1
|
Chen F, Xiang M, Wang Z, Yang F, Zhou J, Deng Z, Wang S, Li P, Tew J, Zhang W, Li H, Teng Y, Zhu X, Cai Y. Neuronal CDK5RAP3 deficiency leads to encephalo-dysplasia via upregulation of N-glycosylases and glycogen deposition. Cell Death Discov 2025; 11:146. [PMID: 40188151 PMCID: PMC11972371 DOI: 10.1038/s41420-025-02414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
CDK5RAP3 is a binding protein of CDK5 activating proteins and also one of the key co-factors of the E3 enzyme in the UFMylation system. Several reports have implicated the involvement of CDK5 and other components of the UFMylation system in neuronal development and multiple psychiatric disorders. However, the precise role of CDK5RAP3 in neurons remains elusive. In this study, we generated CDK5RAP3 neuron-specific knockout mice (CDK5RAPF/F: Nestin-Cre). CDK5RAP3 conditional knockout (CDK5RAP3 CKO) mice exhibited severe encephalo-dysplasia and a slower developmental trajectory compared to wild-type (WT) mice and succumbed to postnatal demise by day 14. Transcriptome sequencing unveiled that CDK5RAP3 deficiency affects synapse formation, transmembrane trafficking and physiological programs in the brain. Morphological analysis demonstrated that neuronal CDK5RAP3 deficiency leads to increased SLC17A6 and N-glycosylase (RPN1 and ALG2) protein expression, and while causing endoplasmic reticulum (ER) stress. In vitro experiments utilizing CDK5RAP3F/F: ROSA26-ERT2Cre MEFs were conducted to elucidate similar mechanism following CDK5RAP3 deletion. Both in vivo and in vitro, CDK5RAP3 deficiency significantly increased the expression of N-glycosylases (RPN1 and ALG2), as well as the total amount of glycoproteins. CDK5RAP3 may potentially maintain a balance by enhancing the degradation of RPN1 and ALG2 through proteolytic degradation pathways and autophagy. This study underscores the indispensable role of CDK5RAP3 in neuronal development and sheds new light on drug discovery endeavors targeting early brain abnormalities.
Collapse
Affiliation(s)
- Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghui Xiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Yang
- Department of Human Anatomy, Bengbu Medical College, Bengbu, 233030, China
| | - Junzhi Zhou
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Zihan Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Susu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieqi Tew
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, 430071, China.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Chang J, Zhang Y, Xing B, Ye Z, Yang J, Zhang H. Semirational Design of Methanol-Resistant Lipase Mutants: A Pathway to Efficient Biodiesel Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7877-7887. [PMID: 40080726 DOI: 10.1021/acs.jafc.4c10663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The development of a methanol-resistant thermostable lipase is of significant importance in biodiesel synthesis. In this study, a semirational design approach was employed to combine targeted mutagenesis and the introduction of N-glycosylation modifications to enhance the activity and stability of Thermomyces lanuginosus lipase. The activity of mutant A113G was 46% higher than that of the wild type. The double mutant A113G/L74N exhibited 33% residual activity after 24 h of incubation in 50% (v/v) methanol at 50 °C. The favorable temperature stability and methanol tolerance permitted a one-step synthesis of biodiesel; A113G/L74N achieved 91.2% and 80.6% biodiesel yield with soybean oil and waste frying oil, respectively. Molecular dynamics simulations demonstrated that hydrogen bonding between branched glycan and the main chain protein plays a pivotal role in stabilizing the protein structure, with the potential to extend over the surface of the main chain protein. Consequently, this study offers a promising and environmentally friendly strategy for biodiesel production.
Collapse
Affiliation(s)
- Junzhang Chang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Yuxin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Ben Xing
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Zifan Ye
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Zhou RZ, Gaunitz S, Kirsebom BE, Lundin B, Hellström M, Jejcic A, Sköldunger A, Wimo A, Winblad B, Fladby T, Schedin-Weiss S, Tjernberg LO. Blood N-glycomics reveals individuals at risk for cognitive decline and Alzheimer's disease. EBioMedicine 2025; 113:105598. [PMID: 39983328 PMCID: PMC11893330 DOI: 10.1016/j.ebiom.2025.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Blood biomarkers with prognostic accuracy for Alzheimer's disease (AD) are crucial for selecting at-risk individuals for interventions. Altered protein N-glycosylation has been implicated in several pathogenic pathways in AD and could be an early AD biomarker. METHODS We developed a mass spectrometry-based method to simultaneously quantify 62 blood N-glycan structures in individuals with biological or clinical AD and matched controls. We analysed N-glycan levels in a Swedish discovery cohort (n = 40) and validated our results in a Norwegian cohort (n = 60). Individuals were grouped according to N-glycan levels using unsupervised hierarchical clustering. Difference in disease progression between groups were modelled using linear mixed-effects models. FINDINGS A subgroup of individuals exhibited low blood N-glycosylation (32.4% of Swedish cohort, 37.9% of Norwegian cohort). In the Swedish cohort, low N-glycosylation was associated with AD and cognitive decline. In the Norwegian cohort, low blood N-glycosylation showed no correlation with amyloid/tau, but importantly, strongly predicted future cognitive decline. In total, fourteen N-glycan structures were significantly less abundant in the low N-glycosylation group compared to the rest of the individuals in both cohorts. INTERPRETATION Reduced blood N-glycan levels predict cognitive decline independent of amyloid or tau status. Blood N-glycome profiling could be used to identify individuals at risk for AD dementia. FUNDING Stiftelsen för Gamla Tjänarinnor, Stockholm County Council-ALF, JPND, PMI-AD, Medical Diagnostics Karolinska, Helse-Nord, Gun och Bertil Stohnes stiftelse, Demensförbundet, Stiftelsen Dementia, Margaretha af Ugglas' foundation, Vinnova, the private initiative "Innovative ways to fight Alzheimer's disease-Leif Lundblad Family and others".
