1
|
Wang T, Wu M, Wang Y, Li Y, Cui X, Sun X, Yu Q, Cao Y, Liu Y, Tian Z. The establishment of specific reference intervals for serum transthyretin tetramer, misfolded proteins, and protein misfolding rate and its application in evaluating transthyretin amyloidosis patients. Clin Chim Acta 2025; 571:120218. [PMID: 40044106 DOI: 10.1016/j.cca.2025.120218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND To accurately assess disease risk, specific reference intervals for transthyretin (TTR) tetramers, misfolded proteins, and protein misfolding rates are essential. This study aimed to establish reference intervals using a robust and traceable ultrahigh performance liquid chromatography (UPLC) method and to evaluate the distribution of these biomarkers in patients with transthyretin amyloidosis (ATTR). METHODS Serum samples from 331 healthy Chinese individuals were included. Participants were stratified into two age groups: <60 years and ≥ 60 years. The reference intervals were determined following the Clinical and Laboratory Standards Institute (CLSI) EP28-A3. RESULTS The established reference intervals for TTR tetramers, misfolded proteins, and protein misfolding rates revealed significant age- and sex-specific variations. In the < 60 years age group, the TTR tetramer reference intervals were 3.01-6.30 μmol/L for males and 2.62-5.39 μmol/L for females. Corresponding reference intervals for misfolded proteins were 0.24-1.43 μmol/L for males and 0.33-1.39 μmol/L for females, with protein misfolding rate upper limits of 26.32 % and 27.47 %, respectively. In the ≥ 60 years age group, TTR tetramer reference intervals from 2.56-5.48 μmol/L for males and 2.36-5.10 μmol/L for females. Misfolded protein reference intervals were 0.28-2.03 μmol/L for males and 0.29-1.59 μmol/L for females, while protein misfolding rate upper limits were 33.69 % for males and 30.64 % for females. CONCLUSIONS This study successfully established detailed, age- and sex-specific reference intervals for TTR tetramers, misfolded proteins, and protein misfolding rates, providing valuable references for clinical practice and further investigations into disease risk associated with TTR biomarkers.
Collapse
Affiliation(s)
- Tingting Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ming Wu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China
| | - Ying Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Li
- Dalian Boyuan Medical Technology Co, Ltd, Dalian, China
| | - Xueting Cui
- Dalian Boyuan Medical Technology Co, Ltd, Dalian, China
| | - Xiaoyu Sun
- Dalian Boyuan Medical Technology Co, Ltd, Dalian, China
| | - Qiuhua Yu
- Dalian Boyuan Medical Technology Co, Ltd, Dalian, China
| | - Yunfeng Cao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China.
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
2
|
Shaw S, Porel P, Aran KR. Transthyretin as a therapeutic target: the future of disease-modifying therapies for Alzheimer's disease. Mol Biol Rep 2025; 52:370. [PMID: 40195175 DOI: 10.1007/s11033-025-10485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease for causing memory deficits and primarily characterized by extracellular deposition of amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), and hyperphosphorylation of tau protein, all are pathological hallmarks for AD. Transthyretin (TTR) is a highly conserved homo-tetrameric protein, primarily synthesized in liver and choroid plexus, and most importantly involved in transport of T3-T4 hormones and retinol. OBJECTIVES This review explores the dual role of TTR, with a greater emphasis on its neuroprotective action, particularly in AD. METHODS Based on the available literature, TTR's potential as a biomarker in the central nervous system (CNS), focusing its role in stabilizing Aβ aggregation and the senile plaque formation during neurodegeneration. Additionally, TTR's dual roles, in neurodegeneration and neuroprotection are studied, emphasizing its potential for improving AD diagnosis and treatment strategies. RESULTS Recent research has revealed that TTR is gradually showcasing its promise in neuroprotection and neuronal viability in AD by binding with Aβ and mitigating its neurotoxic effects. Current preclinical and clinical studies also support that TTR is actively involved in maintaining the blood-brain barrier (BBB) integrity and maintain neurotransmitter balance, all of which offer significant therapeutic promise through TTR stabilizers, such as Tafamidis, Acoramidis, and Vutrisiran, highlighting their potential in AD treatment CONCLUSION: This review concludes that TTR plays bidirectional role and gaining interest as a potential biomarker, though several challenges must be addressed before it can be established a novel therapeutic target in AD management in the modern era of drug discovery.
