1
|
Groom DP, Lopacinski A, Garforth SJ, Schramm VL. Kinetic Mechanism of the Emergent Anticancer Target, Human ADP-ribosyltransferase 1. Biochemistry 2025; 64:2077-2088. [PMID: 40273333 DOI: 10.1021/acs.biochem.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Human ADP-ribosyltransferase 1 (hsART1, EC: 2.4.2.31) is a membrane-associated GPI-anchored, arginine-specific, mono-ADP-ribosyltransferase. The enzyme resides on the endoplasmic reticulum and extracellular cell surface, where it catalyzes the transfer of ADP-ribose (ADPR) from NAD+ to arginine residues of neighboring target proteins, forming free nicotinamide (NAM) and N-linked mono-ADP-ribosylation (MARylation) of the target protein. Arginine-specific MARylation regulates the target's function and cellular roles. Dysregulation of hsART1 activity has been shown to permit immune cell evasion in non-small cell lung cancer (NSCLC). Inhibition of hsART1 decreases tumor efficacy and increases T-cell infiltration. hsART1 is an emerging checkpoint target in select cancers. We performed the first kinetic characterization of the ADP-ribosyltransferase and NAD+ glycohydrolase activities of hsART1. Without an l-arginine substrate, hsART1 slowly hydrolyses NAD+ into NAM and ADPR through an ordered kinetic mechanism. NAD+ binding and hydrolysis are followed by the ordered release of NAM followed by ADPR. The ADP-ribosyltransferase activity of hsART1 to l-arginine-like small molecule substrates gives over a 100-fold improvement in kcat/Km and kcat relative to NAD+ hydrolysis. With ADP-ribose acceptors, hsART1 proceeds through a partially ordered mechanism, whereby the substrate binding of NAD+ and l-arginine-like substrate is random. Chemistry proceeds through a ternary complex, and product release is ordered, with NAM first, followed by the ADP-ribosylated acceptor. hsART1 is not diffusionally rate-limited on kcat and only partially limited on kcat/Km for l-arginine methyl ester. The detailed description of the kinetic mechanism of hsART1 can aid in the development of novel and selective inhibitors.
Collapse
Affiliation(s)
- Daniel P Groom
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Amanda Lopacinski
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Paiva BS, Neves D, Tomé D, Costa FJ, Bruno IC, Trigo D, Silva RM, Almeida RD. Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity. Cells 2025; 14:582. [PMID: 40277908 PMCID: PMC12025592 DOI: 10.3390/cells14080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Excitotoxicity is a pathological process that occurs in many neurological diseases, such as stroke or epilepsy, and is characterized by the extracellular accumulation of high concentrations of glutamate or other excitatory amino acids (EAAs). Nicotinamide adenine dinucleotide (NAD) depletion is an early event following excitotoxicity in many in vitro and in vivo excitotoxic-related models and contributes to the deregulation of energy homeostasis. However, the interplay between glutamate excitotoxicity and the NAD biosynthetic pathway is not fully understood. To address this question, we used a primary culture of rat cortical neurons and found that an excitotoxic glutamate insult alters the expression of the NAD biosynthetic enzymes. Additionally, using a fluorescent NAD mitochondrial sensor, we observed that glutamate induces a significant decrease in the mitochondrial NAD pool, which was reversed when exogenous NAD was added. We also show that exogenous NAD protects against the glutamate-induced decrease in mitochondrial membrane potential (MMP). Glutamate excitotoxicity changed mitochondrial retrograde transport in neurites, which seems to be reversed by NAD addition. Finally, we show that NAD and NAD precursors protect against glutamate-induced cell death. Together, our results demonstrate that glutamate-induced excitotoxicity acts by compromising the NAD biosynthetic pathway, particularly in the mitochondria. These results also uncover a potential role for mitochondrial NAD as a tool for central nervous system (CNS) regenerative therapies.
