1
|
Benak D, Alanova P, Holzerova K, Chalupova M, Opletalova B, Kolar F, Pavlinkova G, Hlavackova M. Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways. Mol Med 2025; 31:105. [PMID: 40102715 PMCID: PMC11917031 DOI: 10.1186/s10020-025-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Epitranscriptomics, the study of RNA modifications such as N6-methyladenosine (m6A), provides a novel layer of gene expression regulation with implications for numerous biological processes, including cellular adaptation to hypoxia. Hypoxia-inducible factor-1 (HIF-1), a master regulator of the cellular response to low oxygen, plays a critical role in adaptive and pathological processes, including cancer, ischemic heart disease, and metabolic disorders. Recent discoveries accent the dynamic interplay between m6A modifications and HIF-1 signaling, revealing a complex bidirectional regulatory network. While the roles of other RNA modifications in HIF-1 regulation remain largely unexplored, emerging evidence suggests their potential significance. MAIN BODY This review examines the reciprocal regulation between HIF-1 and epitranscriptomic machinery, including m6A writers, readers, and erasers. HIF-1 modulates the expression of key m6A components, while its own mRNA is regulated by m6A modifications, positioning HIF-1 as both a regulator and a target in this system. This interaction enhances our understanding of cellular hypoxic responses and opens avenues for clinical applications in treating conditions like cancer and ischemic heart disease. Promising progress has been made in developing selective inhibitors targeting the m6A-HIF-1 regulatory axis. However, challenges such as off-target effects and the complexity of RNA modification dynamics remain significant barriers to clinical translation. CONCLUSION The intricate interplay between m6A and HIF-1 highlights the critical role of epitranscriptomics in hypoxia-driven processes. Further research into these regulatory networks could drive therapeutic innovation in cancer, ischemic heart disease, and other hypoxia-related conditions. Overcoming challenges in specificity and off-target effects will be essential for realizing the potential of these emerging therapies.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Alanova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslava Chalupova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Opletalova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Wang X, Zhai H, Guo J, Wang X, Gu L, Li T, Liu Q. siRNA silencing and hypoxia challenge indicate that the function of common carp (Cyprinus carpio) hif-1αb genes are tightly linked to hif-1αa and hif-3α genes. BMC Genomics 2024; 25:1203. [PMID: 39695393 DOI: 10.1186/s12864-024-11141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Fishes are susceptible to hypoxia stress, while the common carp is known for its high tolerance to hypoxia. The hypoxia-inducible factor (HIF) pathway directly regulates the cell's response to hypoxia. Still, it is currently unknown which members of the hif-α genes are present in common carp and their specific functions. RESULTS In this study, we found that the hif-1α, hif-2α, and hif-3α genes of common carp all contained twice the number of copies of their orthologs in zebrafish. Common carp has four copies of the hif-1α gene, of which the two hif-1αa genes were expressed at low levels in the vast majority of tissues, while the two hif-1αb genes were expressed at high levels in multiple tissues. We silenced the two hif-1αb genes using chitosan nanoparticles (CSNPs) carrying siRNA and subjected two groups to hypoxic stress. Transcriptome sequencing results show that whether under normoxia or hypoxia, the number of differentially expressed genes (DEGs) caused by silencing the hif-1αb genes in the heart exceeds 1,000, far more than the number of DEGs in the gills or brain. GO enrichment and KEGG enrichment showed that DEGs in the heart were mainly related to immune function and myocardial contraction. DEGs in the gills and brain also enriched many immune-related terms, and some DEGs in the gills were related to iron metabolism and erythropoiesis. Among the paralogs, the two hif-1αa genes were most obviously up-regulated under normoxia, while the hif-3α genes were most obviously up-regulated under hypoxia. We did not find any downstream genes of the HIF pathway that were specifically regulated by the hif-1αb genes. CONCLUSIONS The main effect site of the common carp hif-1αb genes is the heart, and their main functions are to regulate immune response and myocardial contraction. Their functions are partially redundant with the hif-1αa genes and hif-3α genes. When their expressions are inhibited, the expression of hif-1αa genes or hif-3α genes would be up-regulated in specific contexts, thereby compensating for their loss of function. The downstream genes of the HIF pathway in common carp may be generally regulated by multiple hif-α genes.
