1
|
Wen R, Huang R, Xu K, Yi X. Insights into the role of histone lysine demethylases in bone homeostasis and skeletal diseases: A review. Int J Biol Macromol 2025; 306:141807. [PMID: 40054804 DOI: 10.1016/j.ijbiomac.2025.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Histone lysine demethylases (KDMs), as important epigenetic regulators, are involved in various biological processes such as energy metabolism, apoptosis, and autophagy. Recent research shows that KDMs activate or silence downstream target genes by removing lysine residues from histone tails, and participate in the regulation of bone marrow mesenchymal stem cells (BM-MSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes and other skeletal cell development, differentiation and formation. Moreover, several members of the KDM family affect the occurrence and development of bone diseases such as osteoporosis (OP), osteoarthritis (OA), osteosarcoma (OS), by regulating target genes. Specific regulation mechanisms of KDMs suggest new strategies for bone disease treatment and prevention. Despite the unique function and importance of KDMs in the skeletal system, previous studies have never systematically summarized their specific role, molecular mechanism, and clinical treatment in bone physiology and pathology. Therefore, this review summarises the expression pattern, intracellular signal transduction, and mechanism of action of the KDM family in several bone physiological and pathological conditions, aiming to highlight the important role of KDMs in bone diseases and provide a reference for the future treatment of bone diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China; School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Lin Y, Jiang S, Yao Y, Li H, Jin H, Yang G, Ji B, Li Y. Posttranslational Modification in Bone Homeostasis and Osteoporosis. MedComm (Beijing) 2025; 6:e70159. [PMID: 40170748 PMCID: PMC11959162 DOI: 10.1002/mco2.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Bone is responsible for providing mechanical protection, attachment sites for muscles, hematopoiesis micssroenvironment, and maintaining balance between calcium and phosphorate. As a highly active and dynamically regulated organ, the balance between formation and resorption of bone is crucial in bone development, damaged bone repair, and mineral homeostasis, while dysregulation in bone remodeling impairs bone structure and strength, leading to deficiency in bone function and skeletal disorder, such as osteoporosis. Osteoporosis refers to compromised bone mass and higher susceptibility of fracture, resulting from several risk factors deteriorating the balanced system between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. This balanced system is strictly regulated by translational modification, such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, S-palmitoylation, citrullination, and so on. This review specifically describes the updating researches concerning bone formation and bone resorption mediated by posttranslational modification. We highlight dysregulated posttranslational modification in osteoblast and osteoclast differentiation. We also emphasize involvement of posttranslational modification in osteoporosis development, so as to elucidate the underlying molecular basis of osteoporosis. Then, we point out translational potential of PTMs as therapeutic targets. This review will deepen our understanding between posttranslational modification and osteoporosis, and identify novel targets for clinical treatment and identify future directions.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of Medicine Central South UniversityChangshaChina
| | - Shide Jiang
- The Central Hospital of YongzhouYongzhouChina
| | - Yuming Yao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hongfu Jin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Guang Yang
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Bingzhou Ji
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Yusheng Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Guo J, Gao K, Chen X, Liao C, Rui J, Zhou Y, Lao J. KDM4A facilitates neuropathic pain and microglial M1 polarization by regulating BDNF in a rat model of brachial plexus avulsion. Reg Anesth Pain Med 2024:rapm-2024-105801. [PMID: 39532465 DOI: 10.1136/rapm-2024-105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Many patients with brachial plexus avulsion (BPA) suffer from neuropathic pain, but the mechanism remains elusive. Modifications of histones, the proteins responsible for organizing DNA, may play an important role in neuropathic pain. Lysine demethylase 4A (KDM4A), an essential component of histone demethylase, can modify the function of chromatin and thus regulate the vital gene expressions. However, the mechanism by which KDM4A regulates neuropathic pain following BPA remains unclear. METHODS The pain model was developed in adult rats that received BPA surgery. Western blot, ELISA, and reverse transcription-PCR were used to examine the protein and mRNA levels of targeted genes. Immunofluorescence studies were conducted to analyze their cellular distribution in the spinal cord. Pharmacological and genetic methods were used to modulate the expression of KDM4A. Co-immunoprecipitation and chromatin immunoprecipitation PCR were used to assess the binding potential between KDM4A and the promoter of brain-derived neurotrophic factor (BDNF). RESULTS KDM4A and BDNF levels were significantly upregulated in the ipsilateral spinal cord dorsal horn in the BPA group compared with the sham surgery group. Additionally, knockdown of KDM4A decreased BDNF expression and microgliosis and reduced neuropathic pain-like behaviors in BPA rats. Conversely, KDM4A overexpression increased BDNF expression and microgliosis and exacerbated neuropathic pain. BDNF inhibitors and activators also regulated the activation of spinal microglia and neuropathic pain. Importantly, we showed that KDM4A modulates BDNF expression by regulating the methylation of histone 3 lysine 9 and histone 3 lysine 36 in its promoter region. CONCLUSION Current findings suggest that the upregulation of KDM4A increases BDNF expression in the spinal cord in rats after BPA, contributing to microgliosis, neuroinflammation, and neuropathic pain.