Collapse
Affiliation(s)
- Bruna S. Paiva
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Neves
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Tomé
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CiBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-504 Coimbra, Portugal
| | - Filipa J. Costa
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Inês C. Bruno
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Trigo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Raquel M. Silva
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- Center for Interdisciplinary Research in Health, Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Ramiro D. Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CiBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-504 Coimbra, Portugal
| |
Collapse
|
3
|
Babigian J, Brunnbauer P, Kamali C, Knitter S, Keshi E, Felsenstein M, Haber P, Lozzi I, Schöning W, Pratschke J, Krenzien F. Extracellular NAD + levels are associated with CD203a expression on Th17 cells and predict long-term recurrence-free survival in hepatocellular carcinoma. J Cancer Res Clin Oncol 2025; 151:115. [PMID: 40107998 PMCID: PMC11923025 DOI: 10.1007/s00432-025-06155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND AIMS Mortality rates for hepatocellular carcinoma (HCC) remain high, while multimodal treatment approaches offer new perspectives. Here, we investigated the association of extracellular nicotinamide adenine dinucleotide (eNAD+) on ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (CD203a, ENPP1 or PC-1) on Th17 cells in relation to the likelihood of HCC recurrence following liver resection. METHOD The study compared heparinized blood plasma samples from 95 patients who underwent liver resection, including 25 patients with HCC and 24 control patients without liver disease. Plasma eNAD+ concentrations were determined using a heat-based dichotomous pH extraction method, followed by enzymatic cycling and a colorimetric assay for quantification. Fibrosis was graded histologically using the Desmet score (F0-F4). Surface expression analysis was performed using flow cytometry. RESULTS With increasing grades of liver fibrosis predominant in HCC patients, a significant reduction in plasma eNAD+ concentrations was measured (p < 0.05). Further, a significant correlation was found between HCC patients and CD203a expression on CD4+, CCR4+ as well as CCR6+ T cells (p < 0.05). Patients who exhibited high proportions of CD203a expressing Th17 cells (CD4+, CCR6+ CCR4+) post surgery were found to be at a sixfold increased risk (HR 6.38, 95% Cl 1.51-27.00) of HCC recurrence and had a median recurrence-free survival of 233 days (p < 0.05), compared to patients with low CD203a expressing Th17 cells (CD4+ CCR6+ CCR4+). Similarly, patients who had a high proportion of CD203a expressing Th17 cells (CD4+ CCR6+) following surgery had a fivefold increased risk (HR 5.56, 95% Cl 1.58-19.59) of HCC recurrence and a median recurrence-free survival of 334 days (p < 0.05) compared to those with low CD203a expressing Th17 cells (CCR6+). CONCLUSION The data indicates that eNAD+ levels are decreased in patients with liver fibrosis or cirrhosis. Strikingly, patients with high CD203a expression on Th17 cells had a significantly increased likelihood of recurrence, highlighting its potential as a valuable prognostic marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Julia Babigian
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Turmstraße 21, 10559, Berlin, Germany
| | - Philipp Brunnbauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sebastian Knitter
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Matthäus Felsenstein
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Philipp Haber
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Isis Lozzi
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), 10178, Berlin, Germany.