Collapse
Grants
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [20210302124494] the Department of Science and Technology of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [J201911301, J202111303, 2020L0158, SXYBKY201713] the Department of Education of Shanxi Province
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
- [2017YJ05] Shanxi Agricultural University
Collapse
Affiliation(s)
- Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu, 030801, China.
| | - Huili Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Jiali Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Xueyi Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Libo Gu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
3
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
4
|
Procházková K, Uhlík J. Influence of Hypoxia on the Airway Epithelium. Physiol Res 2024; 73:S557. [PMID: 39589303 PMCID: PMC11627265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 11/27/2024] Open
Abstract
The necessity of oxygen for metabolic processes means that hypoxia can lead to serious cell and tissue damage. On the other hand, in some situations, hypoxia occurs under physiological conditions and serves as an important regulation factor. The airway epithelium is specific in that it gains oxygen not only from the blood supply but also directly from the luminal air. Many respiratory diseases are associated with airway obstruction or excessive mucus production thus leading to luminal hypoxia. The main goal of this review is to point out how the airway epithelium reacts to hypoxic conditions. Cells detect low oxygen levels using molecular mechanisms involving hypoxia-inducible factors (HIFs). In addition, the cells of the airway epithelium appear to overexpress HIFs in hypoxic conditions. HIFs then regulate many aspects of epithelial cell functions. The effects of hypoxia include secretory cell stimulation and hyperplasia, epithelial barrier changes, and ciliogenesis impairment. All the changes can impair mucociliary clearance, exacerbate infection, and promote inflammation leading to damage of airway epithelium and subsequent airway wall remodeling. The modulation of hypoxia regulatory mechanisms may be one of the strategies for the treatment of obstructive respiratory diseases or diseases with mucus hyperproduction. Keywords: Secretory cells, Motile cilia, Epithelial barrier, Oxygenation, Obstructive respiratory diseases.
Collapse
Affiliation(s)
- K Procházková
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Ni B, Tang L, Zhu L, Li X, Zhang K, Nie H, Ye Z, Wang Y, Zhu L, Kong X, Gou X. Screening of functional genes for hypoxia adaptation in Tibetan pigs by combined genome resequencing and transcriptome analysis. Front Vet Sci 2024; 11:1486258. [PMID: 39497743 PMCID: PMC11532106 DOI: 10.3389/fvets.2024.1486258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The high-altitude, low-oxygen environment of the Qinghai-Tibet Plateau poses significant challenges for the introduction of superior livestock breeds. However, local plateau species have adapted to thrive and reproduce under these harsh conditions. Understanding the molecular mechanisms behind plateau animals' adaptation to low-oxygen environments is essential for breeding livestock suited to high-altitude regions. Tibetan pigs, which have undergone long-term natural selection and artificial breeding, have developed the ability to survive and reproduce in hypoxic environments. In this study, we conducted whole-genome resequencing of 30 Tibetan pigs from high-altitude regions and 30 Diannan small-ear pigs from low-altitude areas, to identify candidate genes that support Tibetan pigs' adaptation to hypoxic conditions through selection signal analysis. Additionally, we performed transcriptome sequencing on five tissues (heart, liver, spleen, lung, and bone marrow) from both Tibetan pigs and Diannan small-ear pigs to identify genes with significant differential expression between the two breeds. We then integrated the genomic and transcriptomic data by examining the expression of candidate genes identified in selection signal analysis across different tissues. The selection signal analysis identified 10 genes-HES4, ANGPT1, HIF3A, SPHK2, PCK2, RCN3, HIGD2A, DNM2, IRF9, and SRF-that were under positive selection in the Tibetan pig population and are associated with hypoxia adaptation. When combined with transcriptome data, we found that five of these genes-HIF3A, RCN3, HIGD2A, PCK2, and IRF9-exhibited differential expression. Through an integrated approach of selection signal and transcriptome analysis, we identified five key functional genes that contribute to the adaptation of Tibetan pigs to hypoxic environments. These findings offer new insights into the adaptability of plateau animals.
Collapse
Affiliation(s)
- Bin Ni
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lin Tang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hongyu Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zeyu Ye
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiwen Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijun Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiao Gou
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
Jiang J, Zheng Z, Chen S, Liu J, Jia J, Huang Y, Liu Q, Cheung CY, Sin DD, Yang T, Wang C. Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis. Theranostics 2024; 14:5512-5527. [PMID: 39310101 PMCID: PMC11413794 DOI: 10.7150/thno.99237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Zhoude Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Shengsong Chen
- First Affiliated Hospital of Nanchang University, Department of Pulmonary and Critical Care Medicine, Nanchang, Jiangxi, CN
| | - Jixiang Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Ju Jia
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, CN
| | - Yuhang Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Qing Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Chung Y Cheung
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Don D Sin
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
- The University of British Columbia, Division of Respiratory Medicine, Department of Medicine, Vancouver, BC, CA
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| |
Collapse
|
8
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
9
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