Collapse
Affiliation(s)
- Swetaleena Shaw
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Corino C, Aimo A, Luigetti M, Ciccone L, Ferrari Chen YF, Panichella G, Musetti V, Castiglione V, Vergaro G, Emdin M, Franzini M. Tetrameric Transthyretin as a Protective Factor Against Alzheimer's Disease. Mol Neurobiol 2025; 62:2945-2954. [PMID: 39192044 PMCID: PMC11790689 DOI: 10.1007/s12035-024-04442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Transthyretin (TTR) is a tetrameric protein traditionally recognized for its role in transporting thyroxine and retinol. Recent research has highlighted the potential neuroprotective functions of TTR in the setting of Alzheimer's disease (AD), which is the most common form of dementia and is caused by the deposition of amyloid beta (Aβ) and the resulting cytotoxic effects. This paper explores the mechanisms of TTR protective action, including its interaction with Aβ to prevent fibril formation and promote Aβ clearance from the brain. It also synthesizes experimental evidence suggesting that enhanced TTR stability may mitigate neurodegeneration and cognitive decline in AD. Potential therapeutic strategies such as small molecule stabilizers of TTR are discussed, highlighting their role in enhancing TTR binding to Aβ and facilitating its clearance. By consolidating current knowledge and proposing directions for future research, this review aims to underscore the significance of TTR as a neuroprotective factor in AD and the potential implications for future research.
Collapse
Affiliation(s)
- Camilla Corino
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Alberto Aimo
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Marco Luigetti
- Fondazione Policlinico Agostino Gemelli IRCCS, UOC Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Yu Fu Ferrari Chen
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Veronica Musetti
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Vincenzo Castiglione
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Maria Franzini
- Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Liang X, Song C, Lin J, Li S, Li L, Dai G, Zhang R, Zou OM, Yao H, Zhou L, Zou Y. Transthyretin, a novel prognostic marker of POCD revealed by time-series RNA-sequencing analysis. Mol Psychiatry 2025:10.1038/s41380-025-02918-0. [PMID: 39955470 DOI: 10.1038/s41380-025-02918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is defined as a declined cognition, measured by neuropsychological tests, that persists for months or even longer after surgery. Heterogeneities in the diagnosis of POCD usually involve differences in the test batteries, the cutoffs, and the timing of assessments. Although peripheral and CSF markers of neuroinflammation have been shown to correlate with increased risk of POCD, most of them are non-specific and cannot be used for POCD diagnosis. These factors hampered the understanding of the pathogenesis of POCD as well as the development of effective preventions/treatments. In this study, we found Ttr in a panel of potential POCD biomarkers identified using time-series analysis of the transcriptomes and proteomes of the hippocampi of POCD mice that diagnosed on individual basis with composite Z-scores of test batteries consisting of Y maze and open field test. Compared with their counterparts without POCD, the levels of Ttr were significantly lower in the peripheral circulation as well as in the hippocampi of the mice developed POCD at all indicated time points after surgery. The levels of peripheral TTR in human patients with delayed neurocognitive recovery were found to be reduced at 24 h after abdominal surgery, compared with those who did not. Endogenous expression of Ttr was verified in microglia cells both in vitro and in vivo. Results of in vitro assay indicated a potential role of Ttr in ameliorating LPS-induced microglial priming and protecting the differentiation of oligodendrocyte progenitor cells (OPCs) in proinflammatory microenvironment, which was one of the determinant factors in regulating the pathological progression of POCD.