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Stefan Gaunitz
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway; Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Britt Lundin
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Hellström
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alenka Jejcic
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Sköldunger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Wimo
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden.
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Powell WC, Jing R, Herlory M, Holland P, Poliyenko D, Ebmeier CC, Stowell MHB, Walczak MA. Chemical Synthesis Reveals Pathogenic Role of N-Glycosylation in Microtubule-Associated Protein Tau. J Am Chem Soc 2025; 147:6995-7007. [PMID: 39959999 PMCID: PMC11892074 DOI: 10.1021/jacs.4c17873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of tau protein aggregates. In this study, we investigated the effects of N-glycosylation on tau, focusing on its impact on aggregation and phase behavior. We chemically prepared homogeneous glycoproteins with high-mannose glycans or a single N-acetylglucosamine at the confirmed glycosylation sites in K18 and 2N4R tau. Our findings reveal that N-glycosylation significantly alters biophysical properties and potentially cellular functions of tau. Small glycans promote tau aggregation and liquid-liquid phase separation (LLPS), while larger glycans reduce these effects. High mannose glycans at N410 enhance phosphorylation by GSK3β, suggesting a pathological role in AD. Functional assays demonstrate that N-glycosylation does not impact microtubule polymerization dynamics but modulates aggregation kinetics and morphology. This research underscores the importance of glycosylation in tau pathology and opens new avenues for therapeutic interventions targeting glycan processing.
Collapse
Affiliation(s)
- Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Christopher C Ebmeier
- Proteomics and Mass Spectrometry Core Facility, Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, United States
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Powell W, Nahum M, Pankratz K, Herlory M, Greenwood J, Poliyenko D, Holland P, Jing R, Biggerstaff L, Stowell MHB, Walczak MA. Post-Translational Modifications Control Phase Transitions of Tau. ACS CENTRAL SCIENCE 2024; 10:2145-2161. [PMID: 39634209 PMCID: PMC11613296 DOI: 10.1021/acscentsci.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
The self-assembly of Tau into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains. Using various electron and optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in cofactor-free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the rigid core, are pivotal in the nucleation of PHFs. Moreover, with heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs appeared to decelerate aggregation. The impact of acetylation on RNA-induced LLPS was notably site-dependent, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, highlighting the role of PTMs located outside the ordered filament core in driving the self-assembly.
Collapse
Affiliation(s)
- Wyatt
C. Powell
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - McKinley Nahum
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Karl Pankratz
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - James Greenwood
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department
of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Luke Biggerstaff
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Michael H. B. Stowell
- Department
of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department
of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Zhou RZ, Duell F, Axenhus M, Jönsson L, Winblad B, Tjernberg LO, Schedin-Weiss S. A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients. Brain Commun 2024; 6:fcae371. [PMID: 39494362 PMCID: PMC11528473 DOI: 10.1093/braincomms/fcae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Early detection of Alzheimer's disease is vital for timely treatment. Existing biomarkers for Alzheimer's disease reflect amyloid- and tau-related pathology, but it is unknown whether the disease can be detected before cerebral amyloidosis is observed. N-glycosylation has been suggested as an upstream regulator of both amyloid and tau pathology, and levels of the N-glycan structure bisecting N-acetylglucosamine (GlcNAc) correlate with tau in blood and CSF already at pre-clinical stages of the disease. Therefore, we aimed to evaluate whether bisecting GlcNAc could predict future cognitive decline in patients from a memory clinic cohort, stratified by amyloid/tau status. We included 251 patients (mean age: 65.6 ± 10.6 years, 60.6% female) in the GEDOC cohort, from the Memory Clinic at Karolinska University Hospital, Stockholm, Sweden. Patients were classified as amyloid/tau positive or negative based on CSF biomarkers. Cognitive decline, measured by longitudinal Mini-Mental State Examination scores, was followed for an average of 10.7 ± 4.1 years and modelled using non-linear mixed effects models. Additionally, bisecting GlcNAc levels were measured in hippocampus and cortex with lectin-based immunohistochemistry in 10 Alzheimer's disease and control brains. We found that CSF bisecting GlcNAc levels were elevated in tau-positive individuals compared with tau-negative individuals, but not in amyloid-positive individuals compared with amyloid-negative individuals. In the whole sample, high levels of CSF bisecting GlcNAc predicted earlier cognitive decline. Strikingly, amyloid/tau stratification showed that high CSF bisecting GlcNAc levels predicted earlier cognitive decline in amyloid-negative patients (β = 2.53 ± 0.85 years, P = 0.003) and tau-negative patients (β = 2.43 ± 1.01 years, P = 0.017), but not in amyloid- or tau-positive patients. Finally, histochemical analysis of bisecting GlcNAc showed increased levels in neurons in hippocampus and cortex of Alzheimer's disease compared with control brain (fold change = 1.44-1.49, P < 0.001). In conclusion, high CSF levels of bisecting GlcNAc reflected neuronal pathology and predicted cognitive decline in amyloid- and tau-negative individuals, suggesting that abnormal glycosylation precedes cerebral amyloidosis and tau hyper-phosphorylation in Alzheimer's disease. Bisecting GlcNAc is a promising novel early biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Frida Duell
