1
|
Fenton NM, Sharpe LJ, Fitzsimmons DM, Capell-Hattam IM, Brown AJ. Comprehensive survey of disease-causing missense mutations of the cholesterol synthesis enzyme NSDHL: Low temperature and a chemical chaperone rescue low protein expression of select mutants. J Steroid Biochem Mol Biol 2025; 251:106758. [PMID: 40222685 DOI: 10.1016/j.jsbmb.2025.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cholesterol is essential to human life. Perturbations to any of the 22 cholesterol synthesis enzymes can lead to devastating developmental diseases. Each enzyme is exquisitely regulated both transcriptionally and post-translationally, playing a critical role in providing cholesterol to cells. We examined 13 missense mutations and one deletion mutation in the cholesterol synthesis enzyme NSDHL (NAD(P) Dependent Steroid Dehydrogenase-Like), known to cause the X-linked developmental disorders CHILD (congenital hemidysplasia with ichthyosiform erythroderma and limb defects) syndrome and CK syndrome. Little is known about the effect of these missense mutations on the stability and function of NSDHL. Here we show that protein expression levels were low for all mutants, but some could be rescued by a lower temperature (30°C vs. 37°C) and/or the chemical chaperone glycerol. Additionally, heat shock proteins 70 and 90 are needed for optimal NSDHL protein expression suggesting that disease mutations in NSDHL may interfere with this interaction, perhaps during translation resulting in lower protein synthesis. Our findings that these disease-causing mutations reduce NSDHL protein expression, but some respond to lower temperature and/or the chemical chaperone glycerol, can help inform future treatments for CHILD and CK syndrome.
Collapse
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Dylan M Fitzsimmons
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Yoon SH, Lee S, Kim HS, Song J, Baek M, Ryu S, Lee HB, Moon HG, Noh DY, Jon S, Han W. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-β/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer 2024; 24:1370. [PMID: 39516821 PMCID: PMC11549796 DOI: 10.1186/s12885-024-13143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND NAD(P)-dependent steroid dehydrogenase-like protein (NSDHL), which is involved in breast tumor growth and metastasis, has been implicated in the maintenance of cancer stem cells. However, its role in regulating breast cancer stem-like cells (BCSCs) remains unclear. We have previously reported the clinical significance of NSDHL in patients with estrogen receptor-positive (ER +) breast cancer. This study aimed to elucidate the molecular mechanisms by which NSDHL regulates the capacity of BCSCs in the ER + human breast cancer cell line, MCF-7. METHODS NSDHL knockdown suppressed tumor spheroid formation in MCF-7 human breast cancer cells grown on ultralow-attachment plates. RNA sequencing revealed that NSDHL knockdown induced widespread transcriptional changes in the MCF-7 spheroids. TGF-β signaling pathway was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (fold change ≥ 2, P ≤ 0.05) identified in NSDHL-knockdown MCF-7 spheroids compared with the control. In orthotopic tumor models injected with NSDHL-knockdown MCF-7 spheroids, tumor initiation and growth were strongly suppressed compared with those in the control. RESULTS BCSC populations with CD44+/CD24- and CD49f+/EpCAM + phenotypes and high ALDH activity were decreased in NSDHL-knockdown MCF-7 spheroids and xenograft tumors relative to controls, along with decreased secretion of TGF-β1 and 3, phosphorylation of Smad2/3, and expression of SOX2. In RNA-sequencing data from The (TCGA) database, a positive correlation between the expression of NSDHL and SOX2 was found in luminal-type breast cancer specimens (n = 998). Our findings revealed that NSDHL plays an important role in maintaining the BCSC population and tumor-initiating capacity of ER-positive MCF-7 spheroids, suggesting that NSDHL is an attractive therapeutic target for eliminating BCSCs, thus preventing breast cancer initiation and progression. CONCLUSIONS Our findings suggest that NSDHL regulates the BCSC/tumor-initiating cell population in MCF-7 spheroids and xenograft tumors.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Junhyuk Song
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Seungyeon Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
4
|
Zhu H, Zhang Y, Li W, Huang N. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug Discovery in the Past Fifteen Years. Int J Mol Sci 2022; 23:15961. [PMID: 36555602 PMCID: PMC9781938 DOI: 10.3390/ijms232415961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Structure-based virtual screening (SBVS), also known as molecular docking, has been increasingly applied to discover small-molecule ligands based on the protein structures in the early stage of drug discovery. In this review, we comprehensively surveyed the prospective applications of molecular docking judged by solid experimental validations in the literature over the past fifteen years. Herein, we systematically analyzed the novelty of the targets and the docking hits, practical protocols of docking screening, and the following experimental validations. Among the 419 case studies we reviewed, most virtual screenings were carried out on widely studied targets, and only 22% were on less-explored new targets. Regarding docking software, GLIDE is the most popular one used in molecular docking, while the DOCK 3 series showed a strong capacity for large-scale virtual screening. Besides, the majority of identified hits are promising in structural novelty and one-quarter of the hits showed better potency than 1 μM, indicating that the primary advantage of SBVS is to discover new chemotypes rather than highly potent compounds. Furthermore, in most studies, only in vitro bioassays were carried out to validate the docking hits, which might limit the further characterization and development of the identified active compounds. Finally, several successful stories of SBVS with extensive experimental validations have been highlighted, which provide unique insights into future SBVS drug discovery campaigns.
