1
|
Krawiec A, Pietrasik J, Pietrasik Z, Mikuła-Pietrasik J, Książek K. Unveiling the role of extracellular matrix elements and regulators in shaping ovarian cancer growth and metastasis. Cell Signal 2025; 132:111843. [PMID: 40318796 DOI: 10.1016/j.cellsig.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Epithelial ovarian cancer (EOC) progression is determined by numerous intracellular interactions and the interplay between malignant cells, normal cells, and the tumor acellular microenvironment, formed largely by the extracellular matrix (ECM). The structure and biochemical functioning of various ECM components, along with the activity of agents that regulate ECM remodeling, impact the disease's expansion (adhesion, proliferation, invasion), spread, and response to therapy. It is important to note that the involvement of ECM components and their regulators in the progression of EOC is bidirectional and distinctly depends on a particular tissue context. In certain situations, certain components of the ECM enhance the activity of cancer cells, but in other scenarios, they suppress it. In this review, we summarize the newest knowledge regarding diverse aspects of ECM engagement in EOC pathophysiology and chemotherapy. Moreover, we delineate conditions that exacerbate the pro-cancerous properties of ECM, including diabetes-associated glycation, aging, and cellular senescence. We also explore methods to therapeutically alter the properties of the ECM, which could be beneficial in ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Joanna Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Zofia Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| |
Collapse
|
2
|
Su H, Zhang R, Li Y, Li Y, Pei W, Jie Z, Liu Z, Huang M, Zhuang J, Jiang Q, Xie M, Wang G, Zhang W, Liu M, Chen J, Wang Z, Wang K, Zhang X, Li G, Zeng X, Li X, Sun X, Wang J, Zeng D, Zhuang C, Zhou H, Wang X. Intraoperatively preventive intraperitoneal perfusion chemotherapy with lobaplatin in colorectal cancer: a prospective, randomised, controlled, multicentre study. BMC Med 2025; 23:336. [PMID: 40481437 PMCID: PMC12142866 DOI: 10.1186/s12916-025-04180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Peritoneal metastasis (PM) after radical surgery is an important cause of treatment failure in colorectal cancer (CRC). Intraoperative intraperitoneal perfusion chemotherapy may be an effective method for preventing postoperative PM in patients with CRC. This study aimed to explore the safety and feasibility of intraoperatively preventive intraperitoneal perfusion chemotherapy using lobaplatin for CRC. METHODS Between 12 December 2017 and 17 October 2019, 720 eligible CRC patients with T4 or N + clinical TNM stage were recruited from 25 hospitals in China. Eligible patients were randomised in a 1:1 ratio to undergo resection of CRC only (control group) or resection of CRC with intraperitoneal perfusion chemotherapy with lobaplatin intraoperatively (lobaplatin group). The primary endpoint of this trial was the rate of PM after surgery, while secondary endpoints included safety, overall survival (OS) time, recurrence-free survival (RFS) time, peritoneal recurrence-free survival (PRFS) time, and the rate of liver metastasis. RESULTS Of 716 patients included in the full analysis set (FAS), 352 were assigned to the lobaplatin group and 364 to the control group. In the FAS population, adding intraoperatively preventive intraperitoneal perfusion chemotherapy with lobaplatin decreased the primary end point rate of 3-year PM (3.56% vs 8.75%, P = 0.0053). There was no significant difference in the 3-year OS between the groups (93.2% vs 90.4%, P = 0.1660). The 3-year RFS rate (88.1% vs 81.6%, 0.0146) and 3-year PRFS rate (96.6% vs 91.5%, P = 0.0053) were significantly higher in the lobaplatin group than the control group. There were no statistically significant differences between the two groups in the incidence (69.77% vs 64.75%) or severity of adverse events (AEs) in the safety set (SS) population. CONCLUSIONS Initiation of intraoperatively preventive intraperitoneal perfusion chemotherapy with lobaplatin reduced the 3-year PM rate in CRC patients while improving both 3-year RFS and PRFS. The treatment was well tolerated, and the safety findings were comparable with those of the control group. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800014617.
Collapse
Affiliation(s)
- Hao Su
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Insititute, Shenyang, 110042, China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Kunming, 650000, China
| | - Yanke Li
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Pei
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100021, China
| | - Zhigang Jie
- Department of Colorectal Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhimin Liu
- Department of Laparoscopic Comprehensive Surgery, Zibo Central Hospital, Zibo, 255000, China
| | - Meijin Huang
- Department of Colon and Rectum Surgery, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jing Zhuang
- Department of General Surgery, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Qian Jiang
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing, 210000, China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Afiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbin Zhang
- Gastrointestinal Tumor Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Ming Liu
- Department of General Surgery, The Fourth Hospital of HARBIN Medical University, Harbin, 150000, China
| | - Jiansi Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530000, China
| | - Zejun Wang
- Department of Gastrointestinal Surgery, Cancer Hospital Affiliated to Guizhou Medical University, Guiyang, 550000, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, Chengdu, 610000, China
| | - Xinghong Zhang
- Department of Gastrointestinal Surgery, Heilongjiang Agricultural Reclamation General Hospital, Harbin, 150000, China
| | - Guoxin Li
- Cancer Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiangfu Zeng
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200025, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Ju Wang
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, China
| | - Dongzhu Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Changlong Zhuang
- Hainan Changan International Pharmaceutical Co., Ltd., Haikou, 570100, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100021, China.
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Liu H, Wang J, Ji Y, Lin X, Wang K, Yao Z, Wang M, Zhang C. Comparison of the diagnostic value of [ 68Ga]Ga-FAP-2286 PET/CT and [ 18F]-FDG PET/CT imaging in different types of pleural and peritoneal metastatic tumors. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07265-4. [PMID: 40272499 DOI: 10.1007/s00259-025-07265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVE To compare the diagnostic value of [68Ga]Ga-FAP-2286 PET/CT and [18F]-FDG PET/CT imaging in different types of pleural/peritoneal metastatic tumors. METHODS A retrospective analysis was conducted on patients who underwent both [18F]-FDG and [68Ga]Ga-FAP-2286 PET/CT in our department between January 2022 and November 2024. The maximum standardized uptake value (SUVmax), peak SUV (SUVpeak), and tumor-to-background ratio (TBR) of pleural/peritoneal metastatic lesions were measured, and the results obtained from the two imaging modalities were compared. RESULTS A total of 92 patients suspected of having pleural/peritoneal metastases were included in the study. The [68Ga]Ga-FAP-2286 PET/CT showed higher SUVmax, SUVpeak, TBR, and sensitivity compared to [18F]-FDG PET/CT (7.87 vs. 6.28; P = 0.002; 5.88 vs. 4.65; P < 0.001; 6.27 vs. 3.85; P < 0.001; 95.3% vs. 84.7%; P = 0.035), especially for peritoneal metastases (8.25 vs. 5.75; P < 0.001; 6.18 vs. 4.29; P < 0.001; 6.54 vs. 3.50; P < 0.001). Among various tumors, [68Ga]Ga-FAP-2286 PET/CT showed better detection results for hepatobiliary and pancreatic tumors (7.88 vs. 6.02, 5.88 vs. 4.33, 6.15 vs. 3.67), gastrointestinal tumors (8.27 vs. 5.69, 6.28 vs. 4.30, 7.03 vs. 3.50), and adenocarcinomas (8.30 vs. 5.80, 6.17 vs. 4.30, 6.60 vs. 3.55). CONCLUSION For pleural/peritoneal metastases, [68Ga]Ga-FAP-2286 PET/CT has a higher detection rate compared to [18F]-FDG PET/CT, providing better diagnostic efficacy, particularly for peritoneal metastases. Among various tumors, [68Ga]Ga-FAP-2286 PET/CT has higher diagnostic value in hepatobiliary and pancreatic tumors, gastrointestinal tumors, and adenocarcinomas.
Collapse
Affiliation(s)
- Huajun Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Junzheng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Yang Ji
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Xinyi Lin
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Kan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Zhihan Yao
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Min Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China
| | - Chunyin Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
- Laboratory for Targeted Radiopharmaceuticals Creation, Luzhou, Sichuan, China.
- Institute of Nuclear Medicine, Southwest Medical University, No. 25, Taiping St, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Vazzano J, Esnakula AK. Pathology and Classification of Peritoneal Surface Malignancies. Surg Oncol Clin N Am 2025; 34:155-171. [PMID: 40015797 DOI: 10.1016/j.soc.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Peritoneal surface malignancies are rare and represent a diverse group of neoplasms associated with poor prognosis. We review board classification of the primary and secondary peritoneal neoplasms with emphasis on the pathology and recent updates and challenges in the areas of mesothelial neoplasms, peritoneal metastasis, and pseudomyxoma peritonei.
Collapse
Affiliation(s)
- Jennifer Vazzano
- Department of Pathology, The Ohio State University Wexner Medical Center, Office D586, James Cancer Center, 460 West 10th Avenue, Columbus, OH 43210, USA
| | - Ashwini Kumar Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Office D582, James Cancer Center 460 West 10th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:378-396. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence supports CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology (Emeritus), Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
6
|
Castagna A, Weinreich FJ, Brandl A, Spreuer J, Herold N, Schittek B, Reymond MA, Solass W. Imaging gastric cancer metastasis progression in an organotypic, three-dimensional functional model of the human peritoneum. Pleura Peritoneum 2025; 10:11-17. [PMID: 40275879 PMCID: PMC12016017 DOI: 10.1515/pp-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Objectives Despite the introduction of multimodal treatment regimens, the prognosis of gastric cancer peritoneal metastasis (GCPM) remains poor. To establish efficient therapies, a deeper understanding of pathophysiological mechanisms in the development of GCPM is necessary and this requires adequate functional models. Therefore, we established a three-dimensional model to study tumor adhesion, invasion and growth. Methods A co-culture of peritoneal mesothelial cells with fibroblasts and collagen I was cultivated to further seed human gastric cancer cell lines on the surface. Different imaging techniques (optical microscopy, immunohistochemistry, scanning (SEM) and transmission (TEM) electron microscopy) served as tools to proof the sustainability of the model. Results We demonstrated the feasibility of creating a robust GCPM model. We showed that the model is reproducible under various conditions (6-, 12-, and 24-wells) and pre-analytical processing is possible. The imaging was feasible and allowed the comparison of morphological changes on the GCPM model to normal human peritoneum. Conclusions We established a reproducible and robust organotypic model of GCPM which can be used to generate deeper knowledge on the pathophysiology of GCPM and might serve as a platform for testing different chemotherapy schemes in order to establish a personalized treatment for patients with GCPM.