Collapse
Affiliation(s)
- Xiaosheng Liang
- School of life science and technology, Jinan University, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Chao Song
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shufang Li
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Linpeng Li
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Guoku Dai
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Ruohui Zhang
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Olivia Meilan Zou
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Hongyu Yao
- School of life science and technology, Jinan University, Guangzhou, 510632, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yi Zou
- School of life science and technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Zhang Z, Hu C, Shi F, Zhang L, Wang Y, Zhang Y, Zhang X, She J. Low transthyretin is associated with the poor prognosis of colorectal cancer. Front Oncol 2025; 15:1397019. [PMID: 39975596 PMCID: PMC11835676 DOI: 10.3389/fonc.2025.1397019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Objective To determine whether transthyretin (TTR) influences the prognosis of patients with colorectal cancers and establish a predictive model based on TTR. Methods Between January 2013 and February 2019, the clinical data of 1322 CRC patients aged from 18 years to 80 years who underwent surgical treatment were retrospectively analyzed. The preoperative TTR level, clinicopathological data, and follow-up data were recorded. The X-tile program was used to determine the optimal cut-off value. Cox proportional hazard regression analysis was conducted to evaluate the correlation between the TTR and the cumulative incidence of cancer-specific survival (CSS). Nomograms were then developed to predict CSS. Furthermore, an additional cohort of 377 CRC patients enrolled between January 2014 and December 2015 was included as an external validation. Results Based on the optimal cut-off value of 121.3 mg/L, we divided the patients into the TTR-lower group (<121.3 mg/L) and the TTR-higher group (≥121.3 mg/L). Comparative analysis revealed that the TTR-higher group exhibited a younger demographic, a higher prevalence of low colorectal cancers, an elevated R0 resection rate, superior differentiation, earlier stage and lower levels of carcinoembryonic antigen (CEA) in contrast to the TTR-lower group. The Cox multivariable analysis underscored the significance of TTR and various clinicopathological factors, encompassing age, tumor location, R0 resection status, differentiation grade, disease stage, postoperative chemoradiotherapy, and preoperative CEA levels, as substantial prognostic indicators. The postoperative survival nomogram, when internally and externally assessed, demonstrated commendable performance across multiple metrics, including the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis (DCA). Compared with other models, the proportional hazards model combined with TTR demonstrates superior performance in terms of C-index, AUC, calibration chart, and DCA within the prognostic column chart. Conclusions The preoperative TTR was identified as a prognostic factor for predicting the long-term prognosis of CRC patients who underwent surgical treatment, supporting its role as a prognostic biomarker in clinical practice.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2025; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
7
|
Osama A, Anwar AM, Ezzeldin S, Ahmed EA, Mahgoub S, Ibrahim O, Ibrahim SA, Abdelhamid IA, Bakry U, Diab AA, A Sayed A, Magdeldin S. Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions. J Adv Res 2025:S2090-1232(25)00055-4. [PMID: 39870302 DOI: 10.1016/j.jare.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear. OBJECTIVES This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome. METHODS The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed. Microbial diversity was assessed using 16S rRNA V3 and V4 sequencing. A novel metaproteomics pipeline identified bacterial proteins, while untargeted metabolomics explored altered metabolic pathways. Finally, multi-omics integration was employed to connect macromolecular changes to neurodevelopmental deficits. RESULTS Children with ASD exhibited significant alterations in gut microbiota, including lower diversity and richness compared to controls. Tyzzerella was uniquely associated with the ASD group. Microbial network analysis revealed rewiring and reduced stability in ASD. Major metaproteins identified were produced by Bifidobacterium and Klebsiella (e.g., xylose isomerase and NADH peroxidase). Metabolomics profiling identified neurotransmitters (e.g., glutamate, DOPAC), lipids, and amino acids capable of crossing the blood-brain barrier, potentially contributing to neurodevelopmental and immune dysregulation. Host proteome analysis revealed altered proteins, including kallikrein (KLK1) and transthyretin (TTR), involved in neuroinflammation and immune regulation. Finally, multi-omics integration supported single-omics findings and reinforced the hypothesis that gut microbiota and their macromolecular products may contribute to ASD-associated symptoms. CONCLUSIONS The integration of multi-omics data provided critical evidence that alteration in gut microbiota and associated macromolecule production may play a role in ASD-related symptoms and co-morbidities. Key bacterial metaproteins and metabolites were identified as potential contributors to neurological and immune dysregulation in ASD, underscoring possible novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aya Osama
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Shahd Ezzeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Eman Ali Ahmed
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Omneya Ibrahim
- Psychiatry and Neurology Department, Faculty of Medicine, Suez Canal University, Egypt
| | | | | | - Usama Bakry
- Egypt Center for Research and Regenerative Medicine (ECRRM), Egypt
| | - Aya A Diab
- Genomic Research Program, Basic Research Department, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt
| | - Ahmed A Sayed
- Genomic Research Program, Basic Research Department, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt; Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
8
|
Zhao X, Sun Q, Shou Y, Chen W, Wang M, Qu W, Huang X, Li Y, Wang C, Gu Y, Ji C, Shu Q, Li X. A human forebrain organoid model reveals the essential function of GTF2IRD1-TTR-ERK axis for the neurodevelopmental deficits of Williams syndrome. eLife 2024; 13:RP98081. [PMID: 39671308 PMCID: PMC11643624 DOI: 10.7554/elife.98081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25-27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.