Collapse
Affiliation(s)
- Jinding Guo
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Kaiming Gao
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China
| | - Xi Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Chengppeng Liao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jing Rui
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yingjie Zhou
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
5
|
Li L, Ding Z, Ma F, Zhang K, Lu D, Wang H, Yang K. Spinal nerve transection-induced upregulation of KDM4A in the dorsal root ganglia contributes to the development and maintenance of neuropathic pain via promoting CCL2 expression in rats. Eur J Neurosci 2024; 60:5169-5188. [PMID: 39136140 DOI: 10.1111/ejn.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 10/10/2024]
Abstract
Studies indicate that the lysine-specific demethylase 4A (KDM4A), acts as a key player in neuropathic pain, driving the process through its involvement in promoting neuroinflammation. Emerging evidence reveals that C-C Motif Chemokine Ligand 2 (CCL2) participates in neuroinflammation, which plays an important role in the development and maintenance of neuropathic pain. However, it remains unclear if KDM4A plays a role in regulating CCL2 in neuropathic pain. This study found that following spinal nerve transection (SNT) of the lumbar 5 nerve root in rats, the expression of KDM4A and CCL2 increased in the ipsilateral L4/5 dorsal root ganglia (DRG). Injecting KDM4A siRNA into the DRGs of rats post-SNT resulted in a higher paw withdrawal threshold (PWT) and paw-withdrawal latency (PWL) compared to the KDM4A scRNA group. In addition, prior microinjection of AAV-EGFP-KDM4A shRNA also alleviates the decrease in PWT and PWL caused by SNT. Correspondingly, microinjection of AAV-EGFP-KDM4A shRNA subsequent to SNT reduced the established mechanical and thermal hyperalgesia. Furthermore, AAV-EGFP-KDM4A shRNA injection decreased the expression of CCL2 in DRGs. ChIP-PCR analysis revealed that increased binding of p-STAT1 with the CCL2 promoter induced by SNT was inhibited by AAV-EGFP-KDM4A shRNA treatment. These findings suggest that KDM4A potentially influences neuropathic pain by regulating CCL2 expression in DRGs.
Collapse
Affiliation(s)
- Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Ma
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Lu
- Department of Respiratory Intensive Care, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, China
| | - Hongmin Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangli Yang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Li SY, Xue ST, Li ZR. Osteoporosis: Emerging targets on the classical signaling pathways of bone formation. Eur J Pharmacol 2024; 973:176574. [PMID: 38642670 DOI: 10.1016/j.ejphar.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.
Collapse
Affiliation(s)
- Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
9
|
Ren M, Ye X, Ouyang C, Da Q, Xue W, Chen P. JMJD2A mediates transcriptional activation of SFRP4 and regulates oxidative stress and mitochondrial dysfunction in heart failure. Pathol Int 2024; 74:210-221. [PMID: 38411359 DOI: 10.1111/pin.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
The importance of mitochondrial dysfunction and oxidative stress has been indicated in the progression of heart failure (HF). The molecular mechanisms, however, remain to be fully elucidated. This study aimed to explore the role and underlying mechanism of secreted frizzled-related protein 4 (SFRP4) in these two events in HF. Mice with HF were developed using transverse aortic constriction, and hematoxylin-eosin staining, MASSON staining, and Terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'- Triphosphate nick end labeling (TUNEL assays) were conducted to detect morphological damage in the myocardial tissues of mice. HL-1 mouse cardiomyocytes were induced with isoproterenol (ISO), and cell viability and apoptosis were examined using cell counting kit-8 and TUNEL assays. SFRP4 and Jumonji domain-containing protein 2A (JMJD2A) were highly expressed in myocardial tissues. Suppression of SFRP4 alleviated apoptosis and fibrosis in myocardial tissues of mice. In addition, the extent of mitochondrial dysfunction and oxidative stress in damaged myocardial tissues and HL-1 cells was mitigated by SFRP4 inhibition as well. JMJD2A catalyzed demethylation modification of the SFRP4 promoter, thus promoting SFRP4 transcription in the development of HF. JMJD2A is responsible for SFRP4 transcription activation in the failing hearts of mice. Blockade of JMJD2A or SFRP4 might be a novel therapy effective in mitigating HF progression.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qing'en Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weiwei Xue
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Piji Chen
- Department of Clinical Laboratory, Yantian People's Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
11
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
12
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
13
|
Liu XP, Li JQ, Li RY, Cao GL, Feng YB, Zhang W. Loss of N-acetylglucosaminyl transferase V is involved in the impaired osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Anim 2023; 72:413-424. [PMID: 37019682 PMCID: PMC10435351 DOI: 10.1538/expanim.22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The imbalance of bone resorption and bone formation causes osteoporosis (OP), a common skeletal disorder. Decreased osteogenic activity was found in the bone marrow cultures from N-acetylglucosaminyl transferase V (MGAT5)-deficient mice. We hypothesized that MGAT5 was associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and involved in the pathological mechanisms of osteoporosis. To test this hypothesis, the mRNA and protein expression levels of MGAT5 were determined in bone tissues of ovariectomized (OVX) mice, a well-established OP model, and the role of MGAT5 in osteogenic activity was investigated in murine BMSCs. As expected, being accompanied by the loss of bone mass density and osteogenic markers (runt-related transcription factor 2, osteocalcin and osterix), a reduced expression of MGAT5 in vertebrae and femur tissues were found in OP mice. In vitro, knockdown of Mgat5 inhibited the osteogenic differentiation potential of BMSCs, as evidenced by the decreased expressions of osteogenic markers and less alkaline phosphatase and alizarin red S staining. Mechanically, knockdown of Mgat5 suppressed the nuclear translocation of β-catenin, thereby downregulating the expressions of downstream genes c-myc and axis inhibition protein 2, which were also associated with osteogenic differentiation. In addition, Mgat5 knockdown inhibited bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β signaling pathway. In conclusion, MGAT5 may modulate the osteogenic differentiation of BMSCs via the β-catenin, BMP type 2 (BMP2) and TGF-β signals and involved in the process of OP.