Collapse
Affiliation(s)
- Arianna Castagna
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank-Jürgen Weinreich
- Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- National Center for Pleura and Peritoneum, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Brandl
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Janine Spreuer
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Nicola Herold
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Marc André Reymond
- National Center for Pleura and Peritoneum, University Hospital Tübingen, Tübingen, Germany
| | - Wiebke Solass
- Institute of Tissue Medicine and Pathology ITMP, University Bern, Niederscherli, Switzerland
| |
Collapse
|
7
|
Mano Y, Igarashi Y, Komori K, Hashimoto I, Watanabe H, Takahashi K, Kano K, Fujikawa H, Yamada T, Himuro H, Kouro T, Wei F, Tsuji K, Horaguchi S, Komahashi M, Oshima T, Sasada T. Characteristics and clinical significance of immune cells in omental milky spots of patients with gastric cancer. Front Immunol 2025; 16:1521278. [PMID: 39949777 PMCID: PMC11821591 DOI: 10.3389/fimmu.2025.1521278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
The omentum is a common site of peritoneal metastasis in various cancers, including gastric cancer. It contains immune cell aggregates known as milky spots, which provide a microenvironment for peritoneal immunity by regulating innate and adaptive immune responses. In this study, we investigated gene expression profiles in cells from omental milky spots of patients with gastric cancer (n = 37) by RNA sequencing analysis and classified the patients into four groups (G1-4). Notably, significant differences were observed between the groups in terms of macroscopic type, lymphatic invasion, venous invasion, and pathological stage (pStage). G3, which was enriched in genes related to acquired immunity, showed earlier tumor stages (macroscopic type 0, Ly0, V0, and pStage I) and a better prognosis. In contrast, G4 showed enrichment of genes related to neutrophils and innate immunity; G1 and G2 showed no enrichment of innate or adaptive immune-related genes, suggesting an immune desert microenvironment. Cytometric analysis revealed significantly more T and B cells and fewer neutrophils in G3. Accordingly, the immune microenvironment in omental milky spots may vary depending on the stage of gastric cancer progression. When univariate Cox proportional hazards regression models were used to search for prognostically relevant genes specific to G3, 23 potential prognostic genes were identified as common genes associated with relapse-free survival and overall survival. In addition, the multivariate Cox proportional hazards model using these prognostic genes and clinicopathological information showed that combining the B cell marker CD19 and Ly had a high predictive accuracy for prognosis. Based on this study's results, it is possible that tumor progression, such as lymphatic and/or venous infiltration of tumor cells, may affect the immune cell composition and proportions in omental milky spots of patients with gastric cancer and analysis of gene expression in omental milky spots may help to predict gastric cancer prognosis.
Collapse
Affiliation(s)
- Yasunobu Mano
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Keisuke Komori
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Itaru Hashimoto
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Hayato Watanabe
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kosuke Takahashi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazuki Kano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kayoko Tsuji
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shun Horaguchi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuru Komahashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
8
|
Tajik F, Eyob B, Khan AM, Radhakrishnan VK, Senthil M. Iterative Intraperitoneal Chemotherapy in Gastric Cancer Peritoneal Carcinomatosis. Cancers (Basel) 2025; 17:289. [PMID: 39858070 PMCID: PMC11763546 DOI: 10.3390/cancers17020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Despite the incremental improvement of survival with systemic therapy in metastatic gastric cancer (GC), the outcomes of patients with peritoneal carcinomatosis (PC) remain poor. The limited effectiveness of systemic therapy is attributed to the blood-peritoneal barrier and anarchic intra-tumoral circulation, which reduce the penetration of systemic therapy. Approaches that incorporate intraperitoneal (IP) chemotherapy, in addition to systemic therapies, may be a viable alternate strategy. Therefore, we provide a review of biology of gastric cancer peritoneal metastasis and evidence for bidirectional iterative IP chemotherapy in GCPC. Methods: A comprehensive search in PubMed, Scopus, Embase, Web of Science, Google Scholar, and ClinicalTrials.gov was performed to find the relevant articles and ongoing phase II/III clinical trials in iterative IP chemotherapy in GCPC. Results: Intraperitoneal (IP) chemotherapy leverages the blood-peritoneal barrier to allow for the administration of high concentrations of chemotherapy directly to the peritoneal metastases, with a significant reduction in the systemic toxicity and enhanced drug efficacy against peritoneal metastasis. This pharmacokinetic advantage of IP chemotherapy can be further enhanced by additional measures such as heat or aerosolization. There are three IP chemotherapy approaches, namely, heated intraperitoneal chemotherapy (HIPEC), pressurized intraperitoneal aerosolized chemotherapy (PIPAC), and normothermic intraperitoneal chemotherapy (NIPEC). Recent evidence suggests that iterative IP chemotherapy combined with systemic therapy may offer significant survival benefits for patients with peritoneal metastasis. Furthermore, bidirectional treatment approaches may also increase the chances of surgical resection and survival. Conclusions: IP chemotherapy plays a pivotal role in the management of gastric carcinomatosis, particularly in combination with cytoreduction in highly selected patients. The combination of systemic and regional control may increase the chances of surgical resection and may ultimately lead to significant survival benefits.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA; (F.T.); (A.M.K.); (V.K.R.)
| | - Belain Eyob
- Division of Surgical Oncology, Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA;
| | - Aaqil M. Khan
- Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA; (F.T.); (A.M.K.); (V.K.R.)
| | - Vinodh Kumar Radhakrishnan
- Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA; (F.T.); (A.M.K.); (V.K.R.)
| | - Maheswari Senthil
- Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA; (F.T.); (A.M.K.); (V.K.R.)
- Division of Surgical Oncology, Department of Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA;
| |
Collapse
|
9
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Liu S, Wu T, Song X, Quan L, Wang X, Liu Q, Zhou X. Single-cell sequencing reveals PTX3 involvement in ovarian cancer metastasis. J Ovarian Res 2024; 17:235. [PMID: 39580424 PMCID: PMC11585133 DOI: 10.1186/s13048-024-01558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Pentraxin 3 (PTX3) has been associated with the development and progression of various malignant tumors. However, its roles and the mechanisms underlying its involvement in ovarian cancer (OC) peritoneal metastasis remain unclear. METHODS Single-cell RNA sequencing (scRNA-seq) and immunohistochemistry (IHC) were conducted to determine the expression profiles, potential functionalities, and underlying mechanisms of PTX3 within the context of OC. To assess the proliferative response of OC cells, we utilized both EdU (5-ethynyl-2' -deoxyuridine) and CCK8 assays. The role of PTX3 in facilitating cell migration and invasion was quantified through the use of Transwell assays. The protein expression levels were meticulously analyzed via Western blotting. Furthermore, to explore the interactions between proteins, we conducted immunofluorescence (IF) staining and co-immunoprecipitation (Co-IP) experiments. To determine the factors responsible for the upregulation of PTX3, we performed both coculture and suspension assays, providing a comprehensive approach to understanding the regulatory mechanisms involved. RESULTS This study confirmed, for the first time, that the expression of PTX3 in OC metastatic lesions is greater than that in primary lesions and that tumor cells with high PTX3 expression have greater metastatic ability. PTX3 can activate the EMT and NF-κB signaling pathways in OC cells and can interact with the TLR4 and CD44 receptors in OC cells. Additionally, PTX3's modulation of the EMT and NF-κB pathways is partially dependent on its interaction with TLR4. Furthermore, this study revealed the intercellular regulatory network related to PTX3 in OC cells via bioinformatic analysis. High levels of PTX3 in OC cells potentially enhance the attraction of dendritic cells (DCs) and CD4 + T cells while diminishing the recruitment of B cells and CD8 + T cells. Finally, this study indicated that PTX3 upregulation was driven by multiple factors, including specific transcription factors (TFs) and modifications within the tumor microenvironment (TME). CONCLUSIONS Our research revealed the contribution of PTX3 to the peritoneal dissemination process in OC patients, identifying a novel potential biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianhao Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xueying Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Linru Quan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xinyi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
11
|
Gong L, Huang J, Bai X, Song L, Hang J, Guo J. Expression of HECTD2 predicts peritoneal metastasis of gastric cancer and reconstructs immune microenvironment. Cancer Cell Int 2024; 24:380. [PMID: 39548546 PMCID: PMC11566294 DOI: 10.1186/s12935-024-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Peritoneal metastasis (PM) is a common metastasis site and death cause of gastric cancer, which is a complex biological process, but there is currently a lack of effective prediction and treatment targets. In this study, we first analyzed the differential gene expression of gastric cancer patients with or without peritoneal metastasis, and identified the HECT domain E3 ubiquitin protein ligase 2 (HECTD2) as the core gene of PM in gastric cancer. The current study shows that the role of HECTD2 in tumor is contradictory. In this study, our results show that the low expression of HECTD2 indicates that the survival rate of overall survival (OS), progression-free survival (PFS), disease-specific survival (DSS), and disease-free survival (DFS) are better, and can be used as an important component of prognostic indicators. In addition, through pathway enrichment analysis, we found that HECTD2 was mainly involved in metastasis related pathways such as extracellular matrix remodeling and cell adhesion in gastric cancer, and high expression of HECTD2 could activate epithelial-mesenchymal transition (EMT) metastasis related pathways in gastric cancer. In regulating the metastasis of gastric cancer cells, HECTD2 can also change the surrounding microenvironment, induce the enrichment of interstitial components and build an immune microenvironment conducive to tumor progression, while patients with low expression of HECTD2 may be more likely to benefit from immunotherapy. In conclusion, HECTD2 may be a novel biomarker for the diagnosis and prognosis of peritoneal metastasis of gastric cancer, providing basis for the mechanism of peritoneal metastasis of cancer and clinical medication.