Collapse
Affiliation(s)
- Xingsen Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yikai Shou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Weijun Chen
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ying Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Chai Ji
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang UniversityHangzhouChina
- The Institute of Translational Medicine, School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Eytcheson SA, Zosel AD, Olker JH, Hornung MW, Degitz SJ. Screening the ToxCast Chemical Libraries for Binding to Transthyretin. Chem Res Toxicol 2024; 37:1670-1681. [PMID: 39258767 DOI: 10.1021/acs.chemrestox.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Transthyretin (TTR) is one of the serum binding proteins responsible for transport of thyroid hormones (TH) to target tissue and for maintaining the balance of available TH. Chemical binding to TTR and subsequent displacement of TH has been identified as an end point in screening chemicals for potential disruption of the thyroid system. To address the lack of data regarding chemicals binding to TTR, we optimized an in vitro assay utilizing the fluorescent probe 8-anilino-1-napthalenesulfonic acid (ANSA) and the human protein TTR to screen over 1500 chemicals from the U.S. EPA's ToxCast ph1_v2, ph2, and e1k libraries utilizing a tiered approach. Testing of a single high concentration (target 100 μM) resulted in 888 chemicals with 20% or greater activity based on displacement of ANSA from TTR. Of these, 282 chemicals had activity of 85% or greater and were further tested in 12-point concentration-response with target concentrations ranging from 0.015 to 100 μM. An EC50 was obtained for 276 of these 301 chemicals. To date, this is the largest set of chemicals screened for binding to TTR. Utilization of this assay is a significant contribution toward expanding the suite of in vitro assays used to identify chemicals with the potential to disrupt thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Stephanie A Eytcheson
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Alexander D Zosel
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
- Oak Ridge Associated Universities Student Services Contractor, Oak Ridge, Tennessee 37830, United States
| | - Jennifer H Olker
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Michael W Hornung
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| | - Sigmund J Degitz
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Duluth, Minnesota 55804, United States
| |
Collapse
|
10
|
Chakrabartty A. Structural Basis for Monoclonal Antibody Therapy for Transthyretin Amyloidosis. Pharmaceuticals (Basel) 2024; 17:1225. [PMID: 39338387 PMCID: PMC11435174 DOI: 10.3390/ph17091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The disease of transthyretin (TTR) amyloidosis (ATTR) has been known since the 1960s, and during the past 60 or so years, there has been a sustained period of steady discoveries that have led to the current model of ATTR pathogenesis. More recent research has achieved major advances in both diagnostics and therapeutics for ATTR, which are having a significant impact on ATTR patients today. Aiding these recent achievements has been the remarkable ability of cryo-electron microscopy (EM) to determine high-resolution structures of amyloid fibrils obtained from individual patients. Here, we will examine the cryo-EM structures of transthyretin amyloid fibrils to explore the structural basis of the two monoclonal antibody therapies for ATTR that are in clinical trials, ALXN-2220 and Coramitug, as well as to point out potential applications of this approach to other systemic amyloid diseases.
Collapse
Affiliation(s)
- Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
- Proteotoxicity Solutions, Toronto, ON L4K 2E1, Canada
| |
Collapse
|
11
|
Zigo M, Netherton J, Zelenková N, Kerns K, Kraus V, Postlerová P, Baker M, Sutovsky P. Bottom-up approach to deciphering the targets of the ubiquitin-proteasome system in porcine sperm capacitation. Sci Rep 2024; 14:20159. [PMID: 39215164 PMCID: PMC11364869 DOI: 10.1038/s41598-024-71056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA.