Collapse
Affiliation(s)
- Xiao-Po Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jia-Qi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Ruo-Yu Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Guo-Long Cao
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Yun-Bo Feng
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| |
Collapse
|
14
|
Li Y, Hu M, Xie J, Li S, Dai L. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: roles and therapeutic prospects. Stem Cell Res Ther 2023; 14:166. [PMID: 37357311 DOI: 10.1186/s13287-023-03393-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Age-associated bone diseases such as osteoporosis (OP) are common in the elderly due to skeletal ageing. The process of skeletal ageing can be accelerated by reduced proliferation and osteogenesis of bone marrow mesenchymal stem cells (BM-MSCs). Senescence of BM-MSCs is a main driver of age-associated bone diseases, and the fate of BM-MSCs is tightly regulated by histone modifications, such as methylation and acetylation. Dysregulation of histone modifications in BM-MSCs may activate the genes related to the pathogenesis of skeletal ageing and age-associated bone diseases. Here we summarize the histone methylation and acetylation marks and their regulatory enzymes that affect BM-MSC self-renewal, differentiation and senescence. This review not only describes the critical roles of histone marks in modulating BM-MSC functions, but also underlines the potential of epigenetic enzymes as targets for treating age-associated bone diseases. In the future, more effective therapeutic approaches based on these epigenetic targets will be developed and will benefit elderly individuals with bone diseases, such as OP.
Collapse
Affiliation(s)
- Yujue Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingxing Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinwei Xie
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lunzhi Dai
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Yu YF, Yao PQ, Wang ZK, Xie WW. MiR-137 promotes TLR4/NF-κB pathway activity through targeting KDM4A, inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells and aggravates osteoporosis. J Orthop Surg Res 2023; 18:444. [PMID: 37344864 PMCID: PMC10286393 DOI: 10.1186/s13018-023-03918-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE As the global population ages rapidly, osteoporotic fractures have become an important public health problem. Previous studies have suggested that miR-137 is involved in the regulation of bone formation, but its specific regulatory mechanism remains unclear. In this study, we aimed to explore the expression, role, and regulatory mechanism of miR-137 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS hBMSCs were induced into osteoblasts at first, and the expression level of miR-137 at different time points was detected. After knockdown and overexpression of miR-137, the effect of miR-137 on the osteogenic differentiation of hBMSCs was examined through alkaline phosphatase (ALP) staining and Alizarin Red staining. Western blotting was performed to detect the expression of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. Bioinformatics websites were used to predict the target binding sites for miR-137 and KDM4A, and the results were validated using luciferase reporter gene experiments. Moreover, the ALP activity, calcium nodule formation, and activation of Runx2, OCN, and TLR4/NF-κB pathways were observed after knockdown of KDM4A. RESULTS The expression of miR-137 decreased during osteogenic differentiation. Knockdown of miR-137 expression increased the osteogenic ability of hBMSCs, while overexpression of it weakened the ability. Through the activation of the TLR4/NF-κB pathway, miR-137 inhibited osteogenic differentiation. KDM4A was identified as a predicted target gene of miR-137. After knocking down KDM4A expression, the osteogenic ability of hBMSCs was diminished, and the TLR4/NF-κB pathway was activated. Furthermore, the osteogenic ability of hBMSCs was partially restored and the activation level of TLR4/NF-κB was reduced after miR-137 knockdown. CONCLUSION MiR-137 enhances the activity of the TLR4/NF-κB pathway by targeting KDM4A, thereby inhibiting the osteogenic differentiation of hBMSCs and exacerbating osteoporosis.
Collapse
Affiliation(s)
- Ying-Feng Yu
- Department of Orthopedics, Songshan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Pei-Quan Yao
- Department of Orthopedics, Songshan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Zhi-Kun Wang
- Department of Orthopedics, Songshan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wen-Wei Xie
- Department of Orthopedics, Songshan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China.
| |
Collapse
|
16
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
17
|
Jin X, Xu J, Yang F, Chen J, Luo F, Xu B, Xu J. Oridonin Attenuates Thioacetamide-Induced Osteoclastogenesis Through MAPK/NF-κB Pathway and Thioacetamide-Inhibited Osteoblastogenesis Through BMP-2/RUNX2 Pathway. Calcif Tissue Int 2023; 112:704-715. [PMID: 37032340 DOI: 10.1007/s00223-023-01080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Osteoporosis, an age-related metabolic bone disease, is mainly caused by an imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. At present, there are many osteoporosis drugs that can promote bone formation or inhibit bone resorption. However, there were few therapeutic drugs that can simultaneously promote bone formation and inhibit bone resorption. Oridonin (ORI), a tetracyclic diterpenoid compound isolated from Rabdosia rubescens, has been proved to have anti-inflammatory, anti-tumor effects. However, little is known about the osteoprotective effect of oridonin. Thioacetamide (TAA) is a common organic compound with significant hepatotoxicity. Recent studies have found that there was a certain association between TAA and bone injury. In this work, we investigated the effect and mechanism of ORI on TAA-induced osteoclastogenesis and inhibition of osteoblast differentiation. The results showed that TAA could promote the osteoclastogenesis of RAW264.7 by promoting the MAPK/NF-κB pathway, and also promoted p65 nuclear translocation and activated intracellular ROS generation, and ORI can inhibit these effects to inhibit TAA-induced osteoclastogenesis. Moreover, ORI can also promote the osteogenic differentiation pathway and inhibit adipogenic differentiation of BMSCs to promote bone formation. In conclusion, our results revealed that ORI, as a potential therapeutic drug for osteoporosis, could protect against TAA-induced bone loss and TAA-inhibited bone formation.
Collapse
Affiliation(s)
- XiaoLi Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jia Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Fanfan Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jin Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Bin Xu
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, 310016, People's Republic of China.