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Michael Axenhus
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Linus Jönsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge 141 57, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| |
Collapse
|
8
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Li X, Ba Z, Huang J, Chen J, Jiang J, Huang N, Luo Y. Comprehensive review on Alzheimer's disease: From the posttranslational modifications of Tau to corresponding treatments. IBRAIN 2024; 10:427-438. [PMID: 39691421 PMCID: PMC11649392 DOI: 10.1002/ibra.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, which is mainly characterized by the abnormal deposition of β-amyloid peptide (Aβ) and Tau. Since Tau aggregation is more closely associated with synaptic loss, neurodegeneration, and cognitive decline than Aβ, the correlation between Tau and cognitive function in AD has gradually gained attention. The posttranslational modifications (PTMs) of Tau are key factors contributing to its pathological changes, which include phosphorylation, acetylation, ubiquitination, glycosylation, glycation, small ubiquitin-like modifier mediated modification (SUMOylation), methylation, succinylation, etc. These modifications change the structure of Tau, regulating Tau microtubule interactions, localization, degradation, and aggregation, thereby affecting its propensity to aggregate and leading to neuronal injury and cognitive impairments. Among numerous PTMs, drug development based on phosphorylation, acetylation, ubiquitination, and SUMOylation primarily involves enzymatic reactions, affecting either the phosphorylation or degradation processes of Tau. Meanwhile, methylation, glycosylation, and succinylation are associated with maintaining the structural stability of Tau. Current research is more extensive on phosphorylation, acetylation, ubiquitination, and methylation, with related drugs already developed, particularly focusing on phosphorylation and ubiquitination. In contrast, there is less research on SUMOylation, glycosylation, and succinylation, requiring further basic research, with the potential to become novel drug targets. In conclusion, this review summarized the latest research on PTMs of Tau and related drugs, highlighting the potential of targeting specific PTMs for developing novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Xin Li
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Zhisheng Ba
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Jianhua Chen
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Jinyu Jiang
- Department of medicineGuizhou Aerospace HospitalZunyiChina
| | - Nanqu Huang
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Yong Luo
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| |
Collapse
|
10
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Ye J, Wan H, Chen S, Liu GP. Targeting tau in Alzheimer's disease: from mechanisms to clinical therapy. Neural Regen Res 2024; 19:1489-1498. [PMID: 38051891 PMCID: PMC10883484 DOI: 10.4103/1673-5374.385847] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-β plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-β-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-β in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jinwang Ye
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Huali Wan
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sihua Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Gong-Ping Liu
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
13
|
Powell WC, Nahum M, Pankratz K, Herlory M, Greenwood J, Poliyenko D, Holland P, Jing R, Biggerstaff L, Stowell MHB, Walczak MA. Post-Translational Modifications Control Phase Transitions of Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583040. [PMID: 38559065 PMCID: PMC10979912 DOI: 10.1101/2024.03.08.583040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The self-assembly of Tau(297-391) into filaments, which mirror the structures observed in Alzheimer's disease (AD) brains, raises questions about the role of AD-specific post-translational modifications (PTMs) in the formation of paired helical filaments (PHFs). To investigate this, we developed a synthetic approach to produce Tau(291-391) featuring N-acetyllysine, phosphoserine, phosphotyrosine, and N-glycosylation at positions commonly modified in post-mortem AD brains, thus facilitating the study of their roles in Tau pathology. Using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and a range of optical microscopy techniques, we discovered that these modifications generally hinder the in vitro assembly of Tau into PHFs. Interestingly, while acetylation's effect on Tau assembly displayed variability, either promoting or inhibiting phase transitions in the context of cofactor free aggregation, heparin-induced aggregation, and RNA-mediated liquid-liquid phase separation (LLPS), phosphorylation uniformly mitigated these processes. Our observations suggest that PTMs, particularly those situated outside the fibril's rigid core are pivotal in the nucleation of PHFs. Moreover, in scenarios involving heparin-induced aggregation leading to the formation of heterogeneous aggregates, most AD-specific PTMs, except for K311, appeared to decelerate the aggregation process. The impact of acetylation on RNA-induced LLPS was notably site-dependent, exhibiting both facilitative and inhibitory effects, whereas phosphorylation consistently reduced LLPS across all proteoforms examined. These insights underscore the complex interplay between site-specific PTMs and environmental factors in modulating Tau aggregation kinetics, enhancing our understanding of the molecular underpinnings of Tau pathology in AD and highlighting the critical role of PTMs located outside the ordered filament core in driving the self-assembly of Tau into PHF structures.