Collapse
Affiliation(s)
- Libao Gong
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jiayi Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xue Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Lin Song
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Junjie Hang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Changzhou No.2 People's Hospital, Changzhou, China.
| | - Jinfeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
12
|
Zhang Y, Xie J. Targeting non-coding RNAs as a promising biomarker in peritoneal metastasis: Background, mechanism, and therapeutic approach. Biomed Pharmacother 2024; 179:117294. [PMID: 39226726 DOI: 10.1016/j.biopha.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Peritoneal metastasis (PM) pathophysiology is complex and not fully understood. PM, originating from gastrointestinal (GI) cancer, is a condition that significantly worsens patient prognosis due to its complex nature and limited treatment options. The non-coding RNAs (ncRNAs) have been shown to play pivotal roles in cancer biology, influencing tumorigenesis, progression, metastasis, and therapeutic resistance. Increasing evidence has demonstrated the regulatory functions of different classes of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in PM. Identifying biomarkers for early detection of PM is a crucial step towards improving patient outcomes, and how ncRNA profiles correlate with survival rates, response to therapy, and recurrence risks have raised much attention in recent years. Additionally, exploring innovative therapeutic approaches utilizing ncRNAs, such as targeted therapy and gene silencing, may offer new horizons in treating this dire condition. Recent advances in systemic treatments and the development of novel loco-regional therapies have opened doors to multimodal treatment approaches. Radical surgeries combined with hyperthermic intraperitoneal chemotherapy (HIPEC) have shown promising results, leading to extended patient survival. Current research is focused on the molecular characterization of PM, which is crucial for early detection and developing future therapeutic strategies. By summarizing the latest findings, this study underscores the transformative potential of ncRNAs in enhancing the diagnosis, prognosis, and treatment of PM in GI cancer, paving the way for more personalized and effective clinical strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
13
|
Li D, Jin Y, He X, Deng J, Lu W, Yang Z, Zheng X, Hou K, Tang S, Bao B, Ren J, Zhang X, Wang J, Yan H, Qu X, Liu Y, Che X. Hypoxia-induced LAMB2-enriched extracellular vesicles promote peritoneal metastasis in gastric cancer via the ROCK1-CAV1-Rab11 axis. Oncogene 2024; 43:2768-2780. [PMID: 39138263 DOI: 10.1038/s41388-024-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Peritoneal metastasis is one of the most common risk factors contributing to the poor prognosis of gastric cancer. We previously reported that extracellular vesicles from gastric cancer cells could facilitate peritoneal metastasis. However, their impact on gastric cancer-induced peritoneal metastasis under hypoxic conditions remains unclear. This study aims to elucidate how hypoxia-resistant gastric cancer cell-derived extracellular vesicles affect the peritoneal metastasis of normoxic gastric cancer cells. Proteomic analysis revealed elevated levels of Caveolin1 and Laminin β2 in hypoxia-resistant gastric cancer cells and their corresponding extracellular vesicles. Importantly, Caveolin1 was found to play a central role in mediating Laminin β2 sorting into extracellular vesicles derived from hypoxia-resistant gastric cancer cells, and subsequently, extracellular vesicle-associated Laminin β2 promoted peritoneal metastasis in normoxic gastric cancer cells by activating the AKT pathway. Further investigation confirmed that Caveolin1 activation by Rho-related Coiled-coil kinase 1-mediated phosphorylation of Y14 residue is a key factor facilitating Laminin β2 sorting into extracellular vesicles. Moreover, Y14 phosphorylated- Caveolin1 enhanced Laminin β2 sorting by activating Rab11. Finally, our study demonstrated that a combined assessment of plasma extracellular vesicle-associated Caveolin1 and extracellular vesicle-associated Laminin β2 could provide an accurate predictive tool for peritoneal metastasis occurrence in gastric cancer.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jian Deng
- Third Department of Medical Oncology, The Fifth People Hospital of Shenyang, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zichang Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xueying Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shiying Tang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Bowen Bao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jie Ren
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| |
Collapse
|
14
|
López-Carrasco A, Vieco-Martí I, Granados-Aparici S, Acevedo-León D, Estañ-Capell N, Portugal R, Huerta-Aragonés J, Cañete A, Navarro S, Noguera R. Vitronectin Levels in the Plasma of Neuroblastoma Patients and Culture Media of 3D Models: A Prognostic Circulating Biomarker? Int J Mol Sci 2024; 25:8733. [PMID: 39201421 PMCID: PMC11354570 DOI: 10.3390/ijms25168733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Vitronectin is a glycoprotein present in plasma and the extracellular matrix that is implicated in cell migration. The high amount of vitronectin found in neuroblastoma biopsies has been associated with poor prognosis. Moreover, increased vitronectin levels have been described in the plasma of patients with different cancers. Our aim was to assess vitronectin as a potential circulating biomarker of neuroblastoma prognosis. Vitronectin concentration was quantified using ELISA in culture media of four neuroblastoma cell lines grown in a monolayer and in 3D models, and in the plasma of 114 neuroblastoma patients. Three of the neuroblastoma cell lines secreted vitronectin to culture media when cultured in a monolayer and 3D models. Vitronectin release was higher by neuroblastoma cells cultured in 3D models than in the monolayer and was still elevated when cells were grown in 3D scaffolds with cross-linked vitronectin. Vitronectin secretion occurred independently of cell numbers in cultures. Its concentration in the plasma of neuroblastoma patients ranged between 52.4 and 870 µg/mL (median, 218 µg/mL). A ROC curve was used to establish a cutoff of 361 µg/mL, above which patients over 18 months old had worse prognosis (p = 0.0018). Vitronectin could be considered a new plasma prognostic biomarker in neuroblastoma and warrants confirmation in collaborative studies. Drugs inhibiting vitronectin interactions with cells and/or the extracellular matrix could represent a significant improvement in survival for neuroblastoma patients.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Isaac Vieco-Martí
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Sofía Granados-Aparici
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | | | | | | | | | - Adela Cañete
- Politechnic and University Hospital La Fe, 46026 Valencia, Spain
| | - Samuel Navarro
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Rosa Noguera
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
15
|
Venegoni C, Pederzoli F, Locatelli I, Alchera E, Martinez-Vidal L, Di Coste A, Bandini M, Necchi A, Montorsi F, Salonia A, Moschini M, Jose J, Scarfò F, Lucianò R, Alfano M. Topographic modification of the extracellular matrix precedes the onset of bladder cancer. Matrix Biol Plus 2024; 23:100154. [PMID: 38882394 PMCID: PMC11179621 DOI: 10.1016/j.mbplus.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
Background Non-muscle invasive bladder cancer (NMIBC) patients are affected by a high risk of recurrence. The topography of collagen fibers represents a hallmark of the neoplastic extracellular microenvironment. Objective Assess the topographic change associated with different stages of bladder cancer (from neoplastic lesions to bona fide tumor) and whether those changes favour the development of NMIBC. Design Setting and Participants Seventy-one clinical samples of urothelial carcinoma at different stages were used. Topographic changes preceding tumor onset and progression were evaluated in the rat bladder cancer model induced by nitrosamine (BBN), a bladder-specific carcinogen. The preclinical model of actinic cystitis was also used in combination with BBN. Validated hematoxylin-eosin sections were used to assess the topography of collagen fibrils associated with pre-tumoral steps, NMIBC, and MIBC. Findings Linearization of collagen fibers was higher in Cis and Ta vs. dysplastic urothelium, further increased in T1 and greatest in T2 tumors. In the BBN preclinical model, an increase in the linearization of collagen fibers was established since the beginning of inflammation, such as the onset of atypia of a non-univocal nature and dysplasia, and further increased in the presence of the tumor. Linearization of collagen fibers in the model of actinic cystitis was associated with earlier onset of BBN-induced tumor. Conclusions The topographic modification of the extracellular microenvironment occurs during the inflammatory processes preceding and favoring the onset of bladder cancer. The topographic reconfiguration of the stroma could represent a marker for identifying and treating the non-neoplastic tissue susceptible to tumor recurrence.
Collapse
Affiliation(s)
- Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Di Coste
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Bandini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Necchi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Moschini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Jithin Jose
- FUJIFILM Visualsonics Inc., Amsterdam, the Netherlands
| | | | | | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
16
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
17
|
Liu K, Wang Y, Shao W, Tang C, Zhao S, Xu J, Xu P, Cheng Q, Huang S, Ji P, Qiu S. Unveiling the oncogenic role of CLDN11-secreting fibroblasts in gastric cancer peritoneal metastasis through single-cell sequencing and experimental approaches. Int Immunopharmacol 2024; 129:111647. [PMID: 38335659 DOI: 10.1016/j.intimp.2024.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fibroblasts are necessary to the progression of cancer. However, the role of fibroblasts in peritoneal metastasis (PM) of gastric cancer (GC) remains elusive. In this study, we would explore the role of fibroblasts mediated cell interaction in PM of GC. METHODS Single-cell sequencing data from public database GSE183904 was used to explore the specific fibroblast cluster. Fibroblasts were extracted from PM and GC tissues. The expression level of CXCR7 was verified by western blot, immunohistochemistry. The role of CLDN11 was investigate through in vitro and in vivo study. Multiple immunohistochemistry was used to characterize the tumor microenvironment. RESULTS CXCR7-positive fibroblasts were significantly enriched in PM of GC. CXCR7 could promote the expression of CLDN11 through activation of the AKT pathway in fibroblasts. Fibroblasts promote the GC proliferation and peritoneal metastasis by secreting CLDN11 in vitro and in vivo. Furthermore, it was revealed that CXCR7-positive fibroblasts were significantly associated with M2-type macrophages infiltration in tissues. CONCLUSION CXCR7-positive fibroblasts play an essential role in PM of GC via CLDN11. Therapy targeting CXCR7-positive fibroblasts or CLDN11 may be helpful in the treatment of GC with PM.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China.
| |
Collapse
|
18
|
Wu Z, Gu T, Xiong C, Shi J, Wang J, Guo T, Xing X, Pang F, He N, Miao R, Shan F, Zhou Y, Li Z, Ji J. Genomic characterization of peritoneal lavage cytology-positive gastric cancer. Chin J Cancer Res 2024; 36:66-77. [PMID: 38455368 PMCID: PMC10915641 DOI: 10.21147/j.issn.1000-9604.2024.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
Objective Positive peritoneal lavege cytology (CY1) gastric cancer is featured by dismal prognosis, with high risks of peritoneal metastasis. However, there is a lack of evidence on pathogenic mechanism and signature of CY1 and there is a continuous debate on CY1 therapy. Therefore, exploring the mechanism of CY1 is crucial for treatment strategies and targets for CY1 gastric cancer. Methods In order to figure out specific driver genes and marker genes of CY1 gastric cancer, and ultimately offer clues for potential marker and risk assessment of CY1, 17 cytology-positive gastric cancer patients and 31 matched cytology-negative gastric cancer patients were enrolled in this study. The enrollment criteria were based on the results of diagnostic laparoscopy staging and cytology inspection of exfoliated cells. Whole exome sequencing was then performed on tumor samples to evaluate genomic characterization of cytology-positive gastric cancer. Results Least absolute shrinkage and selection operator (LASSO) algorithm identified 43 cytology-positive marker genes, while MutSigCV identified 42 cytology-positive specific driver genes. CD3G and CDKL2 were both driver and marker genes of CY1. Regarding mutational signatures, driver gene mutation and tumor subclone architecture, no significant differences were observed between CY1 and negative peritoneal lavege cytology (CY0). Conclusions There might not be distinct differences between CY1 and CY0, and CY1 might represent the progression of CY0 gastric cancer rather than constituting an independent subtype. This genomic analysis will thus provide key molecular insights into CY1, which may have a direct effect on treatment recommendations for CY1 and CY0 patients, and provides opportunities for genome-guided clinical trials and drug development.
Collapse
Affiliation(s)
- Zhouqiao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tingfei Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Changxian Xiong
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jinyao Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jingpu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ning He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rulin Miao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Shan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ziyu Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiafu Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
19
|
Ge Z, Dai S, Yu H, Zhao J, Yang W, Tan W, Sun J, Gan Q, Liu L, Wang Z. Nanomechanical Analysis of Living Small Extracellular Vesicles to Identify Gastric Cancer Cell Malignancy Based on a Biomimetic Peritoneum. ACS NANO 2024; 18:6130-6146. [PMID: 38349890 PMCID: PMC10906078 DOI: 10.1021/acsnano.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Gastric cancer is one of the most prevalent digestive malignancies. The lack of effective in vitro peritoneal models has hindered the exploration of the potential mechanisms behind gastric cancer's peritoneal metastasis. An accumulating body of research indicates that small extracellular vesicles (sEVs) play an indispensable role in peritoneal metastasis of gastric cancer cells. In this study, a biomimetic peritoneum was constructed. The biomimetic model is similar to real peritoneum in internal microstructure, composition, and primary function, and it enables the recurrence of peritoneal metastasis process in vitro. Based on this model, the association between the mechanical properties of sEVs and the invasiveness of gastric cancer was identified. By performing nanomechanical analysis on sEVs, we found that the Young's modulus of sEVs can be utilized to differentiate between malignant clinical samples (ascites) and nonmalignant clinical samples (peritoneal lavage). Furthermore, patients' ascites-derived sEVs were verified to stimulate the mesothelial-to-mesenchymal transition, thereby promoting peritoneal metastasis. In summary, nanomechanical analysis of living sEVs could be utilized for the noninvasive diagnosis of malignant degree and peritoneal metastasis of gastric cancer. This finding is expected to contribute future treatments.
Collapse
Affiliation(s)
- Zhixing Ge
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songchen Dai
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Haibo Yu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Junhua Zhao
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Wenguang Yang
- School of
Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Wenjun Tan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxu Sun
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Quan Gan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianqing Liu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhenning Wang
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
20
|
Pretzsch E, Neumann J, Nieß H, Pretzsch CM, Hofmann FO, Kirchner T, Klauschen F, Werner J, Angele M, Kumbrink J. Comparative transcriptomic analyses reveal activation of the epithelial-mesenchymal transition program in non-metastasizing low grade pseudomyxoma peritonei. Pathol Res Pract 2024; 254:155129. [PMID: 38232629 DOI: 10.1016/j.prp.2024.155129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Epithelial-mesenchymal transition (EMT), angiogenesis, cell adhesion and extracellular matrix (ECM) interaction are essential for colorectal cancer (CRC) metastasis. Low grade mucinous neoplasia of the appendix (LAMN) and its advanced state low grade pseudomyxoma peritonei (lgPMP) show local aggressiveness with very limited metastatic potential as opposed to CRC. To better understand the underlying processes that foster or impede metastatic spread, we compared LAMN, lgPMP, and CRC with respect to their molecular profile with subsequent pathway analysis. LAMN, lgPMP and (mucinous) CRC cases were subjected to transcriptomic analysis utilizing Poly(A) RNA sequencing. Successfully sequenced cases (LAMN n = 10, 77%, lgPMP n = 13, 100% and CRC n = 8, 100%) were investigated using bioinformatic and statistical tests (differential expression analysis, hierarchical clustering, principal component analysis and gene set enrichment analysis). We identified a gene signature of 28 genes distinguishing LAMN, lgPMP and CRC neoplasias. Ontology analyses revealed that multiple pathways including EMT, ECM interaction and angiogenesis are differentially regulated. Fifty-three significantly differentially regulated gene sets were identified between lgPMP and CRC followed by CRC vs. LAMN (n = 21) and lgPMP vs. LAMN (n = 16). Unexpectedly, a substantial enrichment of the EMT gene set was observed in lgPMP vs. LAMN (FDR=0.011) and CRC (FDR=0.004). Typical EMT markers were significantly upregulated (Vimentin, TWIST1, N-Cadherin) or downregulated (E-Cadherin) in lgPMP. However, MMP1 and MMP3 levels, associated with EMT, ECM and metastasis, were considerably higher in CRC. We show that the different tumor biological behaviour and metastatic spread pattern of midgut malignancies is reflected in a different gene expression profile. We revealed a strong activation of the EMT program in non-metastasizing lgPMP vs. CRC. Hence, although EMT is considered a key step in hematogenous spread, successful EMT does not necessarily lead to hematogenous dissemination. This emphasizes the need for further pathway analyses and forms the basis for mechanistic and therapy-targeting research.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany
| | - Jens Neumann
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany; Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Charlotte M Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - F O Hofmann
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany
| | - Thomas Kirchner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany; Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany; Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jörg Kumbrink
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, partner site Munich, Germany; Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Rutecki S, Pakuła-Iwańska M, Leśniewska-Bocianowska A, Matuszewska J, Rychlewski D, Uruski P, Stryczyński Ł, Naumowicz E, Szubert S, Tykarski A, Mikuła-Pietrasik J, Książek K. Mechanisms of carboplatin- and paclitaxel-dependent induction of premature senescence and pro-cancerogenic conversion of normal peritoneal mesothelium and fibroblasts. J Pathol 2024; 262:198-211. [PMID: 37941520 DOI: 10.1002/path.6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carboplatin (CPT) and paclitaxel (PCT) are the optimal non-surgical treatment of epithelial ovarian cancer (EOC). Although their growth-restricting influence on EOC cells is well known, their impact on normal peritoneal cells, including mesothelium (PMCs) and fibroblasts (PFBs), is poorly understood. Here, we investigated whether, and if so, by what mechanism, CPT and PCT induce senescence of omental PMCs and PFBs. In addition, we tested whether PMC and PFB exposure to the drugs promotes the development of a pro-cancerogenic phenotype. The results showed that CPT and PCT induce G2/M growth arrest-associated senescence of normal peritoneal cells and that the strongest induction occurs when the drugs act together. PMCs senesce telomere-independently with an elevated p16 level and via activation of AKT and STAT3. In PFBs, telomeres shorten along with an induction of p21 and p53, and their senescence proceeds via the activation of ERK1/2. Oxidative stress in CPT + PCT-treated PMCs and PFBs is extensive and contributes causatively to their premature senescence. Both PMCs and PFBs exposed to CPT + PCT fuel the proliferation, migration, and invasion of established (A2780, OVCAR-3, SKOV-3) and primary EOCs, and this activity is linked with an overproduction of multiple cytokines altering the cancer cell transcriptome and controlled by p38 MAPK, NF-κB, STAT3, Notch1, and JAK1. Collectively, our findings indicate that CPT and PCT lead to iatrogenic senescence of normal peritoneal cells, which paradoxically and opposing therapeutic needs alters their phenotype towards pro-cancerogenic. It cannot be excluded that these adverse outcomes of chemotherapy may contribute to EOC relapse in the case of incomplete tumor eradication and residual disease initiation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Poznań University of Medical Sciences Doctoral School, Poznań, Poland
| | | | | | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Łukasz Stryczyński
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Division of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
22
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
23
|
Schab AM, Greenwade MM, Stock E, Lomonosova E, Cho K, Grither WR, Noia H, Wilke D, Mullen MM, Hagemann AR, Hagemann IS, Thaker PH, Kuroki LM, McCourt CK, Khabele D, Powell MA, Mutch DG, Zhao P, Shriver LP, Patti GJ, Longmore GD, Fuh KC. Stromal DDR2 Promotes Ovarian Cancer Metastasis through Regulation of Metabolism and Secretion of Extracellular Matrix Proteins. Mol Cancer Res 2023; 21:1234-1248. [PMID: 37527178 PMCID: PMC10832402 DOI: 10.1158/1541-7786.mcr-23-0347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer-related deaths. The propensity for metastasis within the peritoneal cavity is a driving factor for the poor outcomes associated with this disease, but there is currently no effective therapy targeting metastasis. In this study, we investigate the contribution of stromal cells to ovarian cancer metastasis and identify normal stromal cell expression of the collagen receptor, discoidin domain receptor 2 (DDR2), that acts to facilitate ovarian cancer metastasis. In vivo, global genetic inactivation of Ddr2 impairs the ability of Ddr2-expressing syngeneic ovarian cancer cells to spread throughout the peritoneal cavity. Specifically, DDR2 expression in mesothelial cells lining the peritoneal cavity facilitates tumor cell attachment and clearance. Subsequently, omentum fibroblast expression of DDR2 promotes tumor cell invasion. Mechanistically, we find DDR2-expressing fibroblasts are more energetically active, such that DDR2 regulates glycolysis through AKT/SNAI1 leading to suppressed fructose-1,6-bisphosphatase and increased hexokinase activity, a key glycolytic enzyme. Upon inhibition of DDR2, we find decreased protein synthesis and secretion. Consequently, when DDR2 is inhibited, there is reduction in secreted extracellular matrix proteins important for metastasis. Specifically, we find that fibroblast DDR2 inhibition leads to decreased secretion of the collagen crosslinker, LOXL2. Adding back LOXL2 to DDR2 deficient fibroblasts rescues the ability of tumor cells to invade. Overall, our results suggest that stromal cell expression of DDR2 is an important mediator of ovarian cancer metastasis. IMPLICATIONS DDR2 is highly expressed by stromal cells in ovarian cancer that can mediate metastasis and is a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Angela M. Schab
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Molly M. Greenwade
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth Stock
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Elena Lomonosova
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Kevin Cho
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Whitney R. Grither
- Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, MO 63110, USA
| | - Hollie Noia
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Daniel Wilke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Andrea R. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Ian S. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Carolyn K. McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Dineo Khabele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Matthew A. Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - David G. Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, MO 63110, USA
| | - Leah P. Shriver
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gary J. Patti
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gregory D. Longmore
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
- ICCE Institute, Washington University, St. Louis MO 63110, USA
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology University of California, San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
24
|
Lv Q, Wang Y, Xiong Z, Xue Y, Li J, Chen M, Zhou K, Xu H, Zhang X, Liu J, Ren J, Liu B. Microvascularized tumor assembloids model for drug delivery evaluation in colorectal cancer-derived peritoneal metastasis. Acta Biomater 2023; 168:346-360. [PMID: 37393969 DOI: 10.1016/j.actbio.2023.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/27/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Peritoneal metastasis (PM) is a fatal state of colorectal cancer, and only a few patients may benefit from systemic chemotherapy. Although hyperthermic intraperitoneal chemotherapy (HIPEC) brings hope for affected patients, the drug development and preclinical evaluation of HIPEC are seriously lagging behind, mainly due to the lack of an ideal in vitro PM model that makes drug development over-reliant on expensive and inefficient animal experiments. This study developed an in vitro colorectal cancer PM model [microvascularized tumor assembloids (vTA)] based on an assembly strategy of endothelialized microvessels and tumor spheroids. Our data showed that the in vitro perfusion cultured vTA could maintain a similar gene expression pattern to their parental xenografts. Also, the drug penetration pattern of the in vitro HIPEC in vTA could mimic the drug delivery behavior in tumor nodules during in vivo HIPEC. More importantly, we further confirmed the feasibility of constructing a tumor burden-controlled PM animal model using vTA. In conclusion, we propose a simple and effective strategy to construct physiologically simulated PM models in vitro, thus providing a basis for PM-related drug development and preclinical evaluation of locoregional therapies. STATEMENT OF SIGNIFICANCE: This study developed an in vitro colorectal cancer peritoneal metastasis (PM) model based on microvascularized tumor assembloids (vTA) for drug evaluation. With perfusion culture, vTA could maintain a similar gene expression pattern and tumor heterogeneity to their parental xenografts. And the drug penetration pattern in vTA was similar to the drug delivery behavior in tumor nodules under in vivo treatment. Moreover, vTA was more conducive to construct PM animal models with controllable tumor burden. In conclusion, the construction of vTA could provide a new strategy for the PM-related drug development and preclinical evaluation of locoregional therapies.
Collapse
Affiliation(s)
- Qijun Lv
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Ultrasound Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China; Department of Gastrointestinal Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yizhen Wang
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Zhiyong Xiong
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Yifan Xue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jiajun Li
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Moyang Chen
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Kaijian Zhou
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Hetao Xu
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Jie Ren
- Department of Ultrasound Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| | - Bo Liu
- Department of General Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
25
|
Qiu N, Zhang Z, Wei X, Xu C, Jia X, Wang K, Chen Y, Wang S, Su R, Cen B, Shen Y, Chen C, Liu Y, Xu X. Peritoneal Gene Transfection of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand for Tumor Surveillance and Prophylaxis. NANO LETTERS 2023; 23:7859-7868. [PMID: 37433066 DOI: 10.1021/acs.nanolett.3c01568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Peritoneal metastasis is very common in gastrointestinal, reproductive, and genitourinary tract cancers in late stages or postsurgery, causing poor prognosis, so effective and nontoxic prophylactic strategies against peritoneal metastasis are highly imperative. Herein, we demonstrate the first gene transfection as a nontoxic prophylaxis preventing peritoneal metastasis or operative metastatic dissemination. Lipopolyplexes of TNF-related-apoptosis-inducing-ligand (TRAIL) transfected peritonea and macrophages to express TRAIL for over 15 days. The expressed TRAIL selectively induced tumor cell apoptosis while exempting normal tissue, providing long-term tumor surveillance. Therefore, tumor cells inoculated in the pretransfected peritoneal cavity quickly underwent apoptosis and, thus, barely formed tumor nodules, significantly prolonging the mouse survival time compared with chemotherapy prophylaxis. Furthermore, lipopolyplex transfection showed no sign of toxicity. Therefore, this peritoneal TRAIL-transfection is an effective and safe prophylaxis, preventing peritoneal metastasis.
Collapse
Affiliation(s)
- Nasha Qiu
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Smart Biomaterials and College of Chemical and Biological Engineering, Zhejiang Univeristy, Hangzhou 310027, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100090, China
| | - Zhen Zhang
- Zhejiang Longcharm Bio-tech Pharma Co., Ltd. Hangzhou 310027, China
| | - Xuyong Wei
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chang Xu
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaolong Jia
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Kai Wang
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yunqi Chen
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Wang
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renyi Su
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Beini Cen
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and College of Chemical and Biological Engineering, Zhejiang Univeristy, Hangzhou 310027, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100090, China
| | - Yanpeng Liu
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- The Center for Integrated Oncology and Precision Medicine, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
26
|
Chia DKA, Demuytere J, Ernst S, Salavati H, Ceelen W. Effects of Hyperthermia and Hyperthermic Intraperitoneal Chemoperfusion on the Peritoneal and Tumor Immune Contexture. Cancers (Basel) 2023; 15:4314. [PMID: 37686590 PMCID: PMC10486595 DOI: 10.3390/cancers15174314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperthermia combined with intraperitoneal (IP) drug delivery is increasingly used in the treatment of peritoneal metastases (PM). Hyperthermia enhances tumor perfusion and increases drug penetration after IP delivery. The peritoneum is increasingly recognized as an immune-privileged organ with its own distinct immune microenvironment. Here, we review the immune landscape of the healthy peritoneal cavity and immune contexture of peritoneal metastases. Next, we review the potential benefits and unwanted tumor-promoting effects of hyperthermia and the associated heat shock response on the tumor immune microenvironment. We highlight the potential modulating effect of hyperthermia on the biomechanical properties of tumor tissue and the consequences for immune cell infiltration. Data from translational and clinical studies are reviewed. We conclude that (mild) hyperthermia and HIPEC have the potential to enhance antitumor immunity, but detailed further studies are required to distinguish beneficial from tumor-promoting effects.
Collapse
Affiliation(s)
- Daryl K. A. Chia
- Department of Surgery, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Jesse Demuytere
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sam Ernst
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Hooman Salavati
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Zhou C, Qiao C, Ji J, Xi W, Jiang J, Guo L, Wu J, Qi F, Cai Q, Damink SWMO, Zhang J. Plasma Exosome Proteins ILK1 and CD14 Correlated with Organ-Specific Metastasis in Advanced Gastric Cancer Patients. Cancers (Basel) 2023; 15:3986. [PMID: 37568802 PMCID: PMC10417498 DOI: 10.3390/cancers15153986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The exosome plays important roles in driving tumor metastasis, while the role of exosome proteins during organ-specific metastasis in gastric cancer has not been fully understood. To address this question, peripheral blood samples from 12 AGC patients with organ-specific metastasis, including distant lymphatic, hepatic and peritoneal metastasis, were collected to purify exosomes and to detect exosome proteins by Nano-HPLC-MS/MS. Gastric cancer cell lines were used for in vitro experiments. Peripheral blood sample and ascites sample from one patient were further analyzed by single-cell RNA sequencing. GO and KEGG enrichment analysis showed different expression proteins of hepatic metastasis were correlated with lipid metabolism. For peritoneal metastasis, actin cytoskeleton regulation and glycolysis/gluconeogenesis could be enriched. ILK1 and CD14 were correlated with hepatic and peritoneal metastasis, respectively. Overexpression of CD14 and ILK1 impacted the colony formation ability of gastric cancer and increased expression of Vimentin. CD14 derived from immune cells in malignant ascites correlated with high activation of chemokine- and cytokine-mediated signaling pathways. In summary, biological functions of plasma exosome proteins among AGC patients with different metastatic modes were distinct, in which ILK1 and CD14 were correlated with organ-specific metastasis.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi 214111, China
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Changting Qiao
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi 214111, China
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
| | - Steven W. M. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.Z.); (W.X.); (J.J.); (L.G.); (J.W.); (F.Q.); (Q.C.)
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi 214111, China
| |
Collapse
|
28
|
Wang C, Zhao J, Sun J, Tian C, Dai Z, Liu J, Ji C, Liu D, Wang X, Li H, Sun Y. Intraoperative Pathological Evaluation of Suspicious Peritoneal Nodules for Surgical Decision-making in Gastric Cancer. J Gastrointest Surg 2023; 27:1545-1559. [PMID: 37059962 DOI: 10.1007/s11605-023-05671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND When frozen pathological results of suspicious peritoneal nodules found in gastric cancer (GC) patients are negative or indeterminant, whether to perform gastrectomy will always be a dilemma for surgeons. This study aimed to facilitate intraoperative surgical decision-making based on frozen section (FS) results and clinicopathological characteristics. METHODS From January 2015 to July 2021, 318 GC patients were enrolled retrospectively. The correlations between frozen and paraffin pathology of peritoneal nodules were examined. Then, predictive factors of positive paraffin section (PS) results were identified, and a nomogram was constructed. The survival significance of gastrectomy was also explored. RESULTS Of 70 FS-negative patients, 59 (84.3%) had concordant negative PS results, while the PS results of 11 (15.7%) were positive. Forty-six (93.9%) and 3 (6.1%) of 49 patients with indeterminant FS results had positive and negative PS results, respectively. The PS results of 95 FS-positive patients were all positive. A nomogram for predicting positive PS results was developed based on Lauren type, nodule distribution, and CA125. Gastrectomy for FS-negative patients improved survival compared to no gastrectomy (HR 0.26, 95% CI 0.11-0.62; P = 0.0012). Survival benefits for gastrectomy vs. no gastrectomy were not demonstrated in patients with indeterminant (HR 0.74, 95% CI 0.27-2.01; P = 0.53) and positive (HR 0.87, 95% CI 0.43-1.74; P = 0.69) FS results. CONCLUSIONS Gastrectomy can be justified for the treatment of operable GC patients with negative frozen pathological results of peritoneal nodules. For patients with positive and indeterminant frozen pathological results, gastrectomy is not recommended unless it is performed as palliative surgery.