| |
Collapse
|
4
|
Kao G, Zhang XN, Nasertorabi F, Katz BB, Li Z, Dai Z, Zhang Z, Zhang L, Louie SG, Cherezov V, Zhang Y. Nicotinamide Riboside and CD38: Covalent Inhibition and Live-Cell Labeling. JACS AU 2024; 4:4345-4360. [PMID: 39610739 PMCID: PMC11600175 DOI: 10.1021/jacsau.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is required for a myriad of metabolic, signaling, and post-translational events in cells. Its levels in tissues and organs are closely associated with health conditions. The homeostasis of NAD+ is regulated by biosynthetic pathways and consuming enzymes. As a membrane-bound protein with robust NAD+ hydrolase activity, cluster of differentiation 38 (CD38) is a major degrader of NAD+. Deficiency or inhibition of CD38 enhances NAD+ levels in vivo, resulting in various therapeutic benefits. As a metabolic precursor of NAD+, nicotinamide mononucleotide can be rapidly hydrolyzed by CD38, whereas nicotinamide riboside (NR) lacks CD38 substrate activity. Given their structural similarities, we explored the inhibition potential of NR. To our surprise, NR exhibits marked inhibitory activity against CD38 by forming a stable ribosyl-ester bond with the glutamate residue 226 at the active site. Inspired by this discovery, we designed and synthesized a clickable NR featuring an azido substitution at the 5'-OH position. This cell-permeable NR analogue enables covalent labeling and imaging of both extracellular and intracellular CD38 in live cells. Our work discovers an unrecognized molecular function of NR and generates a covalent probe for health-related CD38. These findings offer new insights into the role of NR in modulating NAD+ metabolism and CD38-mediated signaling as well as an innovative tool for in-depth studies of CD38 in physiology and pathophysiology.
Collapse
Affiliation(s)
- Guoyun Kao
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Xiao-Nan Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Fariborz Nasertorabi
- Departments
of Biological Sciences and Chemistry, Bridge Institute, Michelson
Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, California 90089, United States
| | - Benjamin B. Katz
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Zeyang Li
- Titus
Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy
and Pharmaceutical Sciences, University
of Southern California, Los Angeles, California 90089, United States
| | - Zhefu Dai
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Zeyu Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lei Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G. Louie
- Titus
Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy
and Pharmaceutical Sciences, University
of Southern California, Los Angeles, California 90089, United States
| | - Vadim Cherezov
- Bridge
Institute, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90089, United States
- Research
Center for Liver Diseases, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Xiang Y, Shen L, Xue Y, Wang Z, Zhou R, Cao Y, Zhu Z, Xu P, Yu X, Fang P, Shang W. Efficacy and safety of diacerein monotherapy in adults with obesity: A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:5293-5303. [PMID: 39192530 DOI: 10.1111/dom.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
AIM To assess the efficacy and safety of diacerein monotherapy in adults with obesity. METHODS Forty-two adults with obesity participated in the study and were randomly assigned to receive diacerein or placebo in addition to lifestyle modification for 14 weeks, in a double-blinded fashion. Differences in changes in body weight, body composition, metabolic variables, fatty liver-related indicators, cardiovascular system variables, lifestyle score and metabolic factors were compared. RESULTS Post-treatment weight loss percentage from baseline was -6.56% (-8.71%, -4.41%) in the diacerein group and -0.59% (-2.74%, 1.56%) in the placebo group. Compared with the placebo group, the diacerein group showed significant improvements in body composition, metabolic variables and indicators related to fatty liver. In addition, after 14 weeks of treatment, diacerein led to a significant reduction in serum visfatin concentration versus the placebo group. The reductions in total body fat mass and visceral fat area mediated the weight loss induced by diacerein. No significant differences were found between the groups in the number of adverse events and safety variables. CONCLUSIONS For adults with obesity, diacerein led to a clinically meaningful weight loss and provided multiple metabolic benefits with acceptable safety. These results support that diacerein is a promising candidate medicine to be developed for obesity management.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixuan Shen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xue
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Wang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Zhu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pingyuan Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Chen J, Nilsen ED, Chitboonthavisuk C, Mo CY, Raman S. Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617714. [PMID: 39416107 PMCID: PMC11482910 DOI: 10.1101/2024.10.10.617714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding core and conditional gene essentiality is crucial for decoding genotype-phenotype relationships in organisms. We present PhageMaP, a high-throughput method to create genome-scale phage knockout libraries for systematically assessing gene essentiality in bacteriophages. Using PhageMaP, we generate gene essentiality maps across hundreds of genes in the model phage T7 and the non-model phage Bas63, on diverse hosts. These maps provide fundamental insights into genome organization, gene function, and host-specific conditional essentiality. By applying PhageMaP to a collection of anti-phage defense systems, we uncover phage genes that either inhibit or activate eight defenses and offer novel mechanistic hypotheses. Furthermore, we engineer synthetic phages with enhanced infectivity by modular transfer of a PhageMaP-discovered defense inhibitor from Bas63 to T7. PhageMaP is generalizable, as it leverages homologous recombination, a universal cellular process, for locus-specific barcoding. This versatile tool advances bacteriophage functional genomics and accelerates rational phage design for therapy.