Collapse
Affiliation(s)
- Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - McKinley Nahum
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Karl Pankratz
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - James Greenwood
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Luke Biggerstaff
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael H. B. Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Louros N, Wilkinson M, Tsaka G, Ramakers M, Morelli C, Garcia T, Gallardo R, D'Haeyer S, Goossens V, Audenaert D, Thal DR, Mackenzie IR, Rademakers R, Ranson NA, Radford SE, Rousseau F, Schymkowitz J. Local structural preferences in shaping tau amyloid polymorphism. Nat Commun 2024; 15:1028. [PMID: 38310108 PMCID: PMC10838331 DOI: 10.1038/s41467-024-45429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4's pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Grigoria Tsaka
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Rodrigo Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium
- Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
Dourlen P. Identification of Tau Toxicity Modifiers in the Drosophila Eye. Methods Mol Biol 2024; 2754:483-498. [PMID: 38512684 DOI: 10.1007/978-1-0716-3629-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Drosophila is a powerful model to study human diseases thanks to its genetic tools and ease of screening. Human genes can be expressed in targeted organs and their toxicity assessed on easily scorable external phenotypes that can be used as readouts to perform genetic screens of toxicity modifiers. In this chapter, I describe how to express human Tau protein in the Drosophila eye, assess protein expression by Western blot, assess Tau toxicity by quantifying the size of the Tau-induced rough eye, and perform a genetic screen of modifiers of Tau toxicity in the Drosophila eye.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| |
Collapse
|
16
|
Wang J, Fu J, Zhao Y, Liu Q, Yan X, Su J. Iron and Targeted Iron Therapy in Alzheimer's Disease. Int J Mol Sci 2023; 24:16353. [PMID: 38003544 PMCID: PMC10671546 DOI: 10.3390/ijms242216353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. β-amyloid plaque (Aβ) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (J.F.); (Y.Z.); (Q.L.); (X.Y.)
| |
Collapse
|
17
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
18
|
Zhao J, Lang M. New insight into protein glycosylation in the development of Alzheimer's disease. Cell Death Discov 2023; 9:314. [PMID: 37626031 PMCID: PMC10457297 DOI: 10.1038/s41420-023-01617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that seriously endangers the physical and mental health of patients, however, there are still no effective drugs or methods to cure this disease up to now. Protein glycosylation is the most common modifications of the translated proteins in eukaryotic cells. Recently many researches disclosed that aberrant glycosylation happens in some important AD-related proteins, such as APP, Tau, Reelin and CRMP-2, etc, suggesting a close link between abnormal protein glycosylation and AD. Because of its complexity and diversity, glycosylation is thus considered a completely new entry point for understanding the precise cause of AD. This review comprehensively summarized the currently discovered changes in protein glycosylation patterns in AD, and especially introduced the latest progress on the mechanism of protein glycosylation affecting the progression of AD and the potential application of protein glycosylation in AD detection and treatment, thereby providing a wide range of opportunities for uncovering the pathogenesis of AD and promoting the translation of glycosylation research into future clinical applications.
Collapse
Affiliation(s)
- Jingwei Zhao
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Life Science, Agricultural University of Hebei, Baoding, 071000, China.
| |
Collapse
|
19
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Wang D, Feng Q, Luo Y, Wang W, Yan Y, Ding CF. Self-assembly of hydrazide-linked porous organic polymers rich in titanium for efficient enrichment of glycopeptides and phosphopeptides from human serum. Analyst 2023. [PMID: 37368458 DOI: 10.1039/d3an00709j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In this work, titanium-rich hydrazide-linked porous organic polymers (hydrazide-POPs-Ti4+) were synthesized using hydrazine, 2,3-dihydroxyterephthalaldehyde (DHTA) and trimethyl 1,3,5-benzenetricarboxylate (TP) as the ligands. Hydrazide-POPs-Ti4+ combined with HILIC and IMAC can be used for simultaneous enrichment of glycopeptides and phosphopeptides. The detection limit of this protocol is 0.1 fmol μL-1 for glycopeptides and 0.005 fmol μL-1 for phosphopeptides, and the selectivities are 1 : 1000 and 1 : 2000 for glycopeptides and phosphopeptides, respectively. For practical bio-sample analysis, 201 glycopeptides associated with 129 glycoproteins and 26 phosphopeptides associated with 21 phosphoproteins were selectively captured from healthy human serum, and 186 glycopeptides associated with 117 glycoproteins and 60 phosphopeptides associated with 50 phosphoproteins were enriched in the serum of breast cancer patients. Gene Ontology analysis indicated that the identified glycoproteins and phosphoproteins were linked to breast cancer, including the binding of complement component C1q and low-density lipoprotein particles, protein oxidation and complement activation, suggesting that these connected pathways are probably engaged in the disease pathology of breast cancer.
Collapse
Affiliation(s)
- Danni Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Weimin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
21
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
22
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
23
|
Mathew AT, Baidya ATK, Das B, Devi B, Kumar R. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: A microsecond long molecular dynamics study. Proteins 2023; 91:147-160. [PMID: 36029032 DOI: 10.1002/prot.26417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
Various posttranslational modifications like hyperphosphorylation, O-GlcNAcylation, and acetylation have been attributed to induce the abnormal folding in tau protein. Recent in vitro studies revealed the possible involvement of N-glycosylation of tau protein in the abnormal folding and tau aggregation. Hence, in this study, we performed a microsecond long all atom molecular dynamics simulation to gain insights into the effects of N-glycosylation on Asn-359 residue which forms part of the microtubule binding region. Trajectory analysis of the stimulations coupled with essential dynamics and free energy landscape analysis suggested that tau, in its N-glycosylated form tends to exist in a largely folded conformation having high beta sheet propensity as compared to unmodified tau which exists in a large extended form with very less beta sheet propensity. Residue interaction network analysis of the lowest energy conformations further revealed that Phe378 and Lys353 are the functionally important residues in the peptide which helped in initiating the folding process and Phe378, Lys347, and Lys370 helped to maintain the stability of the protein in the folded state.
Collapse
Affiliation(s)
- Alen T Mathew
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
24
|
Zhang X, Wei Q, Meng X, Zhao L, Liu Z, Huang Y. Boronate Avidity Assisted by Dendrimer-like Polyhedral Oligomeric Silsesquioxanes for a Microfluidic Platform for Selective Enrichment of Ubiquitination and Glycosylation. Anal Chem 2023; 95:1241-1250. [PMID: 36563082 DOI: 10.1021/acs.analchem.2c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new strategy of improving boronate avidity with good accessibility of sites was suggested by utilizing a dendrimer-like structure of boron materials based on octavinyl-polyhedral oligomeric silsesquioxanes (Ov-POSS). 3-(Acrylamido)phenylboronic acid (AAPBA) was used as a functional monomer and ethylene glycol dimethacrylate (EDMA) and Ov-POSS as cross-linkers. The resulting Ov-POSS cross-linked boron monolith exhibited 27 times stronger affinity for glycoproteins than the Ov-POSS-free monolith. Importantly, the bonding strength of the poly(AAPBA-co-Ov-POSS-co-EDMA) monolith to the glycoproteins with multiple sugars, horseradish peroxidase (HRP) was 4 orders of magnitude higher than that of the single cis-diol-containing compound. The resulting monolith was used as a part of a microfluidic platform for online processing of the protein extracts from mouse liver, which integrated five functions, including protein grading, denaturation, enzymatic hydrolysis, and enrichment of glycopeptides and ubiquitin-modified peptides. The sample processing time can be reduced by nearly half compared to the offline method. Moreover, 86.7% of glycopeptides and 75% of glycoproteins were newly identified after treatment. All of the results indicated that the synergistic strategy of Ov-POSS cross-linking can significantly improve trace glycosylation's binding capacity and enrichment performance. The microfluidic platform developed may provide a promising technical tool for automated, high-efficiency, high-throughput analysis for post-translational modification proteomics.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Qin Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Meng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lili Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhaosheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yanping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
25
|
Haukedal H, Corsi GI, Gadekar VP, Doncheva NT, Kedia S, de Haan N, Chandrasekaran A, Jensen P, Schiønning P, Vallin S, Marlet FR, Poon A, Pires C, Agha FK, Wandall HH, Cirera S, Simonsen AH, Nielsen TT, Nielsen JE, Hyttel P, Muddashetty R, Aldana BI, Gorodkin J, Nair D, Meyer M, Larsen MR, Freude K. Golgi fragmentation - One of the earliest organelle phenotypes in Alzheimer's disease neurons. Front Neurosci 2023; 17:1120086. [PMID: 36875643 PMCID: PMC9978754 DOI: 10.3389/fnins.2023.1120086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, with no current cure. Consequently, alternative approaches focusing on early pathological events in specific neuronal populations, besides targeting the well-studied amyloid beta (Aβ) accumulations and Tau tangles, are needed. In this study, we have investigated disease phenotypes specific to glutamatergic forebrain neurons and mapped the timeline of their occurrence, by implementing familial and sporadic human induced pluripotent stem cell models as well as the 5xFAD mouse model. We recapitulated characteristic late AD phenotypes, such as increased Aβ secretion and Tau hyperphosphorylation, as well as previously well documented mitochondrial and synaptic deficits. Intriguingly, we identified Golgi fragmentation as one of the earliest AD phenotypes, indicating potential impairments in protein processing and post-translational modifications. Computational analysis of RNA sequencing data revealed differentially expressed genes involved in glycosylation and glycan patterns, whilst total glycan profiling revealed minor glycosylation differences. This indicates general robustness of glycosylation besides the observed fragmented morphology. Importantly, we identified that genetic variants in Sortilin-related receptor 1 (SORL1) associated with AD could aggravate the Golgi fragmentation and subsequent glycosylation changes. In summary, we identified Golgi fragmentation as one of the earliest disease phenotypes in AD neurons in various in vivo and in vitro complementary disease models, which can be exacerbated via additional risk variants in SORL1.