| | - Jacob Netherton
- HMRI Infertility and Reproduction Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Natálie Zelenková
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Veronika Kraus
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250, Vestec, Czech Republic
| | - Pavla Postlerová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, 16500, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250, Vestec, Czech Republic
| | - Mark Baker
- HMRI Infertility and Reproduction Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211-5300, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
12
|
Yang Y, Wang Y, Wang Y, Ke T, Zhao L. PCSK9 inhibitor effectively alleviated cognitive dysfunction in a type 2 diabetes mellitus rat model. PeerJ 2024; 12:e17676. [PMID: 39157774 PMCID: PMC11330219 DOI: 10.7717/peerj.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background The incidence of diabetes-associated cognitive dysfunction (DACD) is increasing; however, few clinical intervention measures are available for the prevention and treatment of this disease. Research has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, particularly SBC-115076, have a protective effect against various neurodegenerative diseases. However, their role in DACD remains unknown. In this study, we aimed to explore the impact of PCSK9 inhibitors on DACD. Methods Male Sprague-Dawley (SD) rats were used to establish an animal model of type 2 diabetes mellitus (T2DM). The rats were randomly divided into three groups: the Control group (Control, healthy rats, n = 8), the Model group (Model, rats with T2DM, n = 8), and the PCSK9 inhibitor-treated group (Treat, T2DM rats treated with PCSK9 inhibitors, n = 8). To assess the spatial learning and memory of the rats in each group, the Morris water maze (MWM) test was conducted. Hematoxylin-eosin staining and Nissl staining procedures were performed to assess the structural characteristics and functional status of the neurons of rats from each group. Transmission electron microscopy was used to examine the morphology and structure of the hippocampal neurons. Determine serum PCSK9 and lipid metabolism indicators in each group of rats. Use qRT-PCR to detect the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in the hippocampal tissues of each group of rats. Western blot was used to detect the expression of PCSK9 and low-density lipoprotein receptor (LDLR) in the hippocampal tissues of rats. In addition, a 4D label-free quantitative proteomics approach was used to analyse protein expression in rat hippocampal tissues. The expression of selected proteins in hippocampal tissues was verified by parallel reaction monitoring (PRM) and immunohistochemistry (IHC). Results The results showed that the PCSK9 inhibitor alleviated cognitive dysfunction in T2DM rats. PCSK9 inhibitors can reduce PCSK9, total cholesterol (TC), and low-density lipoprotein (LDL) levels in the serum of T2DM rats. Meanwhile, it was found that PCSK9 inhibitors can reduce the expression of PCSK9, IL-1β, IL-6, and TNF-α in the hippocampal tissues of T2DM rats, while increasing the expression of LDLR. Thirteen potential target proteins for the action of PCSK9 inhibitors on DACD rats were identified. PRM and IHC revealed that PCSK9 inhibitors effectively counteracted the downregulation of transthyretin in DACD rats. Conclusion This study uncovered the target proteins and specific mechanisms of PCSK9 inhibitors in DACD, providing an experimental basis for the clinical application of PCSK9 inhibitors for the potential treatment of DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Kumar S, Mishra A, Singh SP, Singh A. Anti-filarial efficacy of Centratherum anthelminticum: unravelling the underlying mechanisms through biochemical, HRAMS proteomics and MD simulation approaches. RSC Adv 2024; 14:25198-25220. [PMID: 39139251 PMCID: PMC11318267 DOI: 10.1039/d4ra03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Traditionally, Centratherum anthelminticum (CA) has been reported to be a potent anti-filarial, however no reports are available detailing its mechanism of action against filarial parasites. In this study, we have evaluated the anti-filarial activity of CA against lymphatic filarial parasites Setaria cervi using ex vivo biochemical, proteomics and in silico approaches. The motility and viability of the parasites decreased significantly after treatment with CA concentrations of ≥125 μg mL-1. An increase in lipid peroxidation (51.92%), protein carbonylation (48.99%), NADPH oxidase (88.88%) activity and decrease in the glutathione (GSH) (-39.23%), glutathione reductase (GR) (-60.17%), and glutathione S-transferase (GST) (-50.48%) activity was also observed after CA treatment. The proteomics analysis was performed by two-dimensional gel electrophoresis and high-resolution accurate mass spectrometry (HRAMS). In total, 185 proteins were differentially expressed (DEPs) following CA treatment. The major DEPs