1
|
Xu L, Dai Q, Yu Y, Yu H. Correlation between olfactory receptor basal activity and odor response: An observational study. Medicine (Baltimore) 2025; 104:e42085. [PMID: 40295251 PMCID: PMC12040046 DOI: 10.1097/md.0000000000042085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Olfactory receptors (ORs) are the largest group of G-protein-coupled human receptors responsible for detecting and distinguishing odors. However, the fundamental mechanisms underlying OR responses remain poorly understood. This study aims to evaluate the basal activity of mouse and human ORs in the Hana3A cell line and examine the correlation between their basal activity and response characteristics to odor stimuli. Using a luciferase assay on the Hana3A cell line, the results showed that the 10 mouse ORs with the highest basal activity levels were positively correlated with their total response to odor stimuli. However, there was no significant correlation between the basal activity of human-derived ORs and their total response to odor stimuli. These findings indicate that basal activity levels significantly influence OR responses to odors, as evidenced by the positive correlation in the 10 mouse ORs with the highest basal activity levels and their odor response. This supports the notion that the receptor binding cavity is crucial in determining OR responses to odors.
Collapse
Affiliation(s)
- Lun Xu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Qi Dai
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yiqun Yu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hongmeng Yu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Belloir C, Gautier A, Karolkowski A, Delompré T, Jeannin M, Moitrier L, Neiers F, Briand L. Optimized vector for functional expression of the human bitter taste receptor TAS2R14 in HEK293 cells. Protein Expr Purif 2025; 227:106643. [PMID: 39667443 DOI: 10.1016/j.pep.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Bitter is one of the five basic taste qualities, along with salty, sour, sweet and umami, used by mammals to access the quality of their food and orient their eating behaviour. Bitter taste detection prevents the ingestion of food potentially contaminated by bitter-tasting toxins. Bitter taste perception is mediated by a family of G protein-coupled receptors (GPCRs) called TAS2Rs. Humans possess 25 TAS2Rs (human type II taste receptors), enabling the detection of thousands of chemically diverse bitter compounds. The identification of agonists/antagonists and molecular mechanisms that govern receptor-ligand interaction has been primarily achieved through functional expression of TAS2Rs in heterologous cells. However, TAS2R receptors, like many other GPCRs, suffer from marginal cell surface expression. In this study, we compared the functionality of 9 engineered chimeric receptors, focusing our experiments on TAS2R14, a broadly tuned receptor that recognizes over 151 identified compounds. Among the different tested signal peptides, rat somatostatin receptor subtype 3 results in higher potency of aristolochic acid-induced calcium signalling than other tested export tags, such as bovine rhodopsin, murine Igκ-chain or human mGluR5. The addition of a MAX sequence enhances both TAS2R14 potency and efficacy. We also confirm that the FLAG epitope, when located at the C-terminal, interferes less with the TAS2R14 functionality, enabling reliable evaluation of this receptor at the cell surface using immunohistochemistry. Finally, these observations are also confirmed for TAS2R14 and TAS1R2/TAS1R3 (the sweet taste receptor) stimulated by 12 bitter compounds and by sucralose and neotame, respectively.
Collapse
Affiliation(s)
- Christine Belloir
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Adèle Gautier
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Adeline Karolkowski
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Thomas Delompré
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Mathilde Jeannin
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Lucie Moitrier
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Fabrice Neiers
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Loïc Briand
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| |
Collapse
|
3
|
Ryu SE, Bae J, Shim T, Kim WC, Kim K, Moon C. Conserved pattern-based classification of human odorant receptor multigene family. Sci Rep 2024; 14:27271. [PMID: 39516664 PMCID: PMC11549229 DOI: 10.1038/s41598-024-79183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Conserved protein-coding sequences are critical for maintaining protein function across species. Odorant receptors (ORs), a large poorly understood multigene family responsible for odor detection, lack comprehensive classification methods that reflect their functional diversity. In this study, we propose a new approach called conserved motif-based classification (CMC) for classifying ORs based on amino acid sequence similarities within conserved motifs. Specifically, we focused on three well-conserved motifs: MAYDRYVAIC in TM3, KAFSTCASH in TM6, and PMLNPFIY in TM7. Using an unsupervised clustering technique, we classified human ORs (hORs) into two main clusters with six sub-clusters. CMC partly reflects previously identified subfamilies, revealing altered residue positions among the sub-clusters. These altered positions interacted with specific residues within or adjacent to the transmembrane domain, suggesting functional implications. Furthermore, we found that the CMC correlated with both ligand responses and ectopic expression patterns, highlighting its relevance to OR function. This conserved motif-based classification will help in understanding the functions and features that are not understood by classification based solely on entire amino acid sequence similarity.
Collapse
Affiliation(s)
- Sang Eun Ryu
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu, 41062, Republic of Korea
| | - Jisub Bae
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-Ro, Yuseong-Gu, Daejeon, 34126, Republic of Korea
| | - Tammy Shim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Won-Cheol Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kwangsu Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
4
|
Wu C, Xu M, Dong J, Cui W, Yuan S. The structure and function of olfactory receptors. Trends Pharmacol Sci 2024; 45:268-280. [PMID: 38296675 DOI: 10.1016/j.tips.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.
Collapse
Affiliation(s)
- Chenyang Wu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc Xu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlin Dong
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Cui
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China
| | - Shuguang Yuan
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; AlphaMol Science Ltd, Shenzhen 518055, China.
| |
Collapse
|
5
|
Lalis M, Hladiš M, Abi Khalil S, Deroo C, Marin C, Bensafi M, Baldovini N, Briand L, Fiorucci S, Topin J. A status report on human odorant receptors and their allocated agonists. Chem Senses 2024; 49:bjae037. [PMID: 39400708 DOI: 10.1093/chemse/bjae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 10/15/2024] Open
Abstract
Olfactory perception begins when odorous substances interact with specialized receptors located on the surface of dedicated sensory neurons. The recognition of smells depends on a complex mechanism involving a combination of interactions between an odorant and a set of odorant receptors (ORs), where molecules are recognized according to a combinatorial activation code of ORs. Although these interactions have been studied for decades, the rules governing this ligand recognition remain poorly understood, and the complete combinatorial code is only known for a handful of odorants. We have carefully analyzed experimental results regarding the interactions between ORs and molecules to provide a status report on the deorphanization of ORs, i.e. the identification of the first agonist for a given sequence. This meticulous analysis highlights the influence of experimental methodology (cell line or readout) on molecule-receptor association results and shows that 83% of the results are conserved regardless of experimental conditions. The distribution of another key parameter, EC50, indicates that most OR ligand activities are in the micromolar range and that impurities could lead to erroneous conclusions. Focusing on the human ORs, our study shows that 88% of the documented sequences still need to be deorphanized. Finally, we also estimate the size of the ORs' recognition range, or broadness, as the number of odorants activating a given OR. By analogously estimating molecular broadness and combining the two estimates we propose a basic framework that can serve as a comparison point for future machine learning algorithms predicting OR-molecule activity.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Christophe Deroo
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Christophe Marin
- Expressions Parfumées, 136 chemin de St Marc, 06130, Grasse, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, University Claude Bernard Lyon, Bron, France
| | - Nicolas Baldovini
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Nice, France
| |
Collapse
|
6
|
Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J, Del Torrent CL, Li L, Faust B, Vaidehi N, Matsunami H, Manglik A. Structural basis of odorant recognition by a human odorant receptor. Nature 2023; 615:742-749. [PMID: 36922591 PMCID: PMC10580732 DOI: 10.1038/s41586-023-05798-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.
Collapse
Affiliation(s)
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Barcelona, Spain
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun Biol 2023; 6:176. [PMID: 36792777 PMCID: PMC9932091 DOI: 10.1038/s42003-023-04551-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.
Collapse
|
8
|
Nicoli A, Haag F, Marcinek P, He R, Kreißl J, Stein J, Marchetto A, Dunkel A, Hofmann T, Krautwurst D, Di Pizio A. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J Chem Inf Model 2023; 63:2014-2029. [PMID: 36696962 PMCID: PMC10091413 DOI: 10.1021/acs.jcim.2c00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Franziska Haag
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Ruiming He
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.,Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Jörg Stein
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Alessandro Marchetto
- Computational Biomedicine, Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
9
|
The Third Extracellular Loop of Mammalian Odorant Receptors Is Involved in Ligand Binding. Int J Mol Sci 2022; 23:ijms232012501. [PMID: 36293357 PMCID: PMC9604345 DOI: 10.3390/ijms232012501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022] Open
Abstract
Mammals recognize chemicals in the air via G protein-coupled odorant receptors (ORs). In addition to their orthosteric binding site, other segments of these receptors modulate ligand recognition. Focusing on human hOR1A1, which is considered prototypical of class II ORs, we used a combination of molecular modeling, site-directed mutagenesis, and in vitro functional assays. We showed that the third extracellular loop of ORs (ECL3) contributes to ligand recognition and receptor activation. Indeed, site-directed mutations in ECL3 showed differential effects on the potency and efficacy of both carvones, citronellol, and 2-nonanone.
Collapse
|
10
|
Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition. J Biol Chem 2022; 298:102331. [PMID: 35926708 PMCID: PMC9442423 DOI: 10.1016/j.jbc.2022.102331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
G protein–coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in nonolfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and volume of the odorant-binding pocket, maintains the pocket hydrophobicity, and acts as a gatekeeper of odorant binding. Therefore, we propose the interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. Furthermore, the 3D models created here enabled virtual screening of new OR agonists and antagonists, which exhibited a 70% hit rate in cell assays. Our approach can potentially be generalized to structure-based ligand screening for other G protein–coupled receptors that lack high-resolution 3D structures.
Collapse
|
11
|
Xu Z, Guo L, Qian X, Yu C, Li S, Zhu C, Ma X, Li H, Zhu G, Zhou H, Dai W, Li Q, Gao X. Two entry tunnels in mouse TAAR9 suggest the possibility of multi-entry tunnels in olfactory receptors. Sci Rep 2022; 12:2691. [PMID: 35177711 PMCID: PMC8854740 DOI: 10.1038/s41598-022-06591-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Orthosteric binding sites of olfactory receptors have been well understood for ligand-receptor interactions. However, a lack of explanation for subtle differences in ligand profile of olfactory receptors even with similar orthosteric binding sites promotes more exploration into the entry tunnels of the receptors. An important question regarding entry tunnels is the number of entry tunnels, which was previously believed to be one. Here, we used TAAR9 that recognizes important biogenic amines such as cadaverine, spermine, and spermidine as a model for entry tunnel study. We identified two entry tunnels in TAAR9 and described the residues that form the tunnels. In addition, we found two vestibular binding pockets, each located in one tunnel. We further confirmed the function of two tunnels through site-directed mutagenesis. Our study challenged the existing views regarding the number of entry tunnels in the subfamily of olfactory receptors and demonstrated the possible mechanism how the entry tunnels function in odorant recognition.
Collapse
Affiliation(s)
- ZhengRong Xu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - LingNa Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - XiaoYun Qian
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - ShengJu Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - ChengWen Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - GuangJie Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - WenXuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Research Institute of Otolaryngology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
12
|
Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. Int J Mol Sci 2021; 23:ijms23010277. [PMID: 35008703 PMCID: PMC8745346 DOI: 10.3390/ijms23010277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.
Collapse
|
13
|
Smith SO. Deconstructing the transmembrane core of class A G protein-coupled receptors. Trends Biochem Sci 2021; 46:1017-1029. [PMID: 34538727 PMCID: PMC8595765 DOI: 10.1016/j.tibs.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Class A G protein-coupled receptors have evolved to recognize ligands ranging from small-molecule odorants to proteins. Although they are among the most diverse membrane receptors in eukaryotic organisms, they possess a highly conserved core within their seven-transmembrane helix framework. The conservation of the transmembrane core has led to the idea of a common mechanism by which ligand binding is coupled to the outward rotation of helix H6, the hallmark of an active receptor. Nevertheless, there is still no consensus on the mechanism of coupling or on the roles of specific residues within the core. Recent insights from crystallography and NMR spectroscopy provide a way to decompose the core into its essential structural and functional elements that shed new light on this important region.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
14
|
Topin J, Bouysset C, Pacalon J, Kim Y, Rhyu MR, Fiorucci S, Golebiowski J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell Mol Life Sci 2021; 78:7605-7615. [PMID: 34687318 PMCID: PMC11073308 DOI: 10.1007/s00018-021-03968-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.
Collapse
Affiliation(s)
- Jérémie Topin
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Cédric Bouysset
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Jody Pacalon
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Yiseul Kim
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sébastien Fiorucci
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, 711-873, Republic of Korea
| |
Collapse
|
15
|
Alfonso-Prieto M. Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose. J Membr Biol 2021; 254:343-352. [PMID: 34173018 PMCID: PMC8231087 DOI: 10.1007/s00232-021-00182-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022]
Abstract
Abstract The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jülich (FZJ), Germany, and the Heinrich-Heine University Düsseldorf, Vogt Institute for Brain Research.
Dr. Alfonso-Prieto completed her doctoral degree in chemistry at the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and simulation of chemical senses.
The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular receptors involved in chemical sensing – the senses of taste and smell. These receptors, and computational methods to study them, are the focus of Dr. Alfonso-Prieto’s research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, Germany. .,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Alfonso-Prieto M, Navarini L, Carloni P. Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Front Mol Biosci 2019; 6:29. [PMID: 31131282 PMCID: PMC6510167 DOI: 10.3389/fmolb.2019.00029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Human G-protein coupled receptors (GPCRs) convey a wide variety of extracellular signals inside the cell and they are one of the main targets for pharmaceutical intervention. Rational drug design requires structural information on these receptors; however, the number of experimental structures is scarce. This gap can be filled by computational models, based on homology modeling and docking techniques. Nonetheless, the low sequence identity across GPCRs and the chemical diversity of their ligands may limit the quality of these models and hence refinement using molecular dynamics simulations is recommended. This is the case for olfactory and bitter taste receptors, which constitute the first and third largest GPCR groups and show sequence identities with the available GPCR templates below 20%. We have developed a molecular dynamics approach, based on the combination of molecular mechanics and coarse grained (MM/CG), tailored to study ligand binding in GPCRs. This approach has been applied so far to bitter taste receptor complexes, showing significant predictive power. The protein/ligand interactions observed in the simulations were consistent with extensive mutagenesis and functional data. Moreover, the simulations predicted several binding residues not previously tested, which were subsequently verified by carrying out additional experiments. Comparison of the simulations of two bitter taste receptors with different ligand selectivity also provided some insights into the binding determinants of bitter taste receptors. Although the MM/CG approach has been applied so far to a limited number of GPCR/ligand complexes, the excellent agreement of the computational models with the mutagenesis and functional data supports the applicability of this method to other GPCRs for which experimental structures are missing. This is particularly important for the challenging case of GPCRs with low sequence identity with available templates, for which molecular docking shows limited predictive power.
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Paolo Carloni
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Institute for Neuroscience and Medicine INM-11, Forschungszentrum Jülich, Jülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|