10
|
Sitaram RT, Ljungberg B. Expression of HIF‑α and their association with clinicopathological parameters in clinical renal cell carcinoma. Ups J Med Sci 2024; 129:9407. [PMID: 38571885 PMCID: PMC10989218 DOI: 10.48101/ujms.v129.9407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives This study aimed to assess the cellular localization and expression levels of hypoxia-inducible factor (HIF) -α proteins (specifically HIF-1α, HIF-2α, and HIF-3α) that play a role in the hypoxia pathway and to determine their correlation with clinicopathological parameters and patient survival in renal cell carcinoma (RCC). Materials and methods Tissue microarray (TMA) with cores from 150 clear cell RCCs and 31 non-ccRCC samples. HIF-1α, HIF-2α, and HIF-3α antibodies were used for immunohistochemistry (IHC) of TMA to evaluate the cellular localization and expression levels of HIF-α proteins, specifically in relation to the hypoxia pathway. Results The expression levels of the HIF-α proteins were higher in the nucleus than in the cytoplasm. Furthermore, the nuclear expression levels of all HIF-α proteins were significantly higher in clear cell RCC (ccRCC) than in non-ccRCC. Cytoplasmic HIF-3α expression was also higher in ccRCC than in non-ccRCC, whereas cytoplasmic HIF-1α and HIF-2α expression levels were similar between the different RCC types. In ccRCC, nuclear HIF-1α expression levels correlated with both nuclear HIF-2α and HIF-3α levels, whereas cytoplasmic HIF-3α expression levels were associated with HIF-1α only.In non-ccRCC, there was a positive correlation observed between nuclear HIF-1α and HIF-3α expression, but no correlation was found with HIF-2α. In patients with ccRCC, the nuclear expressions of HIF-1α and HIF-3α was significantly associated with cancer-specific survival (CSS) in univariate analysis. This association was no longer evident in multivariate analysis. Notably, there was no correlation observed between nuclear HIF-2α expression and CSS in these patients. In contrast, cytoplasmic expression levels showed no association with CSS. Conclusion The expression levels of the three primary HIF-α proteins were found to be higher in the nucleus than in the cytoplasm. Furthermore, the results indicated that HIF-3α and HIF-1α expression levels were significant univariate factors associated with CSS in patients with clear cell RCC. These results highlight the critical role that HIF-3α and HIF-1α play in the hypoxia pathway.
Collapse
Affiliation(s)
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Takahashi A. Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors. Nutrients 2024; 16:520. [PMID: 38398842 PMCID: PMC10893400 DOI: 10.3390/nu16040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Since zinc is involved in many aspects of the hematopoietic process, zinc supplementation can reduce erythropoiesis-stimulating agents (ESAs) in patients undergoing hemodialysis. However, it remains unclear whether hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have similar reduction effects. HIF-PHI stabilizes HIF, which promotes hematopoiesis, although HIF-1α levels are downregulated by zinc. This study aimed to investigate the effect of zinc supplementation on the hematopoietic effect of HIF-PHI in patients undergoing hemodialysis. Thirty patients undergoing maintenance hemodialysis who underwent periods of treatment with roxadustat or darbepoetin alfa during the past 3 years were retrospectively observed. Participants who underwent periods with and without zinc supplementation were selected, with nine treated with darbepoetin alfa and nine treated with roxadustat. Similarly to the ESA responsiveness index (ERI), the hematopoietic effect of zinc supplementation was determined by the HIF-PHI responsiveness index (HRI), which was calculated by dividing the HIF-PHI dose (mg/week) by the patient's dry weight (kg) and hemoglobin level (g/L). Zinc supplementation significantly increased ERI (p < 0.05), but no significant change was observed (p = 0.931) in HRI. Although zinc supplementation did not significantly affect HRI, adequate zinc supplementation is required to alleviate concerns such as vascular calcification and increased serum copper during the use of HIF-PHI.
Collapse
Affiliation(s)
- Akira Takahashi
- Dialysis Center, Tesseikai Neurosurgical Hospital, Shijonawate 575-8511, Japan
| |
Collapse
|
12
|
Zhuang J, Shang Q, Rastinejad F, Wu D. Decoding Allosteric Control in Hypoxia-Inducible Factors. J Mol Biol 2024; 436:168352. [PMID: 37935255 DOI: 10.1016/j.jmb.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1β). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.
Collapse
Affiliation(s)
- Jingjing Zhuang
- Marine College, Shandong University, Weihai 264209, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
14
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
15
|
Nguyen TVH, Bergmann U, Kietzmann T, Mennerich D. Protein kinase B/AKT phosphorylates hypoxia-inducible factor-3α1 in response to insulin, promoting cell growth and migration. Front Cell Dev Biol 2023; 11:1250000. [PMID: 38020884 PMCID: PMC10665492 DOI: 10.3389/fcell.2023.1250000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are best known for their roles in the adaptation to low oxygen environments. Besides hypoxia, HIF-1/2 α-subunits are also regulated by various non-hypoxic stimuli including insulin which can act via the PI3K/protein kinase B (PKB) signaling pathway. However, with respect to insulin little is known about HIF-3α. We aimed to investigate this relationship and found that insulin stimulates HIF-3α expression under both normal and low oxygen conditions. Blocking PKB activity reversed the effects of insulin, indicating that HIF-3α is a direct target of PKB. We identified serine 524, located in the oxygen-dependent degradation domain of HIF-3α, as a phosphorylation site of PKB. Mutating serine 524 impaired binding of PKB to HIF-3α and its ubiquitination, suggesting that PKB regulates HIF-3α stability through phosphorylation, thereby affecting important cellular processes such as cell viability and cell adhesion. Importantly, we discovered that this phosphorylation site also influenced insulin-dependent cell migration. These findings shed light on a novel mechanism by which insulin affects PKB-dependent HIF-3α expression and activity, with potential implications in metabolic diseases and cancer.