were mostly involved in tRNA processing, biosynthetic processes, metabolic activities, protein transport, the tricarboxylic acid cycle, protein translation, and stress response. The UPLC-ESI-MS/MS analysis of CA extract revealed the presence of 40 bioactive compounds. Further the docking analysis showed 10 CA bioactive compounds to have high binding affinity towards antioxidant proteins of filarial parasites. Additionally, MD simulation studies showed stable interactions (RMSF ≤ 10 Å) of 3-O-methylquercitin, quinic acid, gentisic acid, and vanillin with filarial antioxidant enzymes/proteins. To our knowledge, this is the first report detailing the molecular mechanism of anti-filarial activity of CA, which can be further evaluated for the development of new anti-filarial formulations.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 UP India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 UP India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 UP India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi 221005 UP India
| |
Collapse
|
14
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Liang L, Zhang Y, Zhu Y, Bai J, Ni Y, Wan J, Yue H, Zhao Q, Li H. Structures and Dynamics of β-Rich Oligomers of ATTR (105-115) Assembly. ACS Chem Neurosci 2024; 15:1356-1365. [PMID: 38483181 DOI: 10.1021/acschemneuro.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Transthyretin (TTR) is a tetrameric homologous protein that can dissociate into monomers. Misfolding and aggregation of TTR can lead to amyloid transthyretin amyloidosis (ATTR), which can cause many diseases (e.g., senile systemic amyloidosis, familial amyloid cardiomyopathy, and familial amyloid polyneuropathy). Despite growing evidence indicating that small oligomers play a critical role in regulating cytotoxicity, the structures of these oligomeric intermediates and their conformational transformations are still unclear, impeding our understanding of neurodegenerative mechanisms and the development of therapeutics targeting early aggregation species. The TTR monomer protein consists of various fragments prone to self-aggregation, including the residue 105-115 sequence. Therefore, our study investigated the assembly progress of ATTR (105-115) peptides using all-atom molecular dynamics simulations. The findings indicate that the probability of β-sheet content increases with increasing numbers of peptides. Additionally, interactions between hydrophobic residues L110 and L111 are crucial for the formation of a β-rich oligomer formation. These β-rich oligomers may adopt β-barrel conformations, potentially toxic oligomer species. Free-energy analysis reveals that β-barrel conformations serve as intermediates for these β-rich oligomers. Our insights into the structural ensemble dynamics of ATTR (105-115) contribute to understanding the physical mechanisms underlying the β-barrel oligomers of ATTR. These findings may shed light on the pathological role of ATTR in neurodegenerative diseases and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Liqun Liang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuqi Zhang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Juxia Bai
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yangyang Ni
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junfeng Wan
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Haiyan Yue
- Naval Medical Center of PLA, Department of Gastroenterology, Naval Medical University, Shanghai 200433, China
| | - Qingjie Zhao
- Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
16
|
Grelich-Mucha M, Bachelart T, Torbeev V, Ożga K, Berlicki Ł, Olesiak-Bańska J. Amyloid engineering - how terminal capping modifies morphology and secondary structure of supramolecular peptide aggregates. Biomater Sci 2024; 12:1590-1602. [PMID: 38323504 DOI: 10.1039/d3bm01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The effects of peptide N- and C-termini on aggregation behavior have been scarcely studied. Herein, we examine (105-115) peptide fragments of transthyretin (TTR) containing various functional groups at both termini and study their impact on the morphology and the secondary structure. We synthesized TTR(105-115) peptides functionalized with α-amino (H-), N-acetyl-α-amino (Ac-) or N,N-dimethyl-α-amino (DiMe-) groups at the N-terminus, and with amide (-NH2) or carboxyl (-OH) functions at the C-terminus. We also investigated quasi-racemic mixtures by mixing the L-enantiomers with the D-enantiomer capped by H- and -NH2 groups. We observed that fibril formation is promoted by the sufficient number of hydrogen bonds at peptides' termini. Moreover, the final morphology of the aggregates can be controlled by the functional groups at the N-terminus. Remarkably, all quasi-racemic mixtures resulted in the robust formation of fibrils. Overall, this work illustrates how modifications of peptide termini may help to engineer supramolecular aggregates with a predicted morphology.
Collapse
Affiliation(s)
- Manuela Grelich-Mucha
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Thomas Bachelart
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400 Illkirch, France
| | - Vladimir Torbeev
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400 Illkirch, France
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
17
|
Pinheiro F, Varejão N, Sánchez-Morales A, Bezerra F, Navarro S, Velázquez-Campoy A, Busqué F, Almeida MR, Alibés R, Reverter D, Pallarès I, Ventura S. PITB: A high affinity transthyretin aggregation inhibitor with optimal pharmacokinetic properties. Eur J Med Chem 2023; 261:115837. [PMID: 37837673 DOI: 10.1016/j.ejmech.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
The aggregation of wild-type transthyretin (TTR) and over 130 genetic TTR variants underlies a group of lethal disorders named TTR amyloidosis (ATTR). TTR chemical chaperones are molecules that hold great promise to modify the course of ATTR progression. In previous studies, we combined rational design and molecular dynamics simulations to generate a series of TTR selective kinetic stabilizers displaying exceptionally high affinities. In an effort to endorse the previously developed molecules with optimal pharmacokinetic properties, we conducted structural design optimization, leading to the development of PITB. PITB binds with high affinity to TTR, effectively inhibiting tetramer dissociation and aggregation of both the wild-type protein and the two most prevalent disease-associated TTR variants. Importantly, PITB selectively binds and stabilizes TTR in plasma, outperforming tolcapone, a drug currently undergoing clinical trials for ATTR. Pharmacokinetic studies conducted on mice confirmed that PITB exhibits encouraging pharmacokinetic properties, as originally intended. Furthermore, PITB demonstrates excellent oral bioavailability and lack of toxicity. These combined attributes position PITB as a lead compound for future clinical trials as a disease-modifying therapy for ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain; Aragon Institute for Health Research, Zaragoza (Spain) and Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain; ICREA, Passeig Lluis Companys 23, E-08010, Barcelona, Spain.
| |
Collapse
|
18
|
Ghosh S, Villacorta-Martin C, Lindstrom-Vautrin J, Kenney D, Golden CS, Edwards CV, Sanchorawala V, Connors LH, Giadone RM, Murphy GJ. Mapping cellular response to destabilized transthyretin reveals cell- and amyloidogenic protein-specific signatures. Amyloid 2023; 30:379-393. [PMID: 37439769 DOI: 10.1080/13506129.2023.2224494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/04/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND In ATTR amyloidosis, transthyretin (TTR) protein is secreted from the liver and deposited as toxic aggregates at downstream target tissues. Despite recent advancements in treatments for ATTR amyloidosis, the mechanisms underlying misfolded TTR-mediated cellular damage remain elusive. METHODS In an effort to define early events of TTR-associated stress, we exposed neuronal (SH-SY5Y) and cardiac (AC16) cells to wild-type and destabilized TTR variants (TTRV122I (p.V142I) and TTRL55P (p.L70P)) and performed transcriptional (RNAseq) and epigenetic (ATACseq) profiling. We subsequently compared TTR-responsive signatures to cells exposed to destabilized antibody light chain protein associated with AL amyloidosis as well as ER stressors (thapsigargin, heat shock). RESULTS In doing so, we observed overlapping, yet distinct cell type- and amyloidogenic protein-specific signatures, suggesting unique responses to each amyloidogenic variant. Moreover, we identified chromatin level changes in AC16 cells exposed to mutant TTR that resolved upon pre-incubation with kinetic stabilizer tafamidis. CONCLUSIONS Collectively, these data provide insight into the mechanisms underlying destabilized protein-mediated cellular damage and provide a robust resource representing cellular responses to aggregation-prone proteins and ER stress.
Collapse
Affiliation(s)
- Sabrina Ghosh
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | | | | | - Devin Kenney
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Carly S Golden
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Camille V Edwards
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Vaishali Sanchorawala
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Lawreen H Connors
- Amyloidosis Center, Alan and Sandra Gerry Amyloid Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - Richard M Giadone
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Jia D, Miao W, Rui Y, Chen Y, Liang W, Yi Z. Thyroid hormone transporters binding affinity of methoxypoly chlorinated biphenyls: Insights from molecular simulations and fluorescence competitive binding experiment. Int J Biol Macromol 2023; 231:123224. [PMID: 36649871 DOI: 10.1016/j.ijbiomac.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Triiodothyronine (T3) and thyroxine (T4) are essential for regulating cell metabolic rate and promoting the development and differentiation of brain tissue, especially in fetuses and newborns. In particular, it has been proved that MeO-PCBs have high binding to thyroid hormone transporters and can competitively bind to thyroid carrier proteins, thus destroying the transport of the thyroid hormone. Fluorