1
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Salmenov R, Mummery C, ter Huurne M. Cell cycle visualization tools to study cardiomyocyte proliferation in real-time. Open Biol 2024; 14:240167. [PMID: 39378987 PMCID: PMC11461051 DOI: 10.1098/rsob.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiomyocytes in the adult human heart are quiescent and those lost following heart injury are not replaced by proliferating survivors. Considerable effort has been made to understand the mechanisms underlying cardiomyocyte cell cycle exit and re-entry, with view to discovering therapeutics that could stimulate cardiomyocyte proliferation and heart regeneration. The advent of large compound libraries and robotic liquid handling platforms has enabled the screening of thousands of conditions in a single experiment but success of these screens depends on the appropriateness and quality of the model used. Quantification of (human) cardiomyocyte proliferation in high throughput has remained problematic because conventional antibody-based staining is costly, technically challenging and does not discriminate between cardiomyocyte division and failure in karyokinesis or cytokinesis. Live cell imaging has provided alternatives that facilitate high-throughput screening but these have other limitations. Here, we (i) review the cell cycle features of cardiomyocytes, (ii) discuss various cell cycle fluorescent reporter systems, and (iii) speculate on what could improve their predictive value in the context of cardiomyocyte proliferation. Finally, we consider how these new methods can be used in combination with state-of-the-art three-dimensional human cardiac organoid platforms to identify pro-proliferative signalling pathways that could stimulate regeneration of the human heart.
Collapse
Affiliation(s)
- Rustem Salmenov
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Menno ter Huurne
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| |
Collapse
|
3
|
Komarova AD, Sinyushkina SD, Shchechkin ID, Druzhkova IN, Smirnova SA, Terekhov VM, Mozherov AM, Ignatova NI, Nikonova EE, Shirshin EA, Shimolina LE, Gamayunov SV, Shcheslavskiy VI, Shirmanova MV. Insights into metabolic heterogeneity of colorectal cancer gained from fluorescence lifetime imaging. eLife 2024; 13:RP94438. [PMID: 39197048 PMCID: PMC11357354 DOI: 10.7554/elife.94438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients' colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients' tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.
Collapse
Affiliation(s)
- Anastasia D Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
| | - Snezhana D Sinyushkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Ilia D Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
| | - Irina N Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Sofia A Smirnova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Vitaliy M Terekhov
- Nizhny Novgorod Regional Oncologic HospitalNizhny NovgorodRussian Federation
| | - Artem M Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Nadezhda I Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Elena E Nikonova
- Laboratory of Clinical Biophotonics, Sechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Evgeny A Shirshin
- Laboratory of Clinical Biophotonics, Sechenov First Moscow State Medical UniversityMoscowRussian Federation
- Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Liubov E Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Sergey V Gamayunov
- Nizhny Novgorod Regional Oncologic HospitalNizhny NovgorodRussian Federation
| | - Vladislav I Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Becker&Hickl GmbHBerlinGermany
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| |
Collapse
|
4
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
5
|
Ando R, Sakaue-Sawano A, Shoda K, Miyawaki A. Two coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression. Cell Struct Funct 2023; 48:135-144. [PMID: 37394513 PMCID: PMC10958192 DOI: 10.1247/csf.23028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1st and 2nd generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.
Collapse
Affiliation(s)
- Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Department of Optical Biomedical Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keiko Shoda
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Laboratory of Bioresponse Analysis, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
Cheung AHK, Hui CHL, Wong KY, Liu X, Chen B, Kang W, To KF. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer 2023; 152:1510-1525. [PMID: 36093588 DOI: 10.1002/ijc.34288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Peng X, Huang J, Li M, Chen Z, Yan W, Qu J. Lipid Membrane Alterations in Tumor Spheroids Revealed by Fluorescence Lifetime Microscopy Imaging. Anal Chem 2023; 95:575-580. [PMID: 36576346 DOI: 10.1021/acs.analchem.2c05126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) cultured tumor spheroid models, as one type of in vitro model, have been proven to have more physiological similarities to in vivo animal models than cells in 2D cultures. Tumor spheroids have been widely used in preclinical experiments of anticancer drug treatments, providing reliable data in pathogenetic research. Currently, different 3D cell culture conditions, even in the same cell line, generate heterogeneous spheroids in morphology and size, resulting in different growth rates or drug-killing responses. Therefore, the measurement and evaluation of the properties of tumor spheroids have become highly demanding tasks with huge challenges. For functional characterization of tumor spheroids, the microenvironment sensitivity and quantitative properties of the fluorescence lifetime microscopy imaging (FLIM) technique have great advantages for improving the reliability of cell physiological testing. In this paper, we have proposed a FLIM-based approach to observe the lipid components labeled with Nile red of cells in both 3D and 2D cultures. The imaging data and analysis provided basic information on the sizes, morphologies, and cell membrane fluorescence lifetime values of the tumor spheroids. FLIM data showed that the microenvironment of the cell membrane in the 3D model was largely altered compared to that in the 2D culture. Next, a series of parameters that may influence the lipid components of tumor cells and tumor spheroids were tested by FLIM, including pH, viscosity, and polarity. The results showed that pH and viscosity contributed little to the change in fluorescence lifetime values, while the change in cell membrane polarity was the main cause of the alterations in fluorescence lifetime data, suggesting that cell membrane polarity should be considered a marker in distinguishing tumor spheroids from cellular physiological status. In conclusion, this FLIM-based testing process has been proven to be a quantitative method for measuring the differences between the cells of the 3D model from the 2D cultured cells with satisfactory sensitivity and accuracy, providing a high potential standard assay in the quality evaluation and control of tumor spheroids for future anticancer drug development.