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
18
|
Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res 2023; 64:105-116. [PMID: 36271658 DOI: 10.1080/03008207.2022.2120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the population ages, there is an increased risk of fracture and morbidity diseases associated with aging, such as age-related osteoporosis and other bone diseases linked to aging skeletons. RESULTS Several bone-related cells, including multipotent bone mesenchymal stem cells, osteoblasts that form bone tissue, and osteoclasts that break it down, are in symbiotic relationships throughout life. Growing evidence indicates that epigenetic modifications of cells caused by aging contribute to compromised bone remodeling and lead to osteoporosis. A number of epigenetic mechanisms are at play, including DNA/RNA modifications, histone modifications, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), as well as chromatin remodeling. CONCLUSION In this review, we summarized the epigenetic modifications of different bone-related cells during the development and progression of osteoporosis associated with aging. Additionally, we described a compensatory recovery mechanism under epigenetic regulation that may lead to new strategies for regulating bone remodeling in age-related osteoporosis.
Collapse
Affiliation(s)
- Wenyue Yu
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chengcheng Yin
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Atf7ip Inhibits Osteoblast Differentiation via Negative Regulation of the Sp7 Transcription Factor. Int J Mol Sci 2023; 24:ijms24054305. [PMID: 36901736 PMCID: PMC10002255 DOI: 10.3390/ijms24054305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Epigenetic modifications are critical for cell differentiation and growth. As a regulator of H3K9 methylation, Setdb1 is implicated in osteoblast proliferation and differentiation. The activity and nucleus localization of Setdb1 are regulated by its binding partner, Atf7ip. However, whether Atf7ip is involved in the regulation of osteoblast differentiation remains largely unclear. In the present study, we found that Atf7ip expression was upregulated during the osteogenesis of primary bone marrow stromal cells and MC3T3-E1 cells, and was induced in PTH-treated cells. The overexpression of Atf7ip impaired osteoblast differentiation in MC3T3-E1 cells regardless of PTH treatment, as measured by the expression of osteoblast differentiation markers, Alp-positive cells, Alp activity, and calcium deposition. Conversely, the depletion of Atf7ip in MC3T3-E1 cells promoted osteoblast differentiation. Compared with the control mice, animals with Atf7ip deletion in the osteoblasts (Oc-Cre;Atf7ipf/f) showed more bone formation and a significant increase in the bone trabeculae microarchitecture, as reflected by μ-CT and bone histomorphometry. Mechanistically, Atf7ip contributed to the nucleus localization of Setdb1 in MC3T3-E1, but did not affect Setdb1 expression. Atf7ip negatively regulated Sp7 expression, and through specific siRNA, Sp7 knockdown attenuated the enhancing role of Atf7ip deletion in osteoblast differentiation. Through these data, we identified Atf7ip as a novel negative regulator of osteogenesis, possibly via its epigenetic regulation of Sp7 expression, and demonstrated that Atf7ip inhibition is a potential therapeutic measure for enhancing bone formation.
Collapse
|
20
|
Li W, Zhang Y, Lv J, Zhang Y, Bai J, Zhen L, He X. MicroRNA-137-mediated lysine demethylase 4A regulates the recovery of spinal cord injury via the SFRP4-Wnt/β-Catenin axis. Int J Neurosci 2023; 133:37-50. [PMID: 33499717 DOI: 10.1080/00207454.2021.1881093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) causes great harm to the normal life of patients. Histone demethylase is involved in many biological processes, including SCI. Hence, this study explored the role and mechanism of histone lysine demethylase 4A (KDM4A) in SCI. METHODS The acute SCI (ASCI) rat model was established after spinal compression and the SCI neuronal model was induced via treating PC12 cells with lipopolysaccharide (LPS). KDM4A expression during SCI was detected. The microRNA (miRNA) targeting KDM4A was predicted and verified. The miRNA and KDM4A expression patterns were intervened in LPS-stimulated PC12 cells to evaluate their combined effects on neuronal cells in SCI. The downstream pathways of KDM4A were predicted, and SFRP4 and H3K9me3 expressions were determined. After the intervention of SFRP4 in LPS-treated cells, β-Catenin expression and the effect of SFRP4 on neuronal cells in SCI were detected. Finally, the effectiveness of the miR-137/KDM4A/SFRP4/Wnt/β-Catenin axis was verified in vivo. RESULTS KDM4A was abnormally elevated in SCI. miR-137 targeted KDM4A. miR-137 effectively inhibited the apoptosis of LPS-challenged PC12 cells, which could be reversed after overexpressing KDM4A. KDM4A promoted SFRP4 expression through demethylation of H3K9me3. Overexpression of SFRP4 blocked the Wnt/β-Catenin pathway and promoted apoptosis of LPS-stimulated cells. In vivo, miR-137 overexpression remarkably improved SCI symptoms, accompanied by obviously increased β-Catenin expression and notably decreased KDM4A and SFRP4 expressions, while overexpressed KDM4A treatment showed the opposite trend in the presence of miR-137. CONCLUSION We demonstrated that miR-137 targeted KDM4A and then downregulated SFRP4 to ameliorate SCI in a Wnt/β-Catenin-dependent manner.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ying Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jianrui Lv
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jie Bai
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Luming Zhen
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
21
|
Zhang W, Tao KT, Lin J, Liu P, Guan Z, Deng J, Wang D, Zeng H. The Role of m6A in Osteoporosis and the Differentiation of Mesenchymal Stem Cells into Osteoblasts and Adipocytes. Curr Stem Cell Res Ther 2023; 18:339-346. [PMID: 35733319 DOI: 10.2174/1574888x17666220621155341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Osteoporosis is a systemic disease in which bone mass decreases, leading to an increased risk of bone fragility and fracture. The occurrence of osteoporosis is believed to be related to the disruption of the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. N6-adenylate methylation (m6A) modification is the most common type of chemical RNA modification and refers to a methylation modification formed by the nitrogen atom at position 6 of adenine (A), which is catalyzed by a methyltransferase. The main roles of m6A are the post-transcriptional level regulation of the stability, localization, transportation, splicing, and translation of RNA; these are key elements of various biological activities, including osteoporosis and the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. The main focus of this review is the role of m6A in these two biological processes.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Ke Tao Tao
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Jianjing Lin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Zhiping Guan
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Lianhua Road, Shenzhen, 518000 Guangdong, China
| | - Jiapeng Deng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| |
Collapse
|
22
|
Wang X, Yu F, Ye L. Epigenetic control of mesenchymal stem cells orchestrates bone regeneration. Front Endocrinol (Lausanne) 2023; 14:1126787. [PMID: 36950693 PMCID: PMC10025550 DOI: 10.3389/fendo.2023.1126787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Recent studies have revealed the vital role of MSCs in bone regeneration. In both self-healing bone regeneration processes and biomaterial-induced healing of bone defects beyond the critical size, MSCs show several functions, including osteogenic differentiation and thus providing seed cells. However, adverse factors such as drug intake and body senescence can significantly affect the functions of MSCs in bone regeneration. Currently, several modalities have been developed to regulate MSCs' phenotype and promote the bone regeneration process. Epigenetic regulation has received much attention because of its heritable nature. Indeed, epigenetic regulation of MSCs is involved in the pathogenesis of a variety of disorders of bone metabolism. Moreover, studies using epigenetic regulation to treat diseases are also being reported. At the same time, the effects of epigenetic regulation on MSCs are yet to be fully understood. This review focuses on recent advances in the effects of epigenetic regulation on osteogenic differentiation, proliferation, and cellular senescence in MSCs. We intend to illustrate how epigenetic regulation of MSCs orchestrates the process of bone regeneration.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| |
Collapse
|
23
|
Zhang M, Gao Y, Li Q, Cao H, Yang J, Cai X, Xiao J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis via Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:397. [PMID: 35927735 PMCID: PMC9351106 DOI: 10.1186/s13287-022-03088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Diabetes-related osteoporosis (DOP) is a chronic disease caused by the high glucose environment that induces a metabolic disorder of osteocytes and osteoblast-associated mesenchymal stem cells. The processes of bone defect repair and regeneration become extremely difficult with DOP. Adipose-derived stem cells (ASCs), as seed cells in bone tissue engineering technology, provide a promising therapeutic approach for bone regeneration in DOP patients. The osteogenic ability of ASCs is lower in a DOP model than that of control ASCs. DNA methylation, as a mechanism of epigenetic regulation, may be involved in DNA methylation of various genes, thereby participating in biological behaviors of various cells. Emerging evidence suggests that increased DNA methylation levels are associated with activation of Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the influence of the diabetic environment on the osteogenic potential of ASCs, to explore the role of DNA methylation on osteogenic differentiation of DOP-ASCs via Wnt/β-catenin signaling pathway, and to improve the osteogenic differentiation ability of ASCs with DOP. Methods DOP-ASCs and control ASCs were isolated from DOP C57BL/6 and control mice, respectively. The multipotency of DOP-ASCs was confirmed by Alizarin Red-S, Oil Red-O, and Alcian blue staining. Real-time polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting were used to analyze changes in markers of osteogenic differentiation, DNA methylation, and Wnt/β-catenin signaling. Alizarin Red-S staining was also used to confirm changes in the osteogenic ability. DNMT small interfering RNA (siRNA), shRNA-Dnmt3a, and LVRNA-Dnmt3a were used to assess the role of Dnmt3a in osteogenic differentiation of control ASCs and DOP-ASCs. Micro-computed tomography, hematoxylin and eosin staining, and Masson staining were used to analyze changes in the osteogenic capability while downregulating Dnmt3a with lentivirus in DOP mice in vivo. Results The proliferative ability of DOP-ASCs was lower than that of control ASCs. DOP-ASCs showed a decrease in osteogenic differentiation capacity, lower Wnt/β-catenin signaling pathway activity, and a higher level of Dnmt3a than control ASCs. When Dnmt3a was downregulated by siRNA and shRNA, osteogenic-related factors Runt-related transcription factor 2 and osteopontin, and activity of Wnt/β-catenin signaling pathway were increased, which rescued the poor osteogenic potential of DOP-ASCs. When Dnmt3a was upregulated by LVRNA-Dnmt3a, the osteogenic ability was inhibited. The same results were obtained in vivo. Conclusions Dnmt3a silencing rescues the negative effects of DOP on ASCs and provides a possible approach for bone tissue regeneration in patients with diabetic osteoporosis.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujin Gao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Huayue Cao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
24
|
Zhou J, Yang J, Dong Y, Shi Y, Zhu E, Yuan H, Li X, Wang B. Oncostatin M receptor regulates osteoblast differentiation via extracellular signal-regulated kinase/autophagy signaling. Stem Cell Res Ther 2022; 13:278. [PMID: 35765036 PMCID: PMC9241272 DOI: 10.1186/s13287-022-02958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Oncostatin M receptor (OSMR), as one of the receptors for oncostatin M (OSM), has previously been shown to mediate the stimulatory role of OSM in osteoclastogenesis and bone resorption. However, it remains to be clarified whether and how OSMR affects the differentiation of osteoblasts. Methods The expression level of OSMR during osteoblast and adipocyte differentiation was examined. The role of OSMR in the differentiation was investigated using in vitro gain-of-function and loss-of-function experiments. The mechanisms by which OSMR regulates bone cell differentiation were explored. Finally, in vivo function of OSMR in cell fate determination and bone homeostasis was studied after transplantation of OSMR-silenced bone marrow stromal cells (BMSCs) to the marrow of ovariectomized mice. Results OSMR was regulated during osteogenic and adipogenic differentiation of marrow stromal progenitor cells and increased in the metaphysis of ovariectomized mice. OSMR suppressed osteogenic differentiation and stimulated adipogenic differentiation of progenitor cells. Mechanistic investigations showed that OSMR inhibited extracellular signal-regulated kinase (ERK) and autophagy signaling. The downregulation of autophagy, which was mediated by ERK inhibition, suppressed osteogenic differentiation of progenitor cells. Additionally, inactivation of ERK/autophagy signaling attenuated the stimulation of osteogenic differentiation induced by Osmr siRNA. Furthermore, transplantation of BMSCs in which OSMR was silenced to the marrow of mice promoted osteoblast differentiation, attenuated fat accumulation and osteoclast differentiation, and thereby relieved the osteopenic phenotype in the ovariectomized mice. Conclusions Our study has for the first time established the direct role of OSMR in regulating osteogenic differentiation of marrow stromal progenitor cells through ERK-mediated autophagy signaling. OSMR thus contributes to bone homeostasis through dual regulation of osteoblasts and osteoclasts. It also suggests that OSMR may be a potential target for the treatment of metabolic disorders such as osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02958-1.