Collapse
Affiliation(s)
- Chen Wang
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Junjie Zhao
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Sun
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chenyu Tian
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), 668 Jinhu Road, Huli District, Xiamen, 361015, Fujian Province, China
| | - Jingdong Liu
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chengbo Ji
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dan Liu
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuefei Wang
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Haojie Li
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yihong Sun
- Department of General Surgery, Gastric Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, He Y, Kang W. Tumour-associated macrophages in gastric cancer: From function and mechanism to application. Clin Transl Med 2023; 13:e1386. [PMID: 37608500 PMCID: PMC10444973 DOI: 10.1002/ctm2.1386] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumour, with high morbidity and mortality rates worldwide. The occurrence and development of GC is a complex process involving genetic changes in tumour cells and the influence of the surrounding tumour microenvironment (TME). Accumulative evidence shows that tumour-associated macrophages (TAMs) play a vital role in GC, acting as plentiful and active infiltrating inflammatory cells in the TME. MAIN BODY In this review, the different functions and mechanisms of TAMs in GC progression, including the conversion of phenotypic subtypes; promotion of tumour proliferation, invasion and migration; induction of chemoresistance; promotion of angiogenesis; modulation of immunosuppression; reprogramming of metabolism; and interaction with the microbial community are summarised. Although the role of TAMs in GC remains controversial in clinical settings, clarifying their significance in the treatment selection and prognostic prediction of GC could support optimising TAM-centred clinicaltherapy. CONCLUSION In summary, we reviewed the the phenotypic polarisation, function and molecular mechanism of TAMs and their potential applications in the treatment selection and prognostic prediction of GC.
Collapse
Affiliation(s)
- Jie Li
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Juan Sun
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Ziyang Zeng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zhen Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Mingwei Ma
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zicheng Zheng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yixuan He
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Weiming Kang
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
30
|
Dong X, Fan J, Xie W, Wu X, Wei J, He Z, Wang W, Wang X, Shen P, Bei Y. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. Br J Cancer 2023; 129:551-562. [PMID: 37386139 PMCID: PMC10403530 DOI: 10.1038/s41416-023-02319-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common cancers. Peritoneal carcinomatosis (PC) appears to be the most common pattern of recurrence, and more than half of the GC patients eventually die from PC. Novel strategies for the management of patients with PC are urgently needed. Recently, rapid progress has been made in adoptive transfer therapy by using macrophages as the effector cells due to their capabilities of phagocytosis, antigen presentation, and high penetration. Here, we generated a novel macrophage-based therapy and investigated anti-tumoral effects on GC and potential toxicity. METHODS We developed a novel Chimeric Antigen Receptor-Macrophage (CAR-M) based on genetically modifying human peritoneal macrophages (PMs), expressing a HER2-FcεR1γ-CAR (HF-CAR). We tested HF-CAR macrophages in a variety of GC models in vitro and in vivo. RESULTS HF-CAR-PMs specifically targeted HER2-expressed GC, and harboured the FcεR1γ moieties to trigger engulfment. Intraperitoneal administration of HF-CAR-PMs significantly facilitated the HER2-positive tumour regression in PC mouse model and prolonged the overall survival rate. In addition, the combined use of oxaliplatin and HF-CAR-PMs exhibited significantly augment anti-tumour activity and survival benefit. CONCLUSIONS HF-CAR-PMs could represent an exciting therapeutic option for patients with HER2-positive GC cancer, which should be tested in carefully designed clinical trials.
Collapse
Affiliation(s)
- Xuhui Dong
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiqiang Fan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Wangxu Xie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Xiang Wu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Xueting Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Pingping Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, 518000, Shenzhen, China.
| | - Yuncheng Bei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
| |
Collapse
|
31
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
32
|
Gong X, Hou D, Zhou S, Tan J, Zhong G, Yang B, Xie L, Han F, Zhong L. FMO family may serve as novel marker and potential therapeutic target for the peritoneal metastasis in gastric cancer. Front Oncol 2023; 13:1144775. [PMID: 37274237 PMCID: PMC10234505 DOI: 10.3389/fonc.2023.1144775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023] Open
Abstract
Objective To explore the relationship between flavin-containing monooxygenases (FMOs) and peritoneal metastasis (PM) in gastric cancer (GC). Materials and methods TIMER 2.0 was used to perform pan-cancer analysis and assess the correlation between the expression of FMOs and cancers. A dataset from The Cancer Genome Atlas (TCGA) was used to analyze the correlation between FMOs and clinicopathological features of GC. PM is well established as the most common mode of metastasis in GC. To further analyze the correlation between FMOs and PM of GC, a dataset was obtained from the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database. The results were validated by immunohistochemistry. The relationship between FMOs and PM of GC was explored, and a novel PM risk signature was constructed by least absolute shrinkage and selection operator (LASSO) regression analysis. The regression model's validity was tested by multisampling. A nomogram was established based on the model for predicting PM in GC patients. The mechanism of FMOs in GC patients presenting with PM was assessed by conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses in TCGA and GEO datasets. Finally, the potential relationship between FMOs and immunotherapy was analyzed. Results The pan-cancer analysis in TCGA and GEO datasets showed that FMO1 was upregulated, while FMO2 and FMO4 were downregulated in GC. Moreover, FMO1 and FMO2 correlated positively with the T and N stage of GC in the TCGA dataset. FMO1 and FMO2 expression was a risk factor for GC (hazard ratio: 1.112 and 1.185). The overexpression of FMO1 was significantly correlated with worse disease-free-survival (DFS) and overall survival (OS). However, no relationship was found between FMO2 expression in GC and DFS and OS. PM was highly prevalent among GC patients and typically associated with a worse prognosis. FMO1 was highly expressed in GC with PM. FMO1 and FMO2 were positively correlated with PM in GC. We identified a 12-gene panel for predicting the PM risk signature by LASSO (Area Under Curve (AUC) = 0.948, 95%CI: 0.896-1.000). A 10-gene panel for PM prediction was identified (AUC = 0.932, 95%CI: 0.874-0.990), comprising FMO1 and FMO2. To establish a model for clinical application, a 7-gene panel was established (AUC = 0.927, 95% CI: 0.877-0.977) and successfully validated by multisampling. (AUC = 0.892, 95% CI: 0.878-0.906). GO and KEGG analyses suggest that FMO1 and FMO2 regulate the extracellular matrix and cell adhesion. FMO1 and FMO2 were positively correlated with the immune score of GC, and their expression was associated with the infiltration of immune cells. Conclusion PM in GC is strongly correlated with FMOs. Overall, FMO1 and FMO2 have huge prospects for application as novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xumeng Gong
- Department of Surgical Oncology, Yuebei People’s Hospital, Shaoguan, Guangdong, China
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianan Tan
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Yang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, Alsina-Sanchis E, Bohnenberger H, Fernandez-Florido E, Mülfarth R, Vacca M, Gerwing J, Conradi LC, Ströbel P, Trumpp A, Mogler C, Fischer A, Rodriguez-Vita J. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun 2023; 14:2353. [PMID: 37095087 PMCID: PMC10126109 DOI: 10.1038/s41467-023-38064-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
Collapse
Affiliation(s)
- Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Vaquero-Siguero
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Elena Fernandez-Florido
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Margherita Vacca
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
34
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
35
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
36
|
Zhang Q, Luo H, Xun J, Ma Y, Yang L, Zhang L, Wang X, Yu X, Wang B. Targeting PYCR2 inhibits intraperitoneal metastatic tumors of mouse colorectal cancer in a proline-independent approach. Cancer Sci 2023; 114:908-920. [PMID: 36308281 PMCID: PMC9986086 DOI: 10.1111/cas.15635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Whether proline deficiency is a metabolic vulnerability in colorectal tumors is unknown. The aim of this study was to investigate the effects of proline metabolism-related genes and exogenous proline on the progression of colorectal cancer (CRC). We aimed to further clarify the role of pyrroline-5-carboxylate reductase (PYCR) 2, a key enzyme of proline synthesis, in the regulation of colorectal intraperitoneal metastatic tumors. This study was carried out based on The Cancer Genome Atlas (TCGA) data, database analysis, single-cell functional analysis, tissue microarray, cell experiments, and animal models. We found that, PYCR2 mRNA and protein levels were upregulated in CRC. The mRNA level of PYCR2 was closely related to the prognosis and tumor metastasis of CRC patients. The upregulated PYCR2 expression was at least partly due to low promoter methylation levels. The nomogram constructed based on PYCR2 expression and clinical characteristics of CRC showed good accuracy in predicting lymph node metastasis. Pycr2 knockdown inhibited epithelial-mesenchymal transition (EMT) of mouse CRC cells. Proline supplementation did not rescue the inhibition of mouse CRC cell proliferation and migration by Pycr2 knockdown. Proline supplementation also did not rescue the suppression of subcutaneous tumors and intraperitoneal metastatic tumors in mice by Pycr2 knockdown. PYCR2 co-expressed genes in TCGA-CRC were enriched in epigenetic modification-related biological processes and molecular functions. Four small molecules with the lowest binding energy to the PYCR2 protein were identified. Collectively, Pycr2 knockdown inhibited mouse CRC progression in a proline-independent approach. PYCR2 may be a promising tumor metastasis predictor and therapeutic target in CRC.
Collapse
Affiliation(s)
- Qi Zhang
- Nankai Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Hai Luo
- Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuan Ma
- Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Botao Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
37
|
Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis. Cancer Lett 2023; 553:215983. [PMID: 36404569 DOI: 10.1016/j.canlet.2022.215983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
Abstract
Peritoneal metastasis is one of the most frequent causes of death in several types of advanced cancers; however, the underlying molecular mechanisms remain largely unknown. In this study, we exploited multicolor fluorescent lineage tracking to investigate the clonality of peritoneal metastasis in mouse xenograft models. When peritoneal metastasis was induced by intraperitoneal or orthotopic injection of multicolored cancer cells, each peritoneally metastasized tumor displayed multicolor fluorescence regardless of metastasis sites, indicating that it consists of multiclonal cancer cell populations. Multicolored cancer cell clusters form within the peritoneal cavity and collectively attach to the peritoneum. In vitro, peritoneal lavage fluid or cleared ascitic fluid derived from cancer patients induces cancer cell clustering, which is inhibited by anticoagulants. Cancer cell clusters formed in vitro and in vivo are associated with fibrin formation. Furthermore, tissue factor knockout in cancer cells abrogates cell clustering, peritoneal attachment, and peritoneal metastasis. Thus, we propose that cancer cells activate the coagulation cascade via tissue factor to form fibrin-mediated cell clusters and promote peritoneal attachment; these factors lead to the development of multiclonal peritoneal metastasis and may be therapeutic targets.