Collapse
Affiliation(s)
- Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia I Corsi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Veerendra P Gadekar
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Nadezhda T Doncheva
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abinaya Chandrasekaran
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pernille Schiønning
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sarah Vallin
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Ravnkilde Marlet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Poon
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carlota Pires
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fawzi Khoder Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Troels Tolstrup Nielsen
- Danish Dementia Research Centre, Department of Neurology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Erik Nielsen
- Danish Dementia Research Centre, Department of Neurology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ravi Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
27
|
Shang D, Chen C, Dong X, Cui Y, Qiao Z, Li X, Liang X. Simultaneous enrichment and sequential separation of glycopeptides and phosphopeptides with poly-histidine functionalized microspheres. Front Bioeng Biotechnol 2022; 10:1011851. [PMID: 36277408 PMCID: PMC9582455 DOI: 10.3389/fbioe.2022.1011851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation and glycosylation coordinately regulate numerous complex biological processes. However, the main methods to simultaneously enrich them are based on the coordination interactions or Lewis acid-base interactions, which suffer from low coverage of target molecules due to strong intermolecular interactions. Here, we constructed a poly-histidine modified silica (SiO2@Poly-His) microspheres-based method for the simultaneous enrichment, sequential elution and analysis of phosphopeptides and glycopeptides. The SiO2@Poly-His microspheres driven by hydrophilic interactions and multiple hydrogen bonding interactions exhibited high selectivity and coverage for simultaneous enrichment of phosphopeptides and glycopeptides from 1,000 molar folds of bovine serum albumin interference. Furthermore, “on-line deglycosylation” strategy allows sequential elution of phosphopeptides and glycopeptides, protecting phosphopeptides from hydrolysis during deglycosylation and improving the coverage of phosphopeptides. The application of our established method to HT29 cell lysates resulted in a total of 1,601 identified glycopeptides and 694 identified phosphopeptides, which were 1.2-fold and 1.5-fold higher than those obtained from the co-elution strategy, respectively. The SiO2@Poly-His based simultaneous enrichment and sequential separation strategy might have great potential in co-analysis of PTMs-proteomics of biological and clinic samples.
Collapse
Affiliation(s)
- Danyi Shang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zichun Qiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| |
Collapse
|
28
|
Pilliod J, Gélinas-Faucher M, Leclerc N. Unconventional secretion of tau by VAMP8 impacts its intra- and extracellular cleavage. Front Cell Dev Biol 2022; 10:912118. [PMID: 36313558 PMCID: PMC9605769 DOI: 10.3389/fcell.2022.912118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer’s disease, Tau, a microtubule-associated protein, becomes hyperphosphorylated, detaches from microtubules, and accumulates in the somato-dendritic compartment where it forms insoluble aggregates. Tau also accumulates in the CSF of patients indicating that it is released by neurons. Consistent with this, several laboratories including ours have shown that Tau is secreted by neurons through unconventional secretory pathways. Recently, we reported that VAMP8, an R-SNARE found on late endosomes, increased Tau secretion and that secreted Tau was cleaved at the C-terminal. In the present study, we examined whether the increase of Tau secretion by VAMP8 affected its intra- and extracellular cleavage. Upon VAMP8 overexpression, an increase of Tau cleaved by caspase-3 in the cell lysate and medium was observed. This was correlated to an increase of active caspase-3 in the cell lysate and medium. Using a Tau mutant not cleavable by caspase-3, we demonstrated that Tau cleavage by caspase-3 was not necessary for its secretion upon VAMP8 overexpression. By adding recombinant Tau to the culture medium, we demonstrated that extracellular Tau cleavage by caspase-3 could occur because of the release of active caspase-3, which was the highest when VAMP8 was overexpressed. When cleavage of Tau by caspase-3 was prevented by using a non-cleavable mutant, secreted Tau was still cleaved at the C-terminal, the asparagine N410 contributing to it. Lastly, we demonstrated that N-terminal of Tau regulated the secretion pattern of a Tau fragment containing the microtubule-binding domain and the C-terminal of Tau upon VAMP8 overexpression. Collectively, the above observations indicate that VAMP8 overexpression affects the intra- and extracellular cleavage pattern of Tau.
Collapse
Affiliation(s)
- Julie Pilliod
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada
| | - Maude Gélinas-Faucher
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Nicole Leclerc,
| |
Collapse
|
29
|
Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022; 414:5461-5472. [PMID: 35137243 PMCID: PMC9246830 DOI: 10.1007/s00216-022-03934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/01/2022]
Abstract
Continual developments in instrumental and analytical techniques have aided in establishing rigorous connections between protein glycosylation and human illness. These illnesses, such as various forms of cancer, are often associated with poor prognoses, prompting the need for more comprehensive characterization of the glycoproteome. While innovative instrumental and computational strategies have largely benefited glycoproteomic analyses, less attention is given to benefits gained through alternative, optimized chromatographic techniques. Porous graphitic carbon (PGC) chromatography has gained considerable interest in glycomics research due to its mobile phase flexibility, increased retention of polar analytes, and improved structural elucidation at higher temperatures. PGC has yet to be systematically compared against or in tandem with standard reversed phase liquid chromatography (RPLC) in high-throughput bottom-up glycoproteomic experiments, leaving the potential benefits unexplored. Performing comparative analysis of single and biphasic separation regimes at a range of column temperatures illustrates complementary advantages for each method. PGC separation is shown to selectively retain shorter, more hydrophilic glycopeptide species, imparting higher average charge, and exhibiting greater microheterogeneity coverage for identified glycosites. Additionally, we demonstrate that liquid-phase separation of glycopeptide isomers may be achieved through both single and biphasic PGC separations, providing a means towards facile, multidimensional glycopeptide characterization. Beyond this, we demonstrate how utilization of multiple separation regimes and column temperatures can aid in profiling the glycoproteome in tumorigenic and aggressive prostate cancer cells. RAW MS proteomic and glycoproteomic datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024196 (10.6019/PXD024196) and PXD024195, respectively.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - William A Ricke
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
- George M. O'Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA.
| |
Collapse
|
30
|
Yi L, Fu M, Shao Y, Tang K, Yan Y, Ding CF. Bifunctional super-hydrophilic mesoporous nanocomposite: a novel nanoprobe for investigation of glycosylation and phosphorylation in Alzheimer's disease. J Chromatogr A 2022; 1676:463236. [PMID: 35709605 DOI: 10.1016/j.chroma.2022.463236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Abnormal glycosylation and phosphorylation modification in AD may be closely related to its pathology. It is of substantial practical significance to simultaneously investigate the roles of phosphorylation and glycosylation in AD. In this work, a bifunctional super-hydrophilic mesoporous nanocomposite (denoted mTiO2@AuCG) was prepared, which combined hydrophilic interaction chromatography (HILIC) and metal oxide affinity chromatography (MOAC) enrichment strategies to enrich phosphopeptides and glycopeptides, respectively or simultaneously. The mTiO2@AuCG exhibited excellent performance on the high-efficiency enrichment of glycopeptides (selectivity, 5000:1 molar ratios of BSA/HRP; sensitivity, 0.1 fmol HRP; satisfactory recovery rate; loading capacity, 200 mg/g) and phosphopeptides (selectivity, 1000:1 molar ratios of BSA/β-casein; sensitivity, 0.2 fmol β-casein; satisfactory recovery rate; loading capacity, 200 mg/g). Using these advantages, after single-step enrichment of mTiO2@AuCG, a total of 209 glycopeptides related to 93 glycoproteins, and 17 phosphopeptides related to 13 phosphoproteins were detected from normal human serum. By contrast, 167 glycopeptides related to 88 glycoproteins, and 14 phosphopeptides related to 12 phosphoproteins were found in AD serum.
Collapse
Affiliation(s)
- Linhua Yi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mengyao Fu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yifan Shao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
31
|
Li Y, Zhang J, Sun H, Yu X, Chen Y, Ma C, Zheng X, Zhang L, Zhao X, Jiang Y, Xin W, Wang S, Hu J, Wang M, Zhu D. RPS4XL encoded by lnc-Rps4l inhibits hypoxia-induced pyroptosis by binding HSC70 glycosylation site. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:920-934. [PMID: 35757299 PMCID: PMC9185019 DOI: 10.1016/j.omtn.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/18/2022] [Indexed: 10/25/2022]
|
32
|
Du Z, Yang Q, Liu Y, Chen S, Zhao H, Bai H, Shao W, Zhang Y, Qin W. A New Strategy for High-Efficient Tandem Enrichment and Simultaneous Profiling of N-Glycopeptides and Phosphopeptides in Lung Cancer Tissue. Front Mol Biosci 2022; 9:923363. [PMID: 35685241 PMCID: PMC9171396 DOI: 10.3389/fmolb.2022.923363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
N-glycosylation and phosphorylation, two common posttranslational modifications, play important roles in various biological processes and are extensively studied for biomarker and drug target screening. Because of their low abundance, enrichment of N-glycopeptides and phosphopeptides prior to LC–MS/MS analysis is essential. However, simultaneous characterization of these two types of posttranslational modifications in complex biological samples is still challenging, especially for tiny amount of samples obtained in tissue biopsy. Here, we introduced a new strategy for the highly efficient tandem enrichment of N-glycopeptides and phosphopeptides using HILIC and TiO2 microparticles. The N-glycopeptides and phosphosites obtained by tandem enrichment were 21%–377% and 22%–263% higher than those obtained by enriching the two PTM peptides separately, respectively, using 160–20 μg tryptic digested peptides as the starting material. Under the optimized conditions, 2798 N-glycopeptides from 434 N-glycoproteins and 5130 phosphosites from 1986 phosphoproteins were confidently identified from three technical replicates of HeLa cells by mass spectrometry analysis. Application of this tandem enrichment strategy in a lung cancer study led to simultaneous characterization of the two PTM peptides and discovery of hundreds of differentially expressed N-glycosylated and phosphorylated proteins between cancer and normal tissues, demonstrating the high sensitivity of this strategy for investigation of dysregulated PTMs using very limited clinical samples.
Collapse
Affiliation(s)
- Zhuokun Du
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Qianying Yang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Sijie Chen
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Hongxian Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Haihong Bai
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Wei Shao
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yangjun Zhang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
- *Correspondence: Yangjun Zhang, ; Weijie Qin,
| | - Weijie Qin
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
- *Correspondence: Yangjun Zhang, ; Weijie Qin,
| |
Collapse
|
33
|
Ye H, Han Y, Li P, Su Z, Huang Y. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. J Mol Neurosci 2022; 72:1557-1571. [PMID: 35325356 DOI: 10.1007/s12031-022-02002-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in tune influences protein function, protein - protein interaction, and protein aggregation. While the occurrence of PTMs is dynamic and subject to regulations, conformational disorder of the target protein facilitates PTMs. The microtubule-associated protein tau is a typical intrinsically disordered protein that undergoes a variety of PTMs including phosphorylation, acetylation, ubiquitination, methylation, and oxidation. Accumulated evidence shows that these PTMs play a critical role in regulating tau-microtubule interaction, tau localization, tau degradation and aggregation, and reinforces the correlation between tau PTMs and pathogenesis of neurodegenerative disease. Here, we review tau PTMs with an emphasis on their influence on tau structure. With available biophysical characterization results, we describe how PTMs induce conformational changes in tau monomer and regulate tau aggregation. Compared to functional analysis of tau PTMs, biophysical characterization of tau PTMs is lagging. While it is challenging, characterizing the specific effects of PTMs on tau conformation and interaction is indispensable to unravel the tau PTM code.
Collapse
Affiliation(s)
- Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China. .,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
34
|
Paul A, Segal D, Zacco E. Glycans to improve efficacy and solubility of protein aggregation inhibitors. Neural Regen Res 2021; 16:2215-2216. [PMID: 33818499 PMCID: PMC8354138 DOI: 10.4103/1673-5374.310688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Elsa Zacco
- RNA Central Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| |
Collapse
|
35
|
Chen C, Zhang X, Dong X, Zhou H, Li X, Liang X. TiO 2 Simultaneous Enrichment, On-Line Deglycosylation, and Sequential Analysis of Glyco- and Phosphopeptides. Front Chem 2021; 9:703176. [PMID: 34458235 PMCID: PMC8385670 DOI: 10.3389/fchem.2021.703176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
Reversible protein glycosylation and phosphorylation tightly modulate important cellular processes and are closely involved in pathological processes in a crosstalk dependent manner. Because of their significance and low abundances of glyco- and phosphopeptides, several strategies have been developed to simultaneously enrich and co-elute glyco- and phosphopeptides. However, the co-existence of deglycosylated peptides and phosphopeptides aggravates the mass spectrometry analysis. Herein we developed a novel strategy to analyze glyco- and phosphopeptides based on simultaneous enrichment with TiO2, on-line deglycosylation and collection of deglycosylated peptides, and subsequent elution of phosphopeptides. To optimize on-line deglycosylation conditions, the solution pH, buffer types and concentrations, and deglycosylation time were investigated. The application of this novel strategy to 100 μg mouse brain resulted in 355 glycopeptides and 1,975 phosphopeptides, which were 2.5 and 1.4 folds of those enriched with the reported method. This study will expand the application of TiO2 and may shed light on simultaneously monitoring protein multiple post-translational modifications.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Han Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| |
Collapse
|
36
|
Barbolina MV. Dichotomous role of microtubule associated protein tau as a biomarker of response to and a target for increasing efficacy of taxane treatment in cancers of epithelial origin. Pharmacol Res 2021; 168:105585. [PMID: 33798735 PMCID: PMC8165012 DOI: 10.1016/j.phrs.2021.105585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death worldwide, and the World Health Organization estimates that one in six deaths globally is due to cancer. Chemotherapy is one of the major modalities used to treat advanced cancers and their metastasis. However, the existence of acquired and intrinsic resistance to anti-cancer drugs often diminishes their therapeutic effect. In order to pre-select patients who could benefit the most from these treatments, the efforts of many research groups have been focused on identification of biomarkers of therapy response. Taxanes paclitaxel (Taxol) and docetaxel (Taxotere) have been introduced as chemotherapy for treatment of cancers of ovary in 1992 and breast in 1996, respectively. Since then, clinical use of taxanes has expanded to include lung, prostate, gastric, head and neck, esophageal, pancreatic, and cervical cancers, as well as Kaposi sarcoma. Several independent molecular mechanisms have been shown to support taxane chemoresistance. One such mechanism is dependent on microtubule associated protein tau. Tau binds to the same site on the inner side of the microtubules that is also occupied by paclitaxel or docetaxel, and several studies have demonstrated that low/no tau expression significantly correlated with better response to the taxane treatment, suggesting that levels of tau expression could have a predictive value in pre-selecting patient cohorts that are likely to benefit from the treatment. However, several other studies have found no correlation between tau expression and taxane response, introducing a controversy and precluding its wide use as a predictive biomarker. Based on the knowledge of tau biology accumulated thus far, in this review we attempt to critically analyze the studies that evaluated tau as a biomarker of taxane response. Further, we identify yet unknown aspects of tau biology understanding of which is necessary for improvement of development of tau as a biomarker of response and a target for increasing response to taxane treatment.
Collapse
Affiliation(s)
- Maria V Barbolina
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, 833 South Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
37
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
38
|
Haukedal H, Freude KK. Implications of Glycosylation in Alzheimer's Disease. Front Neurosci 2021; 14:625348. [PMID: 33519371 PMCID: PMC7838500 DOI: 10.3389/fnins.2020.625348] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting millions of people worldwide, and no cure is currently available. The major pathological hallmarks of AD are considered to be amyloid beta plaques and neurofibrillary tangles, generated by respectively APP processing and Tau phosphorylation. Recent evidence imply that glycosylation of these proteins, and a number of other AD-related molecules is altered in AD, suggesting a potential implication of this process in disease pathology. In this review we summarize the understanding of glycans in AD pathogenesis, and discuss how glycobiology can contribute to early diagnosis and treatment of AD, serving as potential biomarkers and therapeutic targets. Furthermore, we look into the potential link between the emerging topic neuroinflammation and glycosylation, combining two interesting, and until recent years, understudied topics in the scope of AD. Lastly, we discuss how new model platforms such as induced pluripotent stem cells can be exploited and contribute to a better understanding of a rather unexplored area in AD.
Collapse
Affiliation(s)
| | - Kristine K. Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|