Collapse
Affiliation(s)
- Xiao Peng
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen518060, P. R. China
| | - Jingwen Huang
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen518060, P. R. China
| | - Mingyue Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou #2, Nanjing, Jiangsu210096, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou #2, Nanjing, Jiangsu210096, P. R. China
| | - Wei Yan
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
8
|
Martinez MAQ, Matus DQ. CDK activity sensors: genetically encoded ratiometric biosensors for live analysis of the cell cycle. Biochem Soc Trans 2022; 50:1081-1090. [PMID: 35674434 PMCID: PMC9661961 DOI: 10.1042/bst20211131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023]
Abstract
Cyclin-dependent kinase (CDK) sensors have facilitated investigations of the cell cycle in living cells. These genetically encoded fluorescent biosensors change their subcellular location upon activation of CDKs. Activation is primarily regulated by their association with cyclins, which in turn trigger cell-cycle progression. In the absence of CDK activity, cells exit the cell cycle and become quiescent, a key step in stem cell maintenance and cancer cell dormancy. The evolutionary conservation of CDKs has allowed for the rapid development of CDK activity sensors for cell lines and several research organisms, including nematodes, fish, and flies. CDK activity sensors are utilized for their ability to visualize the exact moment of cell-cycle commitment. This has provided a breakthrough in understanding the proliferation-quiescence decision. Further adoption of these biosensors will usher in new discoveries focused on the cell-cycle regulation of development, ageing, and cancer.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| |
Collapse
|
9
|
Frei MS, Tarnawski M, Roberti MJ, Koch B, Hiblot J, Johnsson K. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat Methods 2022; 19:65-70. [PMID: 34916672 PMCID: PMC8748199 DOI: 10.1038/s41592-021-01341-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Self-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Kohrman AQ, Kim-Yip RP, Posfai E. Imaging developmental cell cycles. Biophys J 2021; 120:4149-4161. [PMID: 33964274 PMCID: PMC8516676 DOI: 10.1016/j.bpj.2021.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
11
|
Datta R, Gillette A, Stefely M, Skala MC. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210093-PER. [PMID: 34247457 PMCID: PMC8271181 DOI: 10.1117/1.jbo.26.7.070603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) measures the decay rate of fluorophores, thus providing insights into molecular interactions. FLIM is a powerful molecular imaging technique that is widely used in biology and medicine. AIM This perspective highlights some of the major advances in FLIM instrumentation, analysis, and biological and clinical applications that we have found impactful over the last year. APPROACH Innovations in FLIM instrumentation resulted in faster acquisition speeds, rapid imaging over large fields of view, and integration with complementary modalities such as single-molecule microscopy or light-sheet microscopy. There were significant developments in FLIM analysis with machine learning approaches to enhance processing speeds, fit-free techniques to analyze images without a priori knowledge, and open-source analysis resources. The advantages and limitations of these recent instrumentation and analysis techniques are summarized. Finally, applications of FLIM in the last year include label-free imaging in biology, ophthalmology, and intraoperative imaging, FLIM of new fluorescent probes, and lifetime-based Förster resonance energy transfer measurements. CONCLUSIONS A large number of high-quality publications over the last year signifies the growing interest in FLIM and ensures continued technological improvements and expanding applications in biomedical research.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Matthew Stefely
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Address all correspondence to Melissa C. Skala,
| |
Collapse
|