Collapse
Affiliation(s)
- Hui Zhu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yulin Zhang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wei Li
- RPXDs (Suzhou) Co., Ltd., Suzhou 215028, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
5
|
Structural enzymology of cholesterol biosynthesis and storage. Curr Opin Struct Biol 2022; 74:102369. [DOI: 10.1016/j.sbi.2022.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
|
6
|
Rana R, Rathi V, Chauhan K, Jain K, Chhabra SS, Acharya R, Kalra SK, Gupta A, Jain S, Ganguly NK, Yadav DK. Exploring the role of epidermal growth factor receptor variant III in meningeal tumors. PLoS One 2021; 16:e0255133. [PMID: 34582442 PMCID: PMC8478197 DOI: 10.1371/journal.pone.0255133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Meningioma is the second most common type of intracranial brain tumor. Immunohistochemical techniques have shown prodigious results in the role of epidermal growth factor receptor variant III (EGFR vIII) in glioma and other cancers. However, the role of EGFR vIII in meningioma is still in question. This study attempt the confer searches for the position attained by EGFR vIII in progression and expression of meningioma. Immunohistochemistry technique showed that EGFR vIII is highly expressed in benign tumors as compared to the atypical meningioma with a highly significant p-value (p<0.05). Further analysis by flow cytometry results supported these findings thus presented high intensity of EGFR vIII in low grades of meningioma. The study revealed that the significant Ki 67 values, to predictor marker for survival and prognosis of the patients. Higher expression of EGFR vIII in low grades meningiomas as compared to high-grade tumors indicate towards its oncogenic properties. To our knowledge, limited studies reported in literature expressing the EGFR vIII in meningioma tumors. Hence, Opinions regarding the role that EGFR vIII in tumorigenesis and tumor progression are clearly conflicting and, therefore, it is crucial not only to find out its mechanism of action, but also to definitely identify its role in meningioma.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Vaishnavi Rathi
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Kirti Chauhan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Kriti Jain
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Rajesh Acharya
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Samir Kumar Kalra
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Anshul Gupta
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunila Jain
- Department of Histopathology, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
8
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
9
|
Chen M, Zhao Y, Yang X, Zhao Y, Liu Q, Liu Y, Hou Y, Sun H, Jin W. NSDHL promotes triple-negative breast cancer metastasis through the TGFβ signaling pathway and cholesterol biosynthesis. Breast Cancer Res Treat 2021; 187:349-362. [PMID: 33864166 DOI: 10.1007/s10549-021-06213-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Metastasis is the main cause of breast cancer mortality. Recent studies have proved that lipid metabolic reprogramming plays critical roles in breast cancer carcinogenesis and metastasis. We aim to identify critical lipid metabolism genes in breast cancer metastasis. METHODS We designed and cloned a CRISPR pooled library containing lipid metabolic gene guide RNAs and performed a genetic screen in vivo. Transwell assay and animal experiments were used to evaluate cell metastatic ability in vitro or in vivo, respectively. We performed immunohistochemistry with breast cancer tissue microarray to study the clinical significance of NSDHL. FINDINGS We identified a cholesterol metabolic enzyme, NSDHL, as a potential metastatic driver in triple-negative breast cancer. NSDHL was highly expressed in breast cancer tissues and predicted a poor prognosis. NSDHL knockdown significantly suppressed cell proliferation and migration. Mechanistically, NSDHL activated the TGFβ signaling pathway by inhibiting the endosomal degradation of TGFβR2. In addition, blocking the upstream metabolism of NSDHL with ketoconazole rescued cancer metastasis and TGFβR2 degradation. However, the inactivation of NSDHL (Y151X) did not rescue the migration ability and the TGFβR2 protein expression. CONCLUSION Taken together, our findings established that NSDHL serves as a metastatic driver, and its function depends on its enzyme activity in cholesterol biosynthesis and is mediated by the NSDHL-TGFβR2 signal pathway. Our study indicated that NSDHL and steroid biosynthesis may serve as new drug targets for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xueli Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China
| | - Yuanyuan Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifeng Hou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Huang HY, Wang Y, Wang WD, Wei XL, Gale RP, Li JY, Zhang QY, Shu LL, Li L, Li J, Lin HX, Liang Y. A prognostic survival model based on metabolism-related gene expression in plasma cell myeloma. Leukemia 2021; 35:3212-3222. [PMID: 33686197 DOI: 10.1038/s41375-021-01206-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 11/09/2022]
Abstract
Accurate survival prediction of persons with plasma cell myeloma (PCM) is challenging. We interrogated clinical and laboratory co-variates and RNA matrices of 1040 subjects with PCM from public datasets in the Gene Expression Omnibus database in training (N = 1) and validation (N = 2) datasets. Genes regulating plasma cell metabolism correlated with survival were identified and seven used to build a metabolic risk score using Lasso Cox regression analyses. The score had robust predictive performance with 5-year survival area under the curve (AUCs): 0.71 (95% confidence interval, 0.65, 0.76), 0.88 (0.67, 1.00) and 0.64 (0.57, 0.70). Subjects in the high-risk training cohort (score > median) had worse 5-year survival compared with those in the low-risk cohort (62% [55, 68%] vs. 85% [80, 90%]; p < 0.001). This was also so for the validation cohorts. A nomogram combining metabolic risk score with Revised International Staging System (R-ISS) score increased survival prediction from an AUC = 0.63 [0.58, 0.69] to an AUC = 0.73 [0.66, 0.78]; p = 0.015. Modelling predictions were confirmed in in vitro tests with PCM cell lines. Our metabolic risk score increases survival prediction accuracy in PCM.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wei-da Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Li Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Robert Peter Gale
- Department of Immunology and Inflammation, Haematology Research Centre, Imperial College London, London, UK
| | - Jin-Yuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian-Yi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ling-Ling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Liang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China. .,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China. .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
11
|
Xiao Y, Xie J, Liu L, Huang W, Han Q, Qin J, Liu S, Jiang Z. NAD(P)-dependent steroid dehydrogenase-like protein and neutral cholesterol ester hydrolase 1 serve as novel markers for early detection of gastric cancer identified using quantitative proteomics. J Clin Lab Anal 2020; 35:e23652. [PMID: 33219617 PMCID: PMC7891516 DOI: 10.1002/jcla.23652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third most common cause of cancer deaths worldwide. In the present study, we aimed to identify novel GC biomarkers by integrating isobaric tags of relative and absolute quantitation (iTRAQ) for aberrantly expressed proteins in GC patients. METHODS Using stable isotope tags, we labeled an initial discovery group comprising four paired gastric cancer and adjacent gastric tissue samples, and subjected them to LC-ESI-MS/MS. We used a validation set comprising 129 paired gastric cancer and adjacent gastric tissues from patients and benign healthy controls to validate the candidate targets. RESULTS We identified two proteins, NAD(P)-dependent steroid dehydrogenase-like (NSDHL) and neutral cholesterol ester hydrolase 1 (NCEH1), that were significantly overexpressed in GC tissues. The sensitivity and specificity of NSDHL were 80.6% and 74.4%, respectively, in GC compared with a sensitivity of 25.6% in adjacent tissues and 24% in benign healthy controls. The area under the ROC curve (AUC) for NSDHL was 0.810 for GC detection. Overexpression of NSDHL in GC was significantly correlated with local tumor invasion. The sensitivity and specificity of NCEH1 were 77.5% and 73.6%, respectively, in GC compared with a sensitivity of 26.4% in adjacent tissues and 20% in benign controls. The AUC for NSDHL was 0.792. Overexpression of NCEH1 was significantly associated with tumor histological classification and local invasion. Moreover, a combined analysis of NSDHL and NCEH1 achieved a sensitivity and specificity of 85.7% and 83%, respectively, and the AUC was 0.872. The combined analysis of NSDHL and NCEH1 was significantly correlated with histological grade and TNM Ⅱ-Ⅳ staging. CONCLUSIONS iTRAQ-labeled quantitative proteomics represents a powerful method to identify novel cancer biomarkers. The present study identified NSDHL and NCEH1 as useful biomarkers for screening, diagnosis, and prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiebin Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lan Liu
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Wentao Huang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiang Han
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiayi Qin
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Shunying Liu
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhen Jiang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
12
|
Hettiarachchi D, Panchal H, Lai PS, Dissanayake VHW. Novel variant in NSDHL gene associated with CHILD syndrome and syndactyly- a case report. BMC MEDICAL GENETICS 2020; 21:164. [PMID: 32819291 PMCID: PMC7439548 DOI: 10.1186/s12881-020-01094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
Background Congenital hemidysplasia with ichthyosiform erythroderma and limb defects also known as CHILD syndrome is an X-linked dominant, male lethal genodermatosis with a prevalence of 1 in 100,000 live births. Mutations in NSDHL gene located at Xq28 potentially impair the function of NAD(P) H steroid dehydrogenase-like protein and is responsible for its pathogenesis. Case presentation The proband was a 9-month-old twin (T2) girl with a healthy twin sister (T1) of Sri Lankan origin born to non-consanguineous parents. She presented with right sided continuous icthyosiform erythroderma and ipsilateral limb defects and congenital hemidysplasia since birth. Notably the child had ipsilateral hand hypoplasia and syndactyly. There were other visceral abnormalities. We performed whole exome sequencing and found a novel heterozygous variant (NSDHL, c.713C > A, p.Thr238Asn). Conclusion We report a novel missense variant in the NSDHL gene that resides in a highly-conserved region. This variant affects the NAD(P) H steroid dehydrogenase-like protein function via reduction in the number of active sites resulting in the CHILD syndrome phenotype and syndactyly.
Collapse
Affiliation(s)
- D Hettiarachchi
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, 08, Sri Lanka.
| | - Hetalkumar Panchal
- Department of Bioscience, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - P S Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - V H W Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 25, Kynsey Road, Colombo, 08, Sri Lanka
| |
Collapse
|