793 PMCID: PMC7916622 DOI: 10.3390/cancers13040728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our research focuses in the elucidation of the nature of circulating cell-free DNA (ccfDNA) as a biological entity and its exploitation as a liquid biopsy biomaterial. Working on breast cancer, it became clear that although a promising biosource, its clinical exploitation is burdened mainly by gaps in knowledge about its biology and specific characteristics. The current review covers multiple aspects of ccfDNA in breast cancer. We cover key issues such as quantity, integrity, releasing structures, methylation specific changes, release mechanisms, biological role. Machine learning approaches for analyzing ccfDNA-generated data to produce classifiers for clinical use are also discussed. Abstract Breast cancer (BC) is a leading cause of death between women. Mortality is significantly raised due to drug resistance and metastasis, while personalized treatment options are obstructed by the limitations of conventional biopsy follow-up. Lately, research is focusing on circulating biomarkers as minimally invasive choices for diagnosis, prognosis and treatment monitoring. Circulating cell-free DNA (ccfDNA) is a promising liquid biopsy biomaterial of great potential as it is thought to mirror the tumor’s lifespan; however, its clinical exploitation is burdened mainly by gaps in knowledge of its biology and specific characteristics. The current review aims to gather latest findings about the nature of ccfDNA and its multiple molecular and biological characteristics in breast cancer, covering basic and translational research and giving insights about its validity in a clinical setting.
Collapse
|
19
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
20
|
van der Walt G, Louw R. Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues. Metabolomics 2020; 16:78. [PMID: 32577914 DOI: 10.1007/s11306-020-01697-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/13/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mitochondria represent an important milieu for studying the pathogenesis of several major diseases. The need for organelle-level metabolic resolution exists, as mitochondrial/cytosolic metabolites are often diluted beyond detection limits in complex samples. Compartment-specific studies are still hindered by the lack of efficient, cost-effective fractioning methods-applicable to laboratories of all financial/analytical standing. OBJECTIVES We established a novel mitochondrial/cytosolic purification pipeline for complimentary GC-TOF-MS and 1H-NMR metabolomics using robust, commercially available fractionation strategies. METHODS Magnetic based mitochondria isolation kits (MACS) were adapted for this purpose, accompanied by cytosolic filtering. Yield was assessed through the percentage recovery of citrate synthase (CS; a mitochondrial marker), purity by immunoblotting against compartment-specific proteins and integrity interrogated through the respiratory coupling ratio (RCR). The effects of the kit-based buffers on MS/NMR analyses of pure metabolite standards were evaluated. Finally, biological applicability to mammalian disease models was shown using Ndufs4 mouse brain tissue. RESULTS With minor modifications, MACS produced around 60% more mitochondria compared to a differential centrifugation method. Less than 15% of lysosomal LAMP-2 protein was found in the MACS isolates, confirming relative purity-while RCR's above 6 indicate sufficient mitochondrial integrity. The filtering approach effectively depleted mitochondria from the cytosolic fraction, as indicated by negligible Hsp60 and CS levels. Our GC-MS pilot yielded 60-70 features per fraction, while NMR analyses could quantify 6-10 of the most abundant compounds in each fraction. CONCLUSION This study provides a simple and flexible solution for mitochondrial and cytosolic metabolomics in animal model tissues, towards large-scale application of such methodologies in disease research.
Collapse
Affiliation(s)
- Gunter van der Walt
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
21
|
Ungerer V, Bronkhorst AJ, Holdenrieder S. Preanalytical variables that affect the outcome of cell-free DNA measurements. Crit Rev Clin Lab Sci 2020; 57:484-507. [DOI: 10.1080/10408363.2020.1750558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Abel J. Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
22
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumour Biol 2020; 42:1010428320916314. [PMID: 32338581 DOI: 10.1177/1010428320916314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In vitro characterization of cell-free DNA using two-dimensional cell culture models is emerging as an important step toward an improved understanding of the physical and biological characteristics of cell-free DNA in human biology. However, precise measurement of the cell-free DNA in cell culture medium is highly dependent on the efficacy of the method used for DNA purification, and is often a juncture of experimental confusion. Therefore, in this study, we compared six commercially available cell-free DNA isolation kits for the recovery of cell-free DNA from the cell culture supernatant of a human bone cancer cell line (143B), including two magnetic bead-based manual kits, one automated magnetic bead-based extraction method, and three manual spin-column kits. Based on cell-free DNA quantitation and sizing, using the Qubit dsDNA HS assay and Bioanalyzer HS DNA assay, respectively, the different methods showed significant variability concerning recovery, reproducibility, and size discrimination. These findings highlight the importance of selecting a cell-free DNA extraction method that is appropriate for the aims of a study. For example, mutational analysis of cell-free DNA may be enhanced by a method that favors a high yield or is biased toward the isolation of short cell-free DNA fragments. In contrast, quantitative analysis of cell-free DNA in a comparative setting (e.g. measuring the fluctuation of cell-free DNA levels over time) may require the selection of a cell-free DNA isolation method that forgoes a high recovery for high reproducibility and minimal size bias.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