Collapse
|
38
|
Establishing a New Platform to Investigate the Efficacy of Oncolytic Virotherapy in a Human Ex Vivo Peritoneal Carcinomatosis Model. Viruses 2023; 15:v15020363. [PMID: 36851574 PMCID: PMC9963964 DOI: 10.3390/v15020363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Oncolytic virotherapy constitutes a promising treatment option for many solid cancers, including peritoneal carcinomatosis (PC), which still represents a terminal stage of many types of tumors. To date, the in vitro efficacy of oncolytic viruses is mostly tested in 2D-cultured tumor cell lines due to the lack of realistic 3D in vitro tumor models. We have investigated the feasibility of virotherapy as a treatment option for PC in a human ex vivo peritoneum co-culture model. Human HT-29 cancer cells stably expressing marker genes GFP and firefly luciferase (GFP/luc) were cultured on human peritoneum and infected with two prototypic oncolytic viruses (GLV-0b347 and MeV-DsRed). Both viral constructs were able to infect HT-29 cells in patient-derived peritoneum with high tumor specificity. Over time, both GFP signal and luciferase activity decreased substantially, thereby indicating successful virus-induced oncolysis. Furthermore, immunohistochemistry stainings showed specific virotherapeutic infections of HT-29 cells and effective tumor cell lysis in infected co-cultures. Thus, the PC model established here provides a clinically relevant screening platform to evaluate the therapeutic efficacy of virotherapeutic compounds and also to investigate, in an autologous setting, the immunostimulatory potential of oncolytic viruses for PC in a unique human model system superior to standard 2D in vitro models.
Collapse
|
39
|
Mo Y, Leung LL, Mak CSL, Wang X, Chan WS, Hui LMN, Tang HWM, Siu MKY, Sharma R, Xu D, Tsui SKW, Ngan HYS, Yung MMH, Chan KKL, Chan DW. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol Cancer 2023; 22:4. [PMID: 36624516 PMCID: PMC9827705 DOI: 10.1186/s12943-022-01703-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.
Collapse
Affiliation(s)
- Yulan Mo
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Leanne L. Leung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Celia S. L. Mak
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Xueyu Wang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Wai-Sun Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Lynn M. N. Hui
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hermit W. M. Tang
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Michelle K. Y. Siu
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Rakesh Sharma
- grid.194645.b0000000121742757Centre for PanorOmic Sciences Proteomics and Metabolomics Core, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Dakang Xu
- grid.16821.3c0000 0004 0368 8293Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Stephen K. W. Tsui
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China
| | - Hextan Y. S. Ngan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Mingo M. H. Yung
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Karen K. L. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - David W. Chan
- grid.194645.b0000000121742757Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China ,grid.511521.3School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, 518172 China
| |
Collapse
|
40
|
Yoshida-Court K, Karpinets TV, Mitra A, Solley TN, Dorta-Estremera S, Sims TT, Delgado Medrano AY, El Alam MB, Ahmed-Kaddar M, Lynn EJ, Sastry KJ, Zhang J, Futreal A, Nick A, Lu K, Colbert LE, Klopp AH. Immune environment and antigen specificity of the T cell receptor repertoire of malignant ascites in ovarian cancer. PLoS One 2023; 18:e0279590. [PMID: 36607962 PMCID: PMC9821423 DOI: 10.1371/journal.pone.0279590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/10/2022] [Indexed: 01/07/2023] Open
Abstract
We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR β-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that is predicted to bind the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer.
Collapse
Affiliation(s)
- Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tatiana V. Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Aparna Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Travis N. Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Stephanie Dorta-Estremera
- Comprehensive Cancer Center, Cancer Biology, Department of Microbiology and Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Travis T. Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrea Y. Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Molly B. El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Erica J. Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - K. Jagannadha Sastry
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Alpa Nick
- Saint Thomas Health/Ascension, Nashville, TN, United States of America
- Tennessee Oncology, Nashville, Tennessee, United States of America
| | - Karen Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
41
|
Yang YM, Ye L, Ruge F, Fang Z, Ji K, Sanders AJ, Jia S, Hao C, Dou QP, Ji J, Jiang WG. Activated Leukocyte Cell Adhesion Molecule (ALCAM), a Potential 'Seed' and 'Soil' Receptor in the Peritoneal Metastasis of Gastrointestinal Cancers. Int J Mol Sci 2023; 24:ijms24010876. [PMID: 36614319 PMCID: PMC9821744 DOI: 10.3390/ijms24010876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell-cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer metastasis. In the present study, we investigated potential roles of ALCAM in the peritoneal transcoelomic metastasis in gastrointestinal cancers, a metastatic type commonly occurred in gastro-intestinal and gynaecological malignancies and resulting in poor clinical outcomes. Specifically, we studied whether ALCAM acts as both a 'seed' receptor in these tumour cells and a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. Gastric cancer and pancreatic cancer tissues with or without peritoneal metastasis were compared for their levels of ALCAM expression. The impact of ALCAM expression in these tumours was also correlated to the patients' clinical outcomes, namely peritoneal metastasis-free survival. In addition, cancer cells of gastric and pancreatic origins were used to create cell models with decreased or increased levels of ALCAM expression by genetic knocking down or overexpression, respectively. Human peritoneal mesothelial cells were also genetically transfected to generate cell models with different profiles of ALCAM expression. These cell models were used in the tumour-mesothelial interaction assay to assess if and how the interaction was influenced by ALCAM. Both gastric and pancreatic tumour tissues from patients who developed peritoneal metastases had higher levels of ALCAM transcript than those without. Patients who had tumours with high levels of ALCAM had a much shorter peritoneal metastasis free survival compared with those who had low ALCAM expression (p = 0.006). ALCAM knockdown of the mesothelial cell line MET5A rendered the cells with reduced interaction with both gastric cancer cells and pancreatic cancer cells. Likewise, levels of ALCAM in both human gastric and pancreatic cancer cells were also a determining factor for their adhesiveness to mesothelial cells, a process that was likely to be triggered the phosphorylation of the SRC kinase. A soluble ALCAM (sALCAM) was found to be able to inhibit the adhesiveness between cancer cells and mesothelial cells, mechanistically behaving like a SRC kinase inhibitor. ALCAM is an indicator of peritoneal metastasis in both gastric and pancreatic cancer patients. It acts as not only a potential peritoneal 'soil' receptor of tumour seeding but also a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. These findings have an important therapeutic implication for treating peritoneal transcoelomic metastases.
Collapse
Affiliation(s)
- Yi Ming Yang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ke Ji
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- School of Natural and Social Science, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| | - Shuqin Jia
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Chunyi Hao
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Q. Ping Dou
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
- Correspondence: (J.J.); (W.G.J.)
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Correspondence: (J.J.); (W.G.J.)
| |
Collapse
|
42
|
Zhang R, Zou Y, Luo J. Application of Extracellular Vesicles in Gynecologic Cancer Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120740. [PMID: 36550946 PMCID: PMC9774372 DOI: 10.3390/bioengineering9120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Ovarian, cervical, and endometrial cancer are the three most common gynecological malignancies that seriously threaten women's health. With the development of molecular biology technology, immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment. Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in intercellular communication and in the regulation of various biological process. Several studies have shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This article reviews the progress of research into extracellular vesicles in common gynecologic tumors and discusses the role of extracellular vesicles in gynecologic tumor treatment.
Collapse
Affiliation(s)
- Renwen Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Zou
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
43
|
Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R, Shen B. The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front Pharmacol 2022; 13:987088. [PMID: 36386196 PMCID: PMC9643842 DOI: 10.3389/fphar.2022.987088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 10/21/2023] Open
Abstract
Ovarian cancer, and particularly its most frequent type, epithelial ovarian carcinoma, constitutes one of the most dangerous malignant tumors among females. Substantial evidence has described the potential of phytochemicals against ovarian cancer. The effect of natural compounds on endoplasmic reticulum (ER) stress is of great relevance in this regard. In ovarian cancer, the accumulation of misfolded proteins in the ER lumen results in decompensated ER stress. This leads to deregulation in the physiological processes for the posttranslational modification of proteins, jeopardizes cellular homeostasis, and increases apoptotic signaling. Several metabolites and metabolite extracts of phytochemical origin have been studied in the context of ER stress in ovarian cancer. Resveratrol, quercetin, curcumin, fucosterol, cleistopholine, fucoidan, and epicatechin gallate, among others, have shown inhibitory potential against ER stress. The chemical structure of each compound plays an important role concerning its pharmacodynamics, pharmacokinetics, and overall effectiveness. Studying and cross-comparing the chemical features that render different phytochemicals effective in eliciting particular anti-ER stress actions can help improve drug design or develop multipotent combination regimens. Many studies have also investigated the properties of formulations such as nanoparticles, niosomes, liposomes, and intravenous hydrogel based on curcumin and quercetin along with some other phytomolecules in ovarian cancer. Overall, the potential of phytochemicals in targeting genetic mechanisms of ovarian cancer warrants further translational and clinical investigation.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | - Dinesh Kumar
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Rupesh K. Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | | | - Himangini Bansal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Gross S, Hooper R, Tomar D, Armstead AP, Shanas N, Mallu P, Joshi H, Ray S, Chong PL, Astsaturov I, Farma JM, Cai KQ, Chitrala KN, Elrod JW, Zaidi MR, Soboloff J. Suppression of Ca 2+ signaling enhances melanoma progression. EMBO J 2022; 41:e110046. [PMID: 36039850 PMCID: PMC9531303 DOI: 10.15252/embj.2021110046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/18/2023] Open
Abstract
The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.