Collapse
Affiliation(s)
- Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erick D Nilsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Charlie Y Mo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
9
|
Wang P, Ma Y, Li J, Su J, Chi J, Zhu X, Zhu X, Zhang C, Bi C, Zhang X. Exploring the De Novo NMN Biosynthesis as an Alternative Pathway to Enhance NMN Production. ACS Synth Biol 2024; 13:2425-2435. [PMID: 39023319 DOI: 10.1021/acssynbio.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nicotinamide mononucleotide (NMN) serves as a precursor for NAD+ synthesis and has been shown to have positive effects on the human body. Previous research has predominantly focused on the nicotinamide phosphoribosyltransferase-mediated route (NadV-mediated route) for NMN biosynthesis. In this study, we have explored the de novo NMN biosynthesis route as an alternative pathway to enhance NMN production. Initially, we systematically engineered Escherichia coli to enhance its capacity for NMN synthesis and accumulation, resulting in a remarkable over 100-fold increase in NMN yield. Subsequently, we progressively enhanced the de novo NMN biosynthesis route to further augment NMN production. We screened and identified the crucial role of MazG in catalyzing the enzymatic cleavage of NAD+ to NMN. And the de novo NMN biosynthesis route was optimized and integrated with the NadV-mediated NMN biosynthetic pathways, leading to an intracellular concentration of 844.10 ± 17.40 μM NMN. Furthermore, the introduction of two transporters enhanced the uptake of NAM and the excretion of NMN, resulting in NMN production of 1293.73 ± 61.38 μM. Finally, by engineering an E. coli strain with optimized PRPP synthetase, we achieved the highest NMN production, reaching 3067.98 ± 27.25 μM after 24 h of fermentation at the shake flask level. In addition to constructing an efficient E. coli cell factory for NMN production, our findings provide new insights into understanding the NAD+ salvage pathway and its role in energy metabolism within E. coli.
Collapse
Affiliation(s)
- Pengju Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yidan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300382, China
| | - Junchang Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Junxi Chi
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingmiao Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
10
|
Zhan J, Huang L, Niu L, Lu W, Sun C, Liu S, Ding Z, Li E. Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism. Cell Commun Signal 2024; 22:387. [PMID: 39090604 PMCID: PMC11292923 DOI: 10.1186/s12964-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Liyan Niu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenhui Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Chengpeng Sun
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
11
|
Han HJ, Kim H, Yu HG, Park JU, Bae JH, Lee JH, Hong JK, Baik JY. Evaluation of NAD + precursors for improved metabolism and productivity of antibody-producing CHO cell. Biotechnol J 2024; 19:e2400311. [PMID: 39167557 DOI: 10.1002/biot.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors - nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) - were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hagyeong Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hyun Gyu Yu
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Jong Uk Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Joo Hee Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Ji Hwan Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
13
|
Kibria F, Das SK, Arefin MS. The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2024; 21:86-95. [PMID: 39055245 PMCID: PMC11267644 DOI: 10.5114/kitp.2024.141145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 07/27/2024]
Abstract
The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD+) and reduction (NADH) reactions. NAD+ plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for de-novo NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.