23
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit Rev Clin Lab Sci 2019:1-17. [PMID: 31865831 DOI: 10.1080/10408363.2019.1700902] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early diagnosis of cancer improves the efficacy of curative therapies. However, due to the difficulties involved in distinguishing between small early-stage tumors and normal biological variation, early detection of cancer is an extremely challenging task and there are currently no clinically validated biomarkers for a pan-cancer screening test. It is thus of particular significance that increasing evidence indicates the potential of circulating tumor DNA (ctDNA) molecules, which are fragmented segments of DNA shed from tumor cells into adjacent body fluids and the circulatory system, to serve as molecular markers for early cancer detection and thereby allow early intervention and improvement of therapeutic and survival outcomes. This is possible because ctDNA molecules bear cancer-specific fragmentation patterns, nucleosome depletion motifs, and genetic and epigenetic alterations, as distinct from plasma DNA originating from non-cancerous tissues/cells. Compared to traditional biomarkers, ctDNA analysis therefore presents the distinctive advantage of detecting tumor-specific alterations. However, based on a thorough survey of the literature, theoretical and empirical evidence suggests that current ctDNA analysis strategies, which are mainly based on DNA mutation detection, do not demonstrate the necessary diagnostic sensitivity and specificity that is required for broad clinical implementation in a screening context. Therefore, in this review we explain the biological, physiological, and analytical challenges toward the development of clinically meaningful ctDNA tests. In addition, we explore some approaches that can be implemented in order to increase the sensitivity and specificity of ctDNA assays.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
24
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol 2019; 41:1010428319866369. [DOI: 10.1177/1010428319866369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaining a better understanding of the biological properties of cell-free DNA constitutes an important step in the development of clinically meaningful cell-free DNA–based tests. Since the in vivo characterization of cell-free DNA is complicated by the immense heterogeneity of blood samples, an increasing number of in vitro cell culture experiments, which offer a greater level of control, are being conducted. However, cell culture studies are currently faced with three notable caveats. First, the concentration of cell-free DNA in vitro is relatively low. Second, the median amount and size of cell-free DNA in culture medium varies greatly between cell types. Third, the amount and size of cell-free DNA in the culture medium of a single cell line fluctuates over time. Although these are interesting findings, it can also be a great source of experimental confusion and emphasizes the importance of method optimization and standardization. Therefore, in this study, we compared five commonly used cell-free DNA quantification methods, including quantitative polymerase chain reaction, Qubit Double-Stranded DNA High Sensitivity assay, Quant-iT PicoGreen Assay, Bioanalyzer High Sensitivity DNA assay, and NanoDrop Onec. Analysis of the resulting data, along with an interpretation of theoretical values (i.e. the theoretical detection and quantification limits of the respective methods), enables the calculation of optimal conditions for several important preanalytical steps pertaining to each quantification method and different cell types, including the (1) time-point at which culture medium should be collected for cell-free DNA extraction, (2) amount of cell culture supernatant from which to isolate cell-free DNA, (3) volume of elution buffer, and (4) volume of cell-free DNA sample to use for quantification.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
25
|
Application of digital PCR for assessing DNA fragmentation in cytotoxicity response. Biochim Biophys Acta Gen Subj 2019; 1863:1235-1242. [DOI: 10.1016/j.bbagen.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
|
26
|
Abstract
To our knowledge, this is the first comprehensive study on the influence of several pre-analytical and demographic parameters that could be a source of variability in the quantification of nuclear and mitochondrial circulating DNA (NcirDNA and McirDNA). We report data from a total of 222 subjects, 104 healthy individuals and 118 metastatic colorectal cancer (mCRC) patients. Approximately 50,000 and 3,000-fold more mitochondrial than nuclear genome copies were found in the plasma of healthy individuals and mCRC patients, respectively. In healthy individuals, NcirDNA concentration was statistically influenced by age (p = 0.009) and gender (p = 0.048). Multivariate analysis with logistic regression specified that age over 47 years-old was predictive to have higher NcirDNA concentration (OR = 2.41; p = 0.033). McirDNA concentration was independent of age and gender in healthy individuals. In mCRC patients, NcirDNA and McirDNA levels were independent of age, gender, delay between food intake and blood collection, and plasma aspect, either with univariate or multivariate analysis. Nonetheless, ad hoc study suggested that menopause and blood collection time might have tendency to influence cirDNA quantification. In addition, high significant statistical differences were found between mCRC patients and healthy individuals for NcirDNA (p < 0.0001), McirDNA (p < 0.0001) and McirDNA/NcirDNA ratio (p < 0.0001). NcirDNA and McirDNA levels do not vary in the same way with regards to cancer vs healthy status, pre-analytical and demographic factors.