Collapse
Affiliation(s)
- Scott Gross
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Robert Hooper
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Dhanendra Tomar
- The Center for Translational MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Alexander P Armstead
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - No'ad Shanas
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Pranava Mallu
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Hinal Joshi
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Suravi Ray
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Parkson Lee‐Gau Chong
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Igor Astsaturov
- Department of Hematology/OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Jeffrey M Farma
- Department of Surgical OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Kathy Q Cai
- Department of Hematology/OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - John W Elrod
- The Center for Translational MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| |
Collapse
|
45
|
Takahashi K, Kurashina K, Yamaguchi H, Kanamaru R, Ohzawa H, Miyato H, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. Altered intraperitoneal immune microenvironment in patients with peritoneal metastases from gastric cancer. Front Immunol 2022; 13:969468. [PMID: 36119051 PMCID: PMC9478385 DOI: 10.3389/fimmu.2022.969468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe peritoneal cavity contains many site-specific immune cells which constitute a unique immune microenvironment. However, it is unclear how the local immune signature is altered in patients with peritoneal metastases (PM).MethodsPeritoneal lavage fluid or ascites were obtained from 122 patients with various stages of gastric cancer (GC). Cells recovered from peritoneal fluids were immunostained with mAbs for lymphocyte-, macrophage- and tumor cell-specific antigens and the frequencies of leukocyte subsets and antigen expression levels were evaluated with multi-color flowcytometry.ResultsThe proportions of CD8(+) T cells, CD3(+)CD56(+) NKT-like cells, and CD3(-)CD56(+) NK cells to CD45(+) leukocytes were significantly reduced in patients with PM compared to those without PM. In patients with PM, the rates of CD8 (+) T cells and NKT-like cells correlated inversely with the tumor leukocyte ratio (TLR), the relative frequency of CD326(+) tumor cells to CD45(+) leukocytes. In contrast, the proportion of CD19(+) B cells was significantly increased in patients with PM, and their proportion correlated positively with the TLR and peritoneal carcinomatosis index (PCI) score. In patients with PM, CD14(+) macrophages tended to be increased with enhanced expression of CD14, CD16 and a M2-macrophage marker, CD163. In particular, macrophages in patients with high TLR contained many granules with high side scatter and CD14 expression in their flow profile compared to those without PM.ConclusionPM are accompanied by a drastic change in phenotypes of lymphocyte and macrophage in the peritoneal cavity, which might be involved in the development and progression of intraperitoneal tumor growth.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Kentaro Kurashina
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Rihito Kanamaru
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Hideyo Miyato
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shin Saito
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yoshinori Hosoya
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Alan Kawarai Lefor
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
- *Correspondence: Joji Kitayama,
| |
Collapse
|
46
|
Konishi I, Abiko K, Hayashi T, Yamanoi K, Murakami R, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Peritoneal dissemination of high-grade serous ovarian cancer: pivotal roles of chromosomal instability and epigenetic dynamics. J Gynecol Oncol 2022; 33:e83. [PMID: 36032027 PMCID: PMC9428305 DOI: 10.3802/jgo.2022.33.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Epithelial ovarian cancer remains the lethal gynecological malignancy in women. The representative histotype is high-grade serous carcinoma (HGSC), and most patients with HGSC present at advanced stages with peritoneal dissemination. Since the peritoneal dissemination is the most important factor for poor prognosis of the patients, complete exploration for its molecular mechanisms is mandatory. In this narrative review, being based on the clinical, pathologic, and genomic findings of HGSC, chromosomal instability and epigenetic dynamics have been discussed as the potential drivers for cancer development in the fallopian tube, acquisition of cancer stem cell (CSC)-like properties, and peritoneal metastasis of HGSC. The natural history of carcinogenesis with clonal evolution, and adaptation to microenvironment of peritoneal dissemination of HGSC should be targeted in the novel development of strategies for prevention, early detection, and precision treatment for patients with HGSC.
Collapse
Affiliation(s)
- Ikuo Konishi
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takuma Hayashi
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
47
|
Wei GX, Du Y, Zhou YW, Li LJ, Qiu M. Peritoneal carcinomatosis with intraperitoneal immunotherapy: current treatment options and perspectives. Expert Rev Gastroenterol Hepatol 2022; 16:851-861. [PMID: 36107723 DOI: 10.1080/17474124.2022.2125866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peritoneal carcinomatosis (PC) is an advanced malignancy that is not sensitive to systemic conventional chemotherapy. Treatment options for PC are usually palliative rather than curative. Cytoreductive surgery and hyperthermic intraperitoneal (IP) chemotherapy are associated with limited efficacy in patients with PC. However, the peritoneum can produce effective immunity by inducing T-lymphocyte recruitment and proliferation, and the unique immune environment of the peritoneum provides the rationale for IP immunotherapy in PC. AREAS COVERED The authors retrieved relevant documents of IP immunotherapy for PC from PubMed and Medline. This review elaborates on the knowledge of the peritoneal immune microenvironment and IP immunotherapy for PC covering immune stimulators, radioimmunotherapy, catumaxomab, cancer vaccines, chimeric antigen receptor (CAR)-T cells, and immune checkpoint inhibitors. EXPERT OPINION The prognosis of PC is poor. However, the peritoneal cavity is a unique immune compartment with abundant immune cells which can produce effective immunity. IP immunotherapy may be a promising strategy in patients with PC.
Collapse
Affiliation(s)
- Gui-Xia Wei
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Du
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lin-Juan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Mohammad A, Hor M, Baradeiya AM, Qasim H, Nasr M. Is Pressurized Intraperitoneal Aerosolized Chemotherapy (PIPAC) Effective in Ovarian Cancer With Peritoneal Metastasis? Cureus 2022; 14:e27837. [PMID: 36110443 PMCID: PMC9462586 DOI: 10.7759/cureus.27837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality in women and is frequently diagnosed at an advanced stage. Ovarian cancer has a high recurrence rate, with most cases being peritoneal metastasis. The standard treatment of peritoneal metastasis is systemic chemotherapy, but naturally, the peritoneum is poorly vascularized, making this standard of treatment frequently ineffective. Hence, pressurized intraperitoneal aerosol chemotherapy (PIPAC) introduced a new type of intraperitoneal chemotherapy (IPC) in November 2011. Positive feedback on its feasibility, tolerance, and efficacy has encouraged medical communities worldwide to adopt PIPAC as a new drug delivery technique. This study's objective is to review previously conducted research on the efficacy of PIPAC treatment for peritoneal metastasis from ovarian cancer.
Collapse
|
49
|
Koch J, Mönch D, Maaß A, Mangold A, Gužvić M, Mürdter T, Leibold T, Dahlke MH, Renner P. Pharmacologic Targeting of MMP2/9 Decreases Peritoneal Metastasis Formation of Colorectal Cancer in a Human Ex Vivo Peritoneum Culture Model. Cancers (Basel) 2022; 14:cancers14153760. [PMID: 35954423 PMCID: PMC9367441 DOI: 10.3390/cancers14153760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We investigated the effects of matrix metalloproteinases (MMPs) on the peritoneal attachment of colorectal cancer cells in patient samples and in a human ex vivo peritoneum model. MMP2/9 overexpression and enhanced fibronectin cleavage occurred during peritoneal colonisation, which could be inhibited by specific MMP inhibition, thereby reducing cancer cell attachment. Abstract Background: Matrix metalloproteinases (MMPs) play a crucial role in tumour initiation, progression, and metastasis, including peritoneal carcinosis (PC) formation. MMPs serve as biomarkers for tumour progression in colorectal cancer (CRC), and MMP overexpression is associated with advanced-stage metastasis and poor survival. However, the molecular mechanisms of PC from CRC remain largely unclear. Methods: We investigated the role of MMPs during peritoneal colonisation by CRC cell lines in a human ex vivo peritoneum model and in patient-derived CRC and corresponding PC samples. MMP2 and MMP9 were inhibited using the small-molecule inhibitors batimastat and the specific MMP2/9 inhibitor III. Results: MMP2 and MMP9 were strongly upregulated in patient-derived samples and following peritoneal colonisation by CRC cells in the ex vivo model. MMP inhibition with batimastat reduced colonisation of HT29 and Colo205 cells by 36% and 68%, respectively (p = 0.0073 and p = 0.0002), while MMP2/9 inhibitor III reduced colonisation by 50% and 41%, respectively (p = 0.0003 and p = 0.0051). Fibronectin cleavage was enhanced in patient-derived samples of PC and during peritoneal colonisation in the ex vivo model, and this was inhibited by MMP2/9 inhibition. Conclusion: MMPs were upregulated in patient-derived samples and during peritoneal attachment of CRC cell lines in our ex vivo model. MMP2/9 inhibition prevented fibronectin cleavage and peritoneal colonisation by CRC cells. MMP inhibitors might thus offer a potential treatment strategy for patients with PC.
Collapse
Affiliation(s)
- Jana Koch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Annika Maaß
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Alina Mangold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | | | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Tobias Leibold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Marc-H. Dahlke
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Philipp Renner
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
- University Medical Centre Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
50
|
Cammarata G, Barraco N, Giusti I, Gristina V, Dolo V, Taverna S. Extracellular Vesicles-ceRNAs as Ovarian Cancer Biomarkers: Looking into circRNA-miRNA-mRNA Code. Cancers (Basel) 2022; 14:cancers14143404. [PMID: 35884464 PMCID: PMC9324482 DOI: 10.3390/cancers14143404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Patients with ovarian cancer have a very poor chance of long-term survival, usually due to advanced disease at the time of diagnosis. Emerging evidence suggests that extracellular vesicles contain noncoding RNAs such as microRNAs, piwiRNAs, circular RNAs, and long noncoding RNAs, with regulatory effects on ovarian cancer. In this review, we focus on ovarian cancer-associated circular RNA shuttled by extracellular vesicles as mediators of cancer progression and novel biomarkers in liquid biopsy. We propose a circular-RNA–microRNA-mRNA code that can reveal the regulatory network created by extracellular vesicles, noncoding RNAs, and mRNAs in ovarian cancer. Future research in this field will help to identify novel diagnostic biomarkers and druggable therapeutic targets, which will ultimately benefit patients. Abstract Ovarian cancer (OC) is one of the most lethal gynecologic malignancies in females worldwide. OC is frequently diagnosed at an advanced stage due to a lack of specific symptoms and effective screening tests, resulting in a poor prognosis for patients. Age, genetic alterations, and family history are the major risk factors for OC pathogenesis. Understanding the molecular mechanisms underlying OC progression, identifying new biomarkers for early detection, and discovering potential targets for new drugs are urgent needs. Liquid biopsy (LB), used for cancer detection and management, consists of a minimally invasive approach and practical alternative source to investigate tumor alterations by testing extracellular vesicles (EVs), circulating tumor cells, tumor-educated platelets, and cell-free nucleic acids. EVs are nanosize vesicles shuttling proteins, lipids, and nucleic acids, such as DNA, RNA, and non-coding RNAs (ncRNAs), that can induce phenotypic reprogramming of target cells. EVs are natural intercellular shuttles for ncRNAs, such as microRNAs (miRNAs) and circular-RNAs (circRNAs), known to have regulatory effects in OC. Here we focus on the involvement of circRNAs and miRNAs in OC cancer progression. The circRNA-microRNA-mRNA axis has been investigated with Circbank and miRwalk analysis, unraveling the intricate and detailed regulatory network created by EVs, ncRNAs, and mRNAs in OC.
Collapse
Affiliation(s)
- Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.B.); (V.G.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Correspondence: (G.C.); (S.T.)
| |
Collapse
|