Collapse
Affiliation(s)
| | | | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
16
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
17
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
18
|
Troise D, Infante B, Mercuri S, Netti GS, Ranieri E, Gesualdo L, Stallone G, Pontrelli P. Hypoxic State of Cells and Immunosenescence: A Focus on the Role of the HIF Signaling Pathway. Biomedicines 2023; 11:2163. [PMID: 37626660 PMCID: PMC10452839 DOI: 10.3390/biomedicines11082163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration. Activation of HIF signaling pathways is involved in improving the oxygen supply, promoting cell survival through anaerobic ATP generation, and adapting energy metabolism to meet cell demands. Hypoxia can also contribute to the development of the aging process, leading to aging-related degenerative diseases; among these, the aging of the immune system under hypoxic conditions can play a role in many different immune-mediated diseases. Thus, in this review we aim to discuss the role of HIF signaling pathways following cellular hypoxia and their effects on the mechanisms driving immune system senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (E.R.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy; (D.T.); (B.I.); (S.M.); (G.S.)
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
19
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
20
|
Ulaganathan T, Perales S, Mani S, Baskhairoun BA, Rajasingh J. Pathological implications of cellular stress in cardiovascular diseases. Int J Biochem Cell Biol 2023; 158:106397. [PMID: 36931385 PMCID: PMC10124590 DOI: 10.1016/j.biocel.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Cellular stress has been a key factor in the development of cardiovascular diseases. Major types of cellular stress such as mitochondrial stress, endoplasmic reticulum stress, hypoxia, and replicative stress have been implicated in clinical complications of cardiac patients. The heart is the central regulator of the body by supplying oxygenated blood throughout the system. Impairment of cellular function could lead to heart failure, myocardial infarction, ischemia, and even stroke. Understanding the effect of these distinct types of cellular stress on cardiac function is crucial for the scientific community to understand and develop novel therapeutic approaches. This review will comprehensively explain the different mechanisms of cellular stress and the most recent findings related to stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Thennavan Ulaganathan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Biotechnology, SRM Institute of Science and Technology, kattankulathur, Tamilnadu, 603203, India
| | - Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Saiprahalad Mani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Biotechnology, SRM Institute of Science and Technology, kattankulathur, Tamilnadu, 603203, India
| | - Boula A Baskhairoun
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
21
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
22
|
Jiang J, Chen S, Yu T, Chang C, Liu J, Ren X, Niu H, Huang K, Li B, Wang C, Yang T. Dynamic analysis of gene signatures in the progression of COPD. ERJ Open Res 2023; 9:00343-2022. [PMID: 36891078 PMCID: PMC9986750 DOI: 10.1183/23120541.00343-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
Aims Oxidative stress is an important amplifying mechanism in COPD; however, it is unclear how oxidative stress changes and what its exact amplification mechanism is in the pathological process. We aimed to dynamically analyse the progression of COPD and further elucidate the characteristics of each developmental stage and unveil the underlying mechanisms. Methods We performed a holistic analysis by integrating Gene Expression Omnibus microarray datasets related to smoking, emphysema and Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification based on the concept of gene, environment and time (GET). Gene ontology (GO), protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA) were used to explore the changing characteristics and potential mechanisms. Lentivirus was used to promote HIF3A overexpression. Results In smokers versus nonsmokers, the GO term mainly enriched in "negative regulation of apoptotic process". In later transitions between stages, the main enriched terms were continuous progression of "oxidation-reduction process" and "cellular response to hydrogen peroxide". Logistic regression showed that these core differentially expressed genes (DEGs) had diagnostic accuracy in test (area under the curve (AUC)=0.828) and validation (AUC=0.750) sets. GSEA and PPI networks showed that one of the core DEGs, HIF3A, strongly interacted with the ubiquitin-mediated proteolysis pathway. Overexpression of HIF3A restored superoxide dismutase levels and alleviated the reactive oxygen species accumulation caused by cigarette smoke extract treatment. Conclusion Oxidative stress was continuously intensified from mild emphysema to GOLD 4; thus, special attention should be paid to the identification of emphysema. Furthermore, the downregulated HIF3A may play an important role in the intensified oxidative stress in COPD.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Shengsong Chen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Tao Yu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chenli Chang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jixiang Liu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xiaoxia Ren
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Hongtao Niu
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Ke Huang
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Baicun Li
- National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,These authors contributed equally
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,These authors contributed equally
| |
Collapse
|
23
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
24
|