Collapse
|
27
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
28
|
Panagopoulou M, Karaglani M, Balgkouranidou I, Pantazi C, Kolios G, Kakolyris S, Chatzaki E. Circulating cell-free DNA release in vitro: kinetics, size profiling, and cancer-related gene methylation. J Cell Physiol 2019; 234:14079-14089. [PMID: 30618174 DOI: 10.1002/jcp.28097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Circulating cell-free DNA (ccfDNA) is a biological entity of great interest due to its potential as liquid biopsy biomaterial carrying clinically valuable information. To better understand its nature, we studied ccfDNA in vitro in two human cancer cell lines MCF-7 and HeLa. Normalized indexes of ccfDNA per cell population decreased over time of culture but were significantly elevated after exposure to IC50 doses of the demethylating/apoptotic agent 5-azacytidine (5-AZA-CR). Fragment-size profiling was indicative of active release, whereas exposure to 5-AZA-CR induced the release of additional shorter fragments, indicative of apoptosis. Finally, the methylation profile of a panel of cancer-specific genes as assessed by quantitative methylation analysis in ccfDNA was identical to the corresponding genomic DNA and followed accurately changes caused by 5-AZA-CR. Overall, our in vitro findings support that ccfDNA can be a reliable biosource of clinically relevant information that can be further studied in these cell culture models.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Makrina Karaglani
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Balgkouranidou
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrisoula Pantazi
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Department of Medicine, Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
29
|
Bronkhorst AJ, Wentzel JF, Ungerer V, Peters DL, Aucamp J, de Villiers EP, Holdenrieder S, Pretorius PJ. Sequence analysis of cell-free DNA derived from cultured human bone osteosarcoma (143B) cells. Tumour Biol 2018; 40:1010428318801190. [PMID: 30261820 DOI: 10.1177/1010428318801190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The true importance of cell-free DNA in human biology, together with the potential scale of its clinical utility, is tarnished by a lack of understanding of its composition and origin. In investigating the cell-free DNA present in the growth medium of cultured 143B cells, we previously demonstrated that the majority of cell-free DNA is neither a product of apoptosis nor necrosis. In the present study, we investigated the composition and origin of this cell-free DNA population using next-generation sequencing. We found that the cell-free DNA comprises mainly of repetitive DNA, including α-satellite DNA, mini satellites, and transposons that are currently active or exhibit the capacity to become reactivated. A significant portion of these cell-free DNA fragments originates from specific chromosomes, especially chromosomes 1 and 9. In healthy adult somatic cells, the centromeric and pericentromeric regions of these chromosomes are normally densely methylated. However, in many cancer types, these regions are preferentially hypomethylated. This can lead to double-stranded DNA breaks or it can directly impair the formation of proper kinetochore structures. This type of chromosomal instability is a precursor to the formation of nuclear anomalies, including lagging chromosomes and anaphase bridges. DNA fragments derived from these structures can recruit their own nuclear envelope and form secondary nuclear structures known as micronuclei, which can localize to the nuclear periphery and bud out from the membrane. We postulate that the majority of cell-free DNA present in the growth medium of cultured 143B cells originates from these micronuclei.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Johannes F Wentzel
- 2 Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, South Africa
| | - Vida Ungerer
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Dimetrie L Peters
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- 4 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Stefan Holdenrieder
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Piet J Pretorius
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Automated DNA extraction using cellulose magnetic beads can improve EGFR point mutation detection with liquid biopsy by efficiently recovering short and long DNA fragments. Oncotarget 2018; 9:25181-25192. [PMID: 29861862 PMCID: PMC5982773 DOI: 10.18632/oncotarget.25388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
The clinical utility of plasma DNA for detecting cancer-specific mutations has rapidly achieved recognition, but reliability has not been established because of relatively low mutation-detection rates compared with those from tissue re-biopsy. To address this shortcoming we examined efficiency, in terms of mutation detection, of an automated DNA extraction system that uses cellulose magnetic beads. A fully automated, highly sensitive point-mutation-detection method, mutation-biased PCR and quenching probe (MBP-QP) system, was used for this study. Plasma DNA was extracted from 61 plasma samples collected from patients with advanced non-small cell lung cancer. Extraction was performed manually with 200 μl plasma (200-M) by using a silica membrane spin column system or an automated system using 200 μl (200-A) or 1000 μl (1000-A) plasma. Median DNA yield quantified by real-time PCR was 4.4, 4.5, and 17.3 ng with the three methods, respectively. Sensitivity for detecting epidermal growth factor receptor (EGFR) L858R point mutation was 36.6%, 58.5%, and 77.5%, and specificity was 93.3%, 100%, and 96.7%, respectively. Concordance rates were 60.6%, 76.1%, and 85.7%. The size distribution of plasma DNA with automated extraction was bimodal with modes at about 170 bp and 5 Kb, and plasma DNA of both sizes included tumor-derived DNA. In this report, we demonstrate that automated DNA extraction using cellulose magnetic beads can improve mutation-detection rates with plasma DNA in association with two overall sizes of DNA fragments recovered by this DNA isolation system. Examining the biological characteristics of these fragments will be the subject of further investigation.