Collapse
Affiliation(s)
- Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Junying Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.,College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Yaru Shi
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
25
|
Epigenetic modifications of histones during osteoblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194780. [PMID: 34968769 DOI: 10.1016/j.bbagrm.2021.194780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.
Collapse
|
26
|
Sun P, Huang T, Huang C, Wang Y, Tang D. Role of histone modification in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:964103. [PMID: 36093077 PMCID: PMC9458911 DOI: 10.3389/fendo.2022.964103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic degenerative bone disease characterized by low bone mass and damage to bone microarchitecture, which increases bone fragility and susceptibility to fracture. The risk of osteoporosis increases with age; with the aging of the global population, osteoporosis is becoming more prevalent, adding to the societal healthcare burden. Histone modifications such as methylation, acetylation, ubiquitination, and ADP-ribosylation are closely related to the occurrence and development of osteoporosis. This article reviews recent studies on the role of histone modifications in osteoporosis. The existing evidence indicates that therapeutic targeting of these modifications to promote osteogenic differentiation and bone formation may be an effective treatment for this disease.
Collapse
Affiliation(s)
- Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingrui Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yongjun Wang, ; Dezhi Tang,
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yongjun Wang, ; Dezhi Tang,
| |
Collapse
|
27
|
Wang E, Zhang Y, Ding R, Wang X, Zhang S, Li X. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 2021; 25:27. [PMID: 34821370 PMCID: PMC8630822 DOI: 10.3892/mmr.2021.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)-mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM-MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR-30a-5p in the modulation of BM-MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR-30a-5p on AA BM-MSC adipogenic differentiation and the underlying mechanism. The levels of miR-30a-5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM-MSCs were quantified using reverse transcription-quantitative (RT-q) PCR. The mRNA expression levels of adipogenesis-associated factors [fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin-1 (PLIN1), peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT-qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM-MSCs. The interaction between miR-30a-5p and the FAM13A 3′-untranslated region was identified by TargetScan, and a dual-luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β-catenin pathway-related proteins were examined via western blotting. The results showed that miR-30a-5p expression levels were significantly elevated in BM-MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR-30a-5p expression levels were also significantly increased in adipose-induced BM-MSCs in a time-dependent manner. miR-30a-5p significantly promoted AA BM-MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR-30a-5p was also demonstrated to target FAM13A in AA BM-MSCs. FAM13A significantly reduced BM-MSC adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. In conclusion, miR-30a-5p was demonstrated to serve a role in AA BM-MSC adipogenic differentiation by targeting the FAM13A/Wnt/β-catenin signaling pathway. These findings suggest that miR-30a-5p may be a therapeutic target for AA.
Collapse
Affiliation(s)
- Enbo Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yunyan Zhang
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rongmei Ding
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xiaohua Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Shumin Zhang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xinghua Li
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
28
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
29
|
Xu Y, Ma J, Xu G, Ma D. Recent advances in the epigenetics of bone metabolism. J Bone Miner Metab 2021; 39:914-924. [PMID: 34250565 DOI: 10.1007/s00774-021-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a common form of metabolic bone disease that is costly to treat and is primarily diagnosed on the basis of bone mineral density. As the influences of genetic lesions and environmental factors are increasingly studied in the pathological development of osteoporosis, regulated epigenetics are emerging as the important pathogenesis mechanisms in osteoporosis. Recently, osteoporosis genome-wide association studies and multi-omics technologies have revealed that susceptibility loci and the misregulation of epigenetic modifiers are key factors in osteoporosis. Over the past decade, extensive studies have demonstrated epigenetic mechanisms, such as DNA methylation, histone/chromatin modifications, and non-coding RNAs, as potential contributing factors in osteoporosis that affect disease initiation and progression. Herein, we review recent advances in epigenetics in osteoporosis, with a focus on exploring the underlying mechanisms and potential diagnostic/prognostic biomarker applications for osteoporosis.
Collapse
Affiliation(s)
- Yuexin Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Changzheng Hospital, Second Military Medical University, Shanghai, 20000, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Platelet-Rich Fibrin Decreases the Inflammatory Response of Mesenchymal Cells. Int J Mol Sci 2021; 22:ijms222111333. [PMID: 34768764 PMCID: PMC8583104 DOI: 10.3390/ijms222111333] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is a pathological process where cells of the mesenchymal lineage become a major source of inflammatory mediators. Platelet-rich fibrin (PRF) has been shown to possess potent anti-inflammatory activity in macrophages, but its impact on mesenchymal cells has not been investigated. The aim of this study was, therefore, to expose mesenchymal cells to inflammatory cytokines together with lysates generated from liquid platelet-poor plasma (PPP), the cell-rich buffy coat layer (BC; concentrated-PRF or C-PRF), and the remaining red clot layer (RC), following centrifugation of blood. Heating PPP generates an albumin gel (Alb-gel) that when mixed back with C-PRF produces Alb-PRF. Membranes prepared from solid PRF were also subjected to lysis. We report here that lysates of PPP, BC, and PRF decreased the cytokine-induced expression of interleukin 6 (IL6) and nitric oxide synthase (iNOS) in the bone marrow-derived ST2 cells. Consistently, PPP, BC, and PRF greatly decreased the phosphorylation and nuclear translocation of p65 in ST2 cells. The inflammatory response caused by Pam3CSK4 was reduced accordingly. Moreover, PPP, BC, and PRF reduced the enhanced expression of inflammatory mediators IL6 and iNOS in 3T3-L1 pre-adipocyte mesenchymal cells, and iNOS and CCL5 in murine calvarial cells. Surprisingly, PRF lysates were not effective in reducing the inflammatory response of human gingival fibroblasts and HSC2 epithelial cells. The data from the present study suggest that both liquid PRF and solid PRF exert potent anti-inflammatory activity in murine mesenchymal cells.
Collapse
|
31
|
Wu X, Wang X, Shan L, Zhou J, Zhang X, Zhu E, Yuan H, Wang B. High-mobility group AT-Hook 1 mediates the role of nuclear factor I/X in osteogenic differentiation through activating canonical Wnt signaling. Stem Cells 2021; 39:1349-1361. [PMID: 34028135 DOI: 10.1002/stem.3418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
It was previously reported that the loss of the transcription factor nuclear factor I/X (NFIX) gene in mice impaired endochondral ossification and mineralization in bone. However, the cellular and molecular basis for the defect remains unexplored. In this study, we investigated if and how NFIX regulates osteoblast differentiation. Nfix mRNA was induced during osteogenic and adipogenic differentiation of progenitor cells. Loss-of-function and gain-of-function studies revealed that NFIX induced osteoblast differentiation and impaired adipocyte formation from progenitor cells. RNA-seq and promoter analysis revealed that NFIX transcriptionally stimulated the expression of high-mobility group AT-Hook 1 (HMGA1). We then demonstrated that HMGA1 stimulated osteogenic differentiation of progenitor cells at the expense of adipogenic differentiation. The effect of Nfix siRNA on the differentiation of progenitor cells could be attenuated when HMGA1 was simultaneously overexpressed. Further investigations revealed the stimulatory effect of NFIX and HMGA1 on canonical wingless-type MMTV integration site family (Wnt) signaling. HMGA1 transcriptionally activates the expression of low-density lipoprotein receptor-related protein 5. Finally, in vivo transfection of Nfix siRNA to the marrow of mice reduced osteoblasts and increased fat accumulation in the marrow, and inactivated HMGA1/β-catenin signaling in bone marrow mesenchymal stem cells. This study suggests that HMGA1 plays a role in osteoblast commitment and mediates the function of NFIX through transcriptionally activating canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liying Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
32
|
Yi SJ, Jang YJ, Kim HJ, Lee K, Lee H, Kim Y, Kim J, Hwang SY, Song JS, Okada H, Park JI, Kang K, Kim K. The KDM4B-CCAR1-MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis. Bone Res 2021; 9:27. [PMID: 34031372 PMCID: PMC8144413 DOI: 10.1038/s41413-021-00145-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bone undergoes a constant and continuous remodeling process that is tightly regulated by the coordinated and sequential actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Recent studies have shown that histone demethylases are implicated in osteoblastogenesis; however, little is known about the role of histone demethylases in osteoclast formation. Here, we identified KDM4B as an epigenetic regulator of osteoclast differentiation. Knockdown of KDM4B significantly blocked the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. Mice with myeloid-specific conditional knockout of KDM4B showed an osteopetrotic phenotype due to osteoclast deficiency. Biochemical analysis revealed that KDM4B physically and functionally associates with CCAR1 and MED1 in a complex. Using genome-wide chromatin immunoprecipitation (ChIP)-sequencing, we revealed that the KDM4B–CCAR1–MED1 complex is localized to the promoters of several osteoclast-related genes upon receptor activator of NF-κB ligand stimulation. We demonstrated that the KDM4B–CCAR1–MED1 signaling axis induces changes in chromatin structure (euchromatinization) near the promoters of osteoclast-related genes through H3K9 demethylation, leading to NF-κB p65 recruitment via a direct interaction between KDM4B and p65. Finally, small molecule inhibition of KDM4B activity impeded bone loss in an ovariectomized mouse model. Taken together, our findings establish KDM4B as a critical regulator of osteoclastogenesis, providing a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - You-Jee Jang
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeojin Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Junil Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon Young Hwang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
33
|
Jia L, Zhang Y, Li D, Zhang W, Zhang D, Xu X. Analyses of key mRNAs and lncRNAs for different osteo-differentiation potentials of periodontal ligament stem cell and gingival mesenchymal stem cell. J Cell Mol Med 2021; 25:6217-6231. [PMID: 34028189 PMCID: PMC8256345 DOI: 10.1111/jcmm.16571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Both human periodontal ligament stem cells (hPDLSCs) and human gingival mesenchymal stem cells (hGMSCs) are candidate seed cells for bone tissue engineering, but the osteo-differentiation ability of the latter is weaker than the former, and the mechanisms are unknown. To explore the potential regulation of mRNAs and long non-coding RNAs (lncRNAs), this study obtained the gene expression profiles of hPDLSCs and hGMSCs in both undifferentiated and osteo-differentiated conditions by microarray assay and then analysed the common and specific differentially expressed mRNAs and lncRNAs in hPDLSCs and hGMSCs through bioinformatics method. The results showed that 275 mRNAs and 126 lncRNAs displayed similar changing patterns in hPDLSCs and hGMSCs after osteogenic induction, which may regulate the osteo-differentiation in both types of cells. In addition, the expression of 223 mRNAs and 238 lncRNAs altered only in hPDLSCs after osteogenic induction, and 177 mRNAs and 170 lncRNAs changed only in hGMSCs. These cell-specific differentially expressed mRNAs and lncRNAs could underlie the different osteo-differentiation potentials of hPDLSCs and hGMSCs. Finally, dickkopf Wnt signalling pathway inhibitor 1 (DKK1) was proved to be one regulator for the weaker osteo-differentiation ability of hGMSCs through validation experiments. We hope these results help to reveal new mRNAs-lncRNAs-based molecular mechanism for osteo-differentiation of hPDLSCs and hGMSCs and provide clues on strategies for improving stem cell-mediated bone regeneration.
Collapse
Affiliation(s)
- Linglu Jia
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Yunpeng Zhang
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunmingChina
| | - Dongfang Li
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Dongjiao Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Xin Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
34
|
Zhu Q, Liang F, Cai S, Luo X, Duo T, Liang Z, He Z, Chen Y, Mo D. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death Dis 2021; 12:514. [PMID: 34011940 PMCID: PMC8134519 DOI: 10.1038/s41419-021-03799-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.
Collapse
Affiliation(s)
- Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Higher Education Mega Center, 510006, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Histone modifications centric-regulation in osteogenic differentiation. Cell Death Dis 2021; 7:91. [PMID: 33941771 PMCID: PMC8093204 DOI: 10.1038/s41420-021-00472-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Histone modification critically contributes to the epigenetic control of gene expression by changing the configuration of chromatin and modifying the access of transcription factors to gene promoters. Recently, we observed that histone acetylation and crotonylation mediated the expression of endocytosis-related genes and tumor-related immune checkpoint genes by regulating the enrichment of signal transducer and activator of transcription 3 on these gene promoters in Alzheimer's disease and tumorigenesis, suggesting that histone modification plays an important role in disease development. Furthermore, studies performed in the past decade revealed that histone modifications affect osteogenic differentiation by regulating the expression of osteogenic marker genes. In this review, we summarize and discuss the histone modification-centric regulation of osteogenic gene expression. This review improves the understanding of the role of histone modifications in osteogenic differentiation and describes its potential as a therapeutic target for osteogenic differentiation-related diseases.
Collapse
|
36
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Nanduri R. Epigenetic Regulators of White Adipocyte Browning. EPIGENOMES 2021; 5:3. [PMID: 34968255 PMCID: PMC8594687 DOI: 10.3390/epigenomes5010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Adipocytes play an essential role in maintaining energy homeostasis in mammals. The primary function of white adipose tissue (WAT) is to store energy; for brown adipose tissue (BAT), primary function is to release fats in the form of heat. Dysfunctional or excess WAT can induce metabolic disorders such as dyslipidemia, obesity, and diabetes. Preadipocytes or adipocytes from WAT possess sufficient plasticity as they can transdifferentiate into brown-like beige adipocytes. Studies in both humans and rodents showed that brown and beige adipocytes could improve metabolic health and protect from metabolic disorders. Brown fat requires activation via exposure to cold or β-adrenergic receptor (β-AR) agonists to protect from hypothermia. Considering the fact that the usage of β-AR agonists is still in question with their associated side effects, selective induction of WAT browning is therapeutically important instead of activating of BAT. Hence, a better understanding of the molecular mechanisms governing white adipocyte browning is vital. At the same time, it is also essential to understand the factors that define white adipocyte identity and inhibit white adipocyte browning. This literature review is a comprehensive and focused update on the epigenetic regulators crucial for differentiation and browning of white adipocytes.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L. Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:712217. [PMID: 34489867 PMCID: PMC8417734 DOI: 10.3389/fendo.2021.712217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.
Collapse
Affiliation(s)
- Hua Guan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jin Zhang
- Department of Preventive Medicine, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jing Luan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhenghao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| | - Lixian Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| |
Collapse
|
39
|
Sun S, Yang F, Zhu Y, Zhang S. RETRACTED: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci 2020; 262:118508. [PMID: 33002480 DOI: 10.1016/j.lfs.2020.118508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors as they “found major problems in the data and conclusions through their later research”. 1. When the authors performed flow cytometry to detect apoptosis, the Annexin-V-coupled fluorophore they used was Fluor 647 (as described in the Methods section), which was incorrectly labelled as the Annexin-V-coupled fluorophore as FITC in their Figures (Fig. 5E, 7C and Fig. S1D). The excitation wavelengths of Alexa Fluor 647 (594/633 nm) are different from that of FITC (490 nm/520 nm), this mistake would lead to unreliability of their data. 2. The authors discovered a major error during the traceability of the antibodies used in the experiments. The primary antibody they used to detect KDM4A was actually a primary antibody for KDM6B, as evidenced by the western blots. KDM6B is a 177-kDa protein (consistent with the kDa shown in Fig. 1K and Fig. 2B), while KDM4A is a 150-kDa protein. 3. Lastly, the authors carelessly mislabeled KDM4A as KDM4B in Fig. 7. The authors and the Editors believe that the conclusions of the paper are not dependable, so we have decided to retract the paper. Apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of General Oncotherapy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Fujun Yang
- Department of General Oncotherapy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Yongcun Zhu
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| | - Shukun Zhang
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|