Ogawa C, Tsuchiya K, Maeda K. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors and Iron Metabolism. Int J Mol Sci 2023; 24:ijms24033037. [PMID: 36769359 PMCID: PMC9917929 DOI: 10.3390/ijms24033037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The production of erythropoietin (EPO), the main regulator of erythroid differentiation, is regulated by hypoxia-inducible factor (HIF). HIF2α seems to be the principal regulator of EPO transcription, but HIF1α and 3α also may have additional influences on erythroid maturation. HIF is also involved in the regulation of iron, an essential component in erythropoiesis. Iron is essential for the organism but is also highly toxic, so its absorption and retention are strictly controlled. HIF also induces the synthesis of proteins involved in iron regulation, thereby ensuring the availability of iron necessary for hematopoiesis. Iron is a major component of hemoglobin and is also involved in erythrocyte differentiation and proliferation and in the regulation of HIF. Renal anemia is a condition in which there is a lack of stimulation of EPO synthesis due to decreased HIF expression. HIF prolyl hydroxylase inhibitors (HIF-PHIs) stabilize HIF and thereby allow it to be potent under normoxic conditions. Therefore, unlike erythropoiesis-stimulating agents, HIF-PHI may enhance iron absorption from the intestinal tract and iron supply from reticuloendothelial macrophages and hepatocytes into the plasma, thus facilitating the availability of iron for hematopoiesis. The only HIF-PHI currently on the market worldwide is roxadustat, but in Japan, five products are available. Clinical studies to date in Japan have also shown that HIF-PHIs not only promote hematopoiesis, but also decrease hepcidin, the main regulator of iron metabolism, and increase the total iron-binding capacity (TIBC), which indicates the iron transport capacity. However, concerns about the systemic effects of HIF-PHIs have not been completely dispelled, warranting further careful monitoring.
Collapse
Affiliation(s)
- Chie Ogawa
- Maeda Institute of Renal Research, Kawasaki 211-0063, Japan
- Biomarker Society, INC, Kawasaki 211-0063, Japan
- Correspondence: ; Tel.: +81-44-711-3221
| | - Ken Tsuchiya
- Biomarker Society, INC, Kawasaki 211-0063, Japan
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Kunimi Maeda
- Maeda Institute of Renal Research, Kawasaki 211-0063, Japan
- Biomarker Society, INC, Kawasaki 211-0063, Japan
| |
Collapse
|
25
|
Bourgonje AR, Kloska D, Grochot-Przęczek A, Feelisch M, Cuadrado A, van Goor H. Personalized redox medicine in inflammatory bowel diseases: an emerging role for HIF-1α and NRF2 as therapeutic targets. Redox Biol 2023; 60:102603. [PMID: 36634466 PMCID: PMC9841059 DOI: 10.1016/j.redox.2023.102603] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are intimately associated with inflammation and overproduction of reactive oxygen species (ROS). Temporal and inter-individual variabilities in disease activity and response to therapy pose significant challenges to diagnosis and patient care. Discovery and validation of truly integrative biomarkers would benefit from embracing redox metabolomics approaches with prioritization of central regulatory hubs. We here make a case for applying a personalized redox medicine approach that aims to selectively inhibit pathological overproduction and/or altered expression of specific enzymatic sources of ROS without compromising physiological function. To this end, improved 'clinical-omics integration' may help to better understand which particular redox signaling pathways are disrupted in what patient. Pharmacological interventions capable of activating endogenous antioxidant defense systems may represent viable therapeutic options to restore local/systemic redox status, with HIF-1α and NRF2 holding particular promise in this context. Achieving the implementation of clinically meaningful mechanism-based biomarkers requires development of easy-to-use, robust and cost-effective tools for secure diagnosis and monitoring of treatment efficacy. Ultimately, matching redox-directed pharmacological interventions to individual patient phenotypes using predictive biomarkers may offer new opportunities to break the therapeutic ceiling in IBD.
Collapse
Affiliation(s)
- Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands,Corresponding author.
| | - Damian Kloska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC. Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
26
|
Krishnan HR, Zhang H, Chen Y, Bohnsack JP, Shieh AW, Kusumo H, Drnevich J, Liu C, Grayson DR, Maienschein-Cline M, Pandey SC. Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis. Mol Psychiatry 2022; 27:4624-4632. [PMID: 36089615 PMCID: PMC9734037 DOI: 10.1038/s41380-022-01732-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.
Collapse
Affiliation(s)
- Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ying Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Annie W Shieh
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Handojo Kusumo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Chunyu Liu
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Research Informatics Core, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci 2022; 23:ijms231911201. [PMID: 36232501 PMCID: PMC9569554 DOI: 10.3390/ijms231911201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient oxygen is required to maintain normal cellular and physiological function, such as a creature’s development, breeding, and homeostasis. Lately, some researchers have reported that both pathological hypoxia and environmental hypoxia might affect bone health. Adaptation to hypoxia is a pivotal cellular event in normal cell development and differentiation and in pathological settings such as ischemia. As central mediators of homeostasis, hypoxia-inducible transcription factors (HIFs) can allow cells to survive in a low-oxygen environment and are essential for the regulation of osteogenesis and skeletal repair. From this perspective, we summarized the role of HIF-1 and HIF-2 in signaling pathways implicated in bone development and skeletal repair and outlined the molecular mechanism of regulation of downstream growth factors and protein molecules such as VEGF, EPO, and so on. All of these present an opportunity for developing therapies for bone regeneration.
Collapse
|
29
|
Diao X, Ye F, Zhang M, Ren X, Tian X, Lu J, Sun X, Hou Z, Chen X, Li F, Zhuang J, Ding H, Peng C, Rastinejad F, Luo C, Wu D. Identification of oleoylethanolamide as an endogenous ligand for HIF-3α. Nat Commun 2022; 13:2529. [PMID: 35534502 PMCID: PMC9085743 DOI: 10.1038/s41467-022-30338-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are α/β heterodimeric transcription factors modulating cellular responses to the low oxygen condition. Among three HIF-α isoforms, HIF-3α is the least studied to date. Here we show that oleoylethanolamide (OEA), a physiological lipid known to regulate food intake and metabolism, binds selectively to HIF-3α. Through crystallographic analysis of HIF-3 α/β heterodimer in both apo and OEA-bound forms, hydrogen-deuterium exchange mass spectrometry (HDX-MS), molecular dynamics (MD) simulations, and biochemical and cell-based assays, we unveil the molecular mechanism of OEA entry and binding to the PAS-B pocket of HIF-3α, and show that it leads to enhanced heterodimer stability and functional modulation of HIF-3. The identification of HIF-3α as a selective lipid sensor is consistent with recent human genetic findings linking HIF-3α with obesity, and demonstrates that endogenous metabolites can directly interact with HIF-α proteins to modulate their activities, potentially as a regulatory mechanism supplementary to the well-known oxygen-dependent HIF-α hydroxylation.
Collapse
Affiliation(s)
- Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Fei Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Meina Zhang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Xintong Ren
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 201210, Shanghai, China
| | - Jingping Lu
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Zeng Hou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310053, Hangzhou, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China
| | - Hong Ding
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 201210, Shanghai, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| | - Cheng Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310053, Hangzhou, China.
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, China.
| |
Collapse
|
30
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
31
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
32
|
Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X, Qu A. The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther 2022; 238:108186. [PMID: 35413308 DOI: 10.1016/j.pharmthera.2022.108186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. During the development of cardiovascular diseases, hypoxia plays a crucial role. Hypoxia-inducible factors (HIFs) are the key transcription factors for adaptive hypoxic responses, which orchestrate the transcription of numerous genes involved in angiogenesis, erythropoiesis, glycolytic metabolism, inflammation, and so on. Recent studies have dissected the precise role of cell-specific HIFs in the pathogenesis of hypertension, atherosclerosis, aortic aneurysms, pulmonary arterial hypertension, and heart failure using tissue-specific HIF-knockout or -overexpressing animal models. More importantly, several compounds developed as HIF inhibitors or activators have been in clinical trials for the treatment of renal cancer or anemia; however, little is known on the therapeutic potential of these inhibitors for cardiovascular diseases. The purpose of this review is to summarize the recent advances on HIFs in the pathogenesis and pathophysiology of cardiovascular diseases and to provide evidence of potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Xinyao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, PR China; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| |
Collapse
|
33
|
Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 2022; 30:737-748. [PMID: 35364736 DOI: 10.1007/s10787-022-00974-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.
Collapse
|
34
|
Batie M, Kenneth NS, Rocha S. Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochem J 2022; 479:245-257. [PMID: 35119457 PMCID: PMC8883490 DOI: 10.1042/bcj20210554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Hypoxia is a common denominator in the pathophysiology of a variety of human disease states. Insight into how cells detect, and respond to low oxygen is crucial to understanding the role of hypoxia in disease. Central to the hypoxic response is rapid changes in the expression of genes essential to carry out a wide range of functions to adapt the cell/tissue to decreased oxygen availability. These changes in gene expression are co-ordinated by specialised transcription factors, changes to chromatin architecture and intricate balances between protein synthesis and destruction that together establish changes to the cellular proteome. In this article, we will discuss the advances of our understanding of the cellular oxygen sensing machinery achieved through the application of 'omics-based experimental approaches.
Collapse
Affiliation(s)
- Michael Batie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Niall S. Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
35
|
Cuomo F, Dell'Aversana C, Chioccarelli T, Porreca V, Manfrevola F, Papulino C, Carafa V, Benedetti R, Altucci L, Cobellis G, Cobellis G. HIF3A Inhibition Triggers Browning of White Adipocytes via Metabolic Rewiring. Front Cell Dev Biol 2022; 9:740203. [PMID: 35096807 PMCID: PMC8790297 DOI: 10.3389/fcell.2021.740203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Maintenance of energy balance between intake and expenditure is a prerequisite of human health, disrupted in severe metabolic diseases, such as obesity and type 2 diabetes (T2D), mainly due to accumulation of white adipose tissue (WAT). WAT undergoes a morphological and energetic remodelling toward brown adipose tissue (BAT) and the BAT activation has anti-obesity potential. The mechanisms or the regulatory factors able to activate BAT thermogenesis have been only partially deciphered. Identifying novel regulators of BAT induction is a question of great importance for fighting obesity and T2D. Here, we evaluated the role of Hif3α in murine pre-adipocyte 3T3-L1 cell line, a versatile and well characterized biological model of adipogenesis, by gain- and loss-of function approaches and in thermogenesis-induced model in vivo. HIF3A is regulated by inflammation, it modulates lypolysis in adipose tissue of obese adults, but its role in energy metabolism has not previously been investigated. We characterized gene and protein expression patterns of adipogenesis and metabolic activity in vitro and mechanistically in vivo. Overexpression of Hif3α in differentiating adipocytes increases white fat cells, whereas silencing of Hif3α promotes “browning” of white cells, activating thermogenesis through upregulation of Ucp1, Elovl3, Prdm16, Dio2 and Ppargc1a genes. Investigating cell metabolism, Seahorse Real-Time Cell Metabolism Analysis showed that silencing of Hif3α resulted in a significant increase of mitochondrial uncoupling with a concomitant increase in acetyl-CoA metabolism and Sirt1 and Sirt3 expression. The causal Hif3α/Ucp1 inverse relation has been validated in Cannabinoid receptor 1 (CB1) knockout, a thermogenesis-induced model in vivo. Our data indicate that Hif3α inhibition triggers “browning” of white adipocytes activating the beneficial thermogenesis rewiring energy metabolism in vitro and in vivo. HIF3A is a novel player that controls the energy metabolism with potential applications in developing therapy to fight metabolic disorders, as obesity, T2D and ultimately cancer.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Carmela Dell'Aversana
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.,Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS)-National Research Council (CNR), Napoli, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
36
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
37
|
Pastushenkov VL, Buynov LG, Kuznetsov MS, Dvorianchikov VV, Glaznikov LA, Pastushenkov AL. HIF-1α as a Target Molecule in the Use of Triazino-Indole Derivative on the Acoustic Trauma Model. Audiol Res 2021; 11:365-372. [PMID: 34287237 PMCID: PMC8293252 DOI: 10.3390/audiolres11030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The effect of triazino-indole derivative (Trisan) on hypoxia-inducible factor (HIF) expression level in the organ of Corti, when administering it for therapeutic and preventive purposes, was investigated using an acoustic trauma model in experimental animals (female F1 hybrids of CBA and C57BL/6 lines). Cytoflavin was used as a comparator product. Study product Trisan (1% solution) was injected intravenously, intramuscularly and intraperitoneally, in the dose of 5, 7 and 10 mg/kg 2 h after the acoustic trauma for therapeutic purposes and in the dose of 5, 7 and 10 mg/kg for 3 days before the acoustic trauma for preventive purposes. IHC methods were used to investigate the organ of Corti. Trisan was observed to increase HIF expression in hair cells and neurons of the spiral ganglion in case of acoustic trauma. Depending on the dose, the increased HIF-1 expression in hair cells and spiral ganglion occurred both after therapeutic and preventive use of Trisan. Maximum HIF expression in hair cells and ganglion was noted at the therapeutic and preventive drug dose of 10 mg/kg. Following experimental results, we conclude that the otoprotective effect of triazino-indole derivative is realized via its effect on HIF metabolism, which makes it a target molecule for the drug.
Collapse
Affiliation(s)
| | - Leonid G. Buynov
- Department of Medical and Valeological Disciplines, The Herzen State Pedagogical University of Russia, 191015 St. Petersburg, Russia
- Correspondence:
| | - Maksim S. Kuznetsov
- Department of Otorhinolaryngology, Military Medical Academy, 191015 St. Petersburg, Russia; (M.S.K.); (V.V.D.); (L.A.G.)
| | - Vladimir V. Dvorianchikov
- Department of Otorhinolaryngology, Military Medical Academy, 191015 St. Petersburg, Russia; (M.S.K.); (V.V.D.); (L.A.G.)
| | - Lev A. Glaznikov
- Department of Otorhinolaryngology, Military Medical Academy, 191015 St. Petersburg, Russia; (M.S.K.); (V.V.D.); (L.A.G.)
| | - Aleksandr L. Pastushenkov
- Department of Pharmacy and Pharmacology, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia;
| |
Collapse
|
38
|
Wang H, Liu D, Song P, Jiang F, Chi X, Zhang T. Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genomics 2021; 22:413. [PMID: 34090336 PMCID: PMC8178839 DOI: 10.1186/s12864-021-07731-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days. RESULTS Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and 1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were associated with immune cell activation. Expression of Gata1, Tal1 and Klf1 was significantly altered during stress erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells decreased. CONCLUSIONS The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three transcription factors and genes in immune response were downregulated. These findings expand our knowledge of splenic transcriptional changes during hypoxia.
Collapse
Affiliation(s)
- Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Medical College of Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwen Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
39
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
40
|
Mylonis I, Chachami G, Simos G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers (Basel) 2021; 13:cancers13030410. [PMID: 33499237 PMCID: PMC7865418 DOI: 10.3390/cancers13030410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cells in solid tumors often experience lack of oxygen (hypoxia), which they overcome with the help of hypoxia inducible transcription factors (HIFs). When HIFs are activated, they stimulate the expression of many genes and cause the production of proteins that help cancer cells grow and migrate even in the presence of very little oxygen. Many experiments have shown that agents that block the activity of HIFs (HIF inhibitors) can prevent growth of cancer cells under hypoxia and, subsequently, hinder formation of malignant tumors or metastases. Most small chemical HIF inhibitors lack the selectivity required for development of safe anticancer drugs. On the other hand, peptides derived from HIFs themselves can be very selective HIF inhibitors by disrupting specific associations of HIFs with cellular components that are essential for HIF activation. This review discusses the nature of available peptide HIF inhibitors and their prospects as effective pharmaceuticals against cancer. Abstract Reduced oxygen availability (hypoxia) is a characteristic of many disorders including cancer. Central components of the systemic and cellular response to hypoxia are the Hypoxia Inducible Factors (HIFs), a small family of heterodimeric transcription factors that directly or indirectly regulate the expression of hundreds of genes, the products of which mediate adaptive changes in processes that include metabolism, erythropoiesis, and angiogenesis. The overexpression of HIFs has been linked to the pathogenesis and progression of cancer. Moreover, evidence from cellular and animal models have convincingly shown that targeting HIFs represents a valid approach to treat hypoxia-related disorders. However, targeting transcription factors with small molecules is a very demanding task and development of HIF inhibitors with specificity and therapeutic potential has largely remained an unattainable challenge. Another promising approach to inhibit HIFs is to use peptides modelled after HIF subunit domains known to be involved in protein–protein interactions that are critical for HIF function. Introduction of these peptides into cells can inhibit, through competition, the activity of endogenous HIFs in a sequence and, therefore also isoform, specific manner. This review summarizes the involvement of HIFs in cancer and the approaches for targeting them, with a special focus on the development of peptide HIF inhibitors and their prospects as highly-specific pharmacological agents.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Correspondence: (I.M.); (G.S.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence: (I.M.); (G.S.)
| |
Collapse
|
41
|
Ways into Understanding HIF Inhibition. Cancers (Basel) 2021; 13:cancers13010159. [PMID: 33466454 PMCID: PMC7796500 DOI: 10.3390/cancers13010159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer cells adapt to hypoxia, survive, and grow. To that aim, they engage hypoxia-inducible pathways. These pathways are under intense investigation in search of new therapies to interfere with signaling components to kill cancer cells. Nowadays, new technologies enable more in-depth studies of hypoxia-induced signaling including protein–protein interaction and transcriptional processes, as well as the mode of action of different inhibitors. In this review, we give insight into useful techniques for studying the components of the hypoxia-inducible pathway and current inhibitors. Abstract Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.
Collapse
|
42
|
Albanese A, Daly LA, Mennerich D, Kietzmann T, Sée V. The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int J Mol Sci 2020; 22:E268. [PMID: 33383924 PMCID: PMC7796330 DOI: 10.3390/ijms22010268] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The hypoxia signalling pathway enables adaptation of cells to decreased oxygen availability. When oxygen becomes limiting, the central transcription factors of the pathway, hypoxia-inducible factors (HIFs), are stabilised and activated to induce the expression of hypoxia-regulated genes, thereby maintaining cellular homeostasis. Whilst hydroxylation has been thoroughly described as the major and canonical modification of the HIF-α subunits, regulating both HIF stability and activity, a range of other post-translational modifications decorating the entire protein play also a crucial role in altering HIF localisation, stability, and activity. These modifications, their conservation throughout evolution, and their effects on HIF-dependent signalling are discussed in this review.
Collapse
Affiliation(s)
- Adam Albanese
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| | - Leonard A. Daly
- Department of Biochemistry and System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland; (D.M.); (T.K.)
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland; (D.M.); (T.K.)
| | - Violaine Sée
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| |
Collapse
|
43
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
44
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2α Protein Levels via a VDR-Independent Mechanism. Cells 2020; 9:E2440. [PMID: 33182300 PMCID: PMC7695316 DOI: 10.3390/cells9112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Eleni Kechagia
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | | | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| |
Collapse
|
46
|
Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci 2020; 21:ijms21218131. [PMID: 33143240 PMCID: PMC7662373 DOI: 10.3390/ijms21218131] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Collapse
|