Collapse
|
31
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018; 93:1649-1683. [PMID: 29654714 DOI: 10.1111/brv.12413] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| |
Collapse
|
32
|
Fontanilles M, Duran-Peña A, Idbaih A. Liquid Biopsy in Primary Brain Tumors: Looking for Stardust! Curr Neurol Neurosci Rep 2018. [PMID: 29520561 DOI: 10.1007/s11910-018-0820-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Personalized medicine is a challenge to improve survival and quality of life of patients suffering from primary malignant brain tumor. Molecular biology is integrated in initial diagnosis and relapse, and, in the nearest future, over treatment schedule and monitoring. Liquid biopsy is a minimally invasive way to obtain tumor material. RECENT FINDINGS Over the past years, three fluids have been explored to provide tumor information in primary malignant brain tumor: blood, cerebrospinal fluid, and vitreous liquid. Different tumor components were identified: (1) circulating tumor cells, (2) circulating tumor DNA, (3) RNA and non-coding miRNA, and (4) extracellular vesicles. The performance of the liquid biopsy depends on the tumor type and on the method of detection. Liquid biopsy could be a valuable tool to improve patient care in primary malignant brain tumor. Improvement of its sensitivity is the major challenge to generalize its use in daily practice.
Collapse
Affiliation(s)
- Maxime Fontanilles
- Normandie Univ, UNIROUEN, Inserm U1245, IRON Group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, F-76031, Rouen, France.,AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Alberto Duran-Peña
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France.
| |
Collapse
|
33
|
Aucamp J, Calitz C, Bronkhorst AJ, Wrzesinski K, Hamman S, Gouws C, Pretorius PJ. Cell-free DNA in a three-dimensional spheroid cell culture model: A preliminary study. Int J Biochem Cell Biol 2017; 89:182-192. [DOI: 10.1016/j.biocel.2017.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
|
34
|
Aucamp J, Van Dyk HC, Bronkhorst AJ, Pretorius PJ. Valproic acid alters the content and function of the cell-free DNA released by hepatocellular carcinoma (HepG2) cells in vitro. Biochimie 2017; 140:93-105. [PMID: 28668269 DOI: 10.1016/j.biochi.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND It has long been believed that cell-free DNA (cfDNA) actively released into circulation can serve as intercellular messengers, and their involvement in processes such as the bystander effect strongly support this. However, this intercellular messaging function of cfDNA may have clinical implications that have not yet been considered. METHODS CfDNA was isolated from the growth medium of HepG2 cells treated with valproic acid (VPA). This cfDNA was then administered to untreated cells and cellular metabolic activity was measured. RESULTS VPA altered the characteristics of cfDNA released by treated HepG2 cells in vitro. When administered to untreated cells, the cfDNA from cells treated with VPA resulted in the dose-dependent induction of glycolytic activity within 36 min of administration, but little to no alterations in oxidative phosphorylation. The glycolytic activity lasted for 4-6 h, whereas changes in subsequent cfDNA release and characteristics were found to remain persistent after two 24 h treatments. Fragmented genomic DNA from VPA-treated cells did not induce the effects observed for cfDNA obtained VPA-treated cells. CONCLUSIONS It is possible for cfDNA to, under in vitro conditions, transfer pharmaceutically-induced effects to untreated recipient cells. Further investigation regarding this occurrence under in vivo conditions is, therefore, strongly encouraged. GENERAL SIGNIFICANCE The intercellular messaging functions of cfDNA present in donated biological fluids has potential clinical implications that require urgent attention. These implications may, however, also have potential as new forms of treatment that can circumvent pharmacological barriers.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, North-West University, Private Bag X6001, Hoffman Street, Potchefstroom, 2520, South Africa.
| | - Hayley C Van Dyk
- Human Metabolomics, North-West University, Private Bag X6001, Hoffman Street, Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, North-West University, Private Bag X6001, Hoffman Street, Potchefstroom, 2520, South Africa
| | - Piet J Pretorius
- Human Metabolomics, North-West University, Private Bag X6001, Hoffman Street, Potchefstroom, 2520, South Africa
| |
Collapse
|