Collapse
Affiliation(s)
- Fazle Kibria
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida, USA
| | - Sudip Kumar Das
- Department of Otolaryngology and ENT Surgery, Kolkata Medical College and Hospital, Kolkata, India
| | - Md Sahidul Arefin
- Department of Otolaryngology and ENT Surgery, IPGME & R-SSKM Hospital, Kolkata, India
| |
Collapse
|
14
|
Hesse J, Steckel B, Dieterich P, Aydin S, Deussen A, Schrader J. Intercellular crosstalk shapes purinergic metabolism and signaling in cancer cells. Cell Rep 2024; 43:113643. [PMID: 38175748 DOI: 10.1016/j.celrep.2023.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
CD73-derived adenosine suppresses anti-cancer immunity, and CD73 inhibitors are currently evaluated in several clinical trials. Here, we have assessed enzyme kinetics of all key purinergic ectoenzymes in five cancer cell lines (Hodgkin lymphoma, multiple myeloma, pancreas adenocarcinoma, urinary bladder carcinoma, and glioblastoma) under normoxia and hypoxia. We found that adenosine metabolism varied considerably between individual cancer types. All cell lines investigated exhibited high ecto-adenosine deaminase (ADA) activity, which critically influenced the kinetics of adenosine accumulation. Combining kinetics data with single-cell RNA sequencing data on myeloma and glioblastoma cancerous tissue revealed that purine metabolism is not homogeneously organized, but it differs in a cancer type-specific fashion between malignant cells, stromal cells, and immune cells. Since purine metabolism in cancerous tissue is most likely spatially heterogeneous and differs between the various cell types, diffusion distances in the microenvironment as well as ADA activity may be important variables that influence the level of bioactive adenosine.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Dieterich
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Siyar Aydin
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Saqr AHA, Kamali C, Brunnbauer P, Haep N, Koch P, Hillebrandt KH, Keshi E, Moosburner S, Mohr R, Raschzok N, Pratschke J, Krenzien F. Optimized protocol for quantification of extracellular nicotinamide adenine dinucleotide: evaluating clinical parameters and pre-analytical factors for translational research. Front Med (Lausanne) 2024; 10:1278641. [PMID: 38259852 PMCID: PMC10800990 DOI: 10.3389/fmed.2023.1278641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme for more than 500 enzymes, plays a central role in energy production, metabolism, cellular signaling, and DNA repair. Until recently, NAD+ was primarily considered to be an intracellular molecule (iNAD+), however, its extracellular species (eNAD+) has recently been discovered and has since been associated with a multitude of pathological conditions. Therefore, accurate quantification of eNAD+ in bodily fluids such as plasma is paramount to answer important research questions. In order to create a clinically meaningful and reliable quantitation method, we analyzed the relationship of cell lysis, routine clinical laboratory parameters, blood collection techniques, and pre-analytical processing steps with measured plasma eNAD+ concentrations. Initially, NAD+ levels were assessed both intracellularly and extracellularly. Intriguingly, the concentration of eNAD+ in plasma was found to be approximately 500 times lower than iNAD+ in peripheral blood mononuclear cells (0.253 ± 0.02 μM vs. 131.8 ± 27.4 μM, p = 0.007, respectively). This stark contrast suggests that cellular damage or cell lysis could potentially affect the levels of eNAD+ in plasma. However, systemic lactate dehydrogenase in patient plasma, a marker of cell damage, did not significantly correlate with eNAD+ (n = 33; r = -0.397; p = 0.102). Furthermore, eNAD+ was negatively correlated with increasing c-reactive protein (CRP, n = 33; r = -0.451; p = 0.020), while eNAD+ was positively correlated with increasing hemoglobin (n = 33; r = 0.482; p = 0.005). Next, variations in blood drawing, sample handling and pre-analytical processes were examined. Sample storage durations at 4°C (0-120 min), temperature (0° to 25°C), cannula sizes for blood collection and tourniquet times (0 - 120 s) had no statistically significant effect on eNAD+ (p > 0.05). On the other hand, prolonged centrifugation (> 5 min) and a faster braking mode of the centrifuge rotor (< 4 min) resulted in a significant decrease in eNAD+ levels (p < 0.05). Taken together, CRP and hemoglobin appeared to be mildly correlated with eNAD+ levels whereas cell damage was not correlated significantly to eNAD+ levels. The blood drawing trial did not show any influence on eNAD+, in contrast, the preanalytical steps need to be standardized for accurate eNAD+ measurement. This work paves the way towards robust eNAD+ measurements, for use in future clinical and translational research, and provides an optimized hands-on protocol for reliable eNAD+ quantification in plasma.
Collapse
Affiliation(s)
- Al-Hussein Ahmed Saqr
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Brunnbauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pia Koch
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
16
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
17
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Shao B, Ren SH, Wang ZB, Wang HD, Zhang JY, Qin H, Zhu YL, Sun CL, Xu YN, Li X, Wang H. CD73 mediated host purinergic metabolism in intestine contributes to the therapeutic efficacy of a novel mesenchymal-like endometrial regenerative cells against experimental colitis. Front Immunol 2023; 14:1155090. [PMID: 37180168 PMCID: PMC10167049 DOI: 10.3389/fimmu.2023.1155090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Background The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-bo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
20
|
Cui H, Xie N, Banerjee S, Dey T, Liu RM, Antony VB, Sanders YY, Adams TS, Gomez JL, Thannickal VJ, Kaminski N, Liu G. CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. Am J Respir Crit Care Med 2022; 206:459-475. [PMID: 35687485 PMCID: PMC12039157 DOI: 10.1164/rccm.202109-2151oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Rationale: A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression. Objectives: To determine the role of AEC CD38 (cluster of differentiation 38) in promoting cellular aging and lung fibrosis. Methods: We used single-cell RNA sequencing, real-time PCR, flow cytometry, and Western blotting. Measurements and Main Results: We discovered a pivotal role of CD38, a cardinal nicotinamide adenine dinucleotide (NAD) hydrolase, in AEC aging and its promotion of lung fibrosis. We found increased CD38 expression in IPF lungs that inversely correlated with the lung functions of patients. CD38 was primarily located in the AECs of human lung parenchyma and was markedly induced in IPF AECs. Similarly, CD38 expression was elevated in the AECs of fibrotic lungs of young mice and further augmented in those of old mice, which was in accordance with a worsened AEC aging phenotype and an aggravated lung fibrosis in the old animals. Mechanistically, we found that CD38 elevation downregulated intracellular NAD, which likely led to the aging promoting impairment of the NAD-dependent cellular and molecular activities. Furthermore, we demonstrated that genetic and pharmacological inactivation of CD38 improved these NAD dependent events and ameliorated bleomycin-induced lung fibrosis. Conclusions: Our study suggests targeting alveolar CD38 as a novel and effective therapeutic strategy to treat this pathology.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B. Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Y. Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor S. Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine,
New Haven, Connecticut; and
| | - Jose L. Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine,
New Haven, Connecticut; and
| | - Victor J. Thannickal
- Department of Medicine, Tulane University School of Medicine, New
Orleans, Louisiana
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine,
New Haven, Connecticut; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department
of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
22
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
23
|
Balashova NV, Zavileyskiy LG, Artiukhov AV, Shaposhnikov LA, Sidorova OP, Tishkov VI, Tramonti A, Pometun AA, Bunik VI. Efficient Assay and Marker Significance of NAD+ in Human Blood. Front Med (Lausanne) 2022; 9:886485. [PMID: 35665345 PMCID: PMC9162244 DOI: 10.3389/fmed.2022.886485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidized nicotinamide adenine dinucleotide (NAD+) is a biological molecule of systemic importance. Essential role of NAD+ in cellular metabolism relies on the substrate action in various redox reactions and cellular signaling. This work introduces an efficient enzymatic assay of NAD+ content in human blood using recombinant formate dehydrogenase (FDH, EC 1.2.1.2), and demonstrates its diagnostic potential, comparing NAD+ content in the whole blood of control subjects and patients with cardiac or neurological pathologies. In the control group (n = 22, 25–70 years old), our quantification of the blood concentration of NAD+ (18 μM, minimum 15, max 23) corresponds well to NAD+ quantifications reported in literature. In patients with demyelinating neurological diseases (n = 10, 18–55 years old), the NAD+ levels significantly (p < 0.0001) decrease (to 14 μM, min 13, max 16), compared to the control group. In cardiac patients with the heart failure of stage II and III according to the New York Heart Association (NYHA) functional classification (n = 24, 42–83 years old), the blood levels of NAD+ (13 μM, min 9, max 18) are lower than those in the control subjects (p < 0.0001) or neurological patients (p = 0.1). A better discrimination of the cardiac and neurological patients is achieved when the ratios of NAD+ to the blood creatinine levels, mean corpuscular volume or potassium ions are compared. The proposed NAD+ assay provides an easy and robust tool for clinical analyses of an important metabolic indicator in the human blood.
Collapse
Affiliation(s)
- Natalia V. Balashova
- Department of Clinical Laboratory Diagnostics, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
- Department of Dietetics and Clinical Nutritionology, Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, Russia
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Leonid A. Shaposhnikov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P. Sidorova
- Department of Neurology, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Department of Biochemical Sciences “A. Rossi Fanelli,” Sapienza University of Rome, Rome, Italy
| | - Anastasia A. Pometun
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
- *Correspondence: Victoria I. Bunik,
| |
Collapse
|
24
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
25
|
Chini CCS, Peclat TR, Gomez LS, Zeidler JD, Warner GM, Kashyap S, Mazdeh DZ, Hayat F, Migaud ME, Paulus A, Chanan-Khan AA, Chini EN. Dihydronicotinamide Riboside Is a Potent NAD+ Precursor Promoting a Pro-Inflammatory Phenotype in Macrophages. Front Immunol 2022; 13:840246. [PMID: 35281060 PMCID: PMC8913500 DOI: 10.3389/fimmu.2022.840246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB
kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.
Collapse
Affiliation(s)
- Claudia C. S. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lilian S. Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Delaram Z. Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Aneel Paulus
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Asher A. Chanan-Khan
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- *Correspondence: Eduardo N. Chini,
| |
Collapse
|
26
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
27
|
Preparation of ZIF@ADH/NAD-MSN/LDH Core Shell Nanocomposites for the Enhancement of Coenzyme Catalyzed Double Enzyme Cascade. NANOMATERIALS 2021; 11:nano11092171. [PMID: 34578486 PMCID: PMC8464746 DOI: 10.3390/nano11092171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
The field of enzyme cascades in limited microscale or nanoscale environments has undergone a quick growth and attracted increasing interests in the field of rapid development of systems chemistry. In this study, alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and mesoporous silica nanoparticles (MSN) immobilized nicotinamide adenine dinucleotide (NAD+) were successfully immobilized on the zeolitic imidazolate frameworks (ZIFs). This immobilized product was named ZIF@ADH/NAD-MSN/LDH, and the effect of the multi-enzyme cascade was studied by measuring the catalytic synthesis of lactic acid. The loading efficiency of the enzyme in the in-situ co-immobilization method reached 92.65%. The synthesis rate of lactic acid was increased to 70.10%, which was about 2.82 times that of the free enzyme under the optimal conditions (40 °C, pH = 8). Additionally, ZIF@ADH/NAD-MSN/LDH had experimental stability (71.67% relative activity after four experiments) and storage stability (93.45% relative activity after three weeks of storage at 4 °C; 76.89% relative activity after incubation in acetonitrile-aqueous solution for 1 h; 27.42% relative activity after incubation in 15% N, N-Dimethylformamide (DMF) solution for 1 h). In summary, in this paper, the cyclic regeneration of coenzymes was achieved, and the reaction efficiency of the multi-enzyme biocatalytic cascade was improved due to the reduction of substrate diffusion.
Collapse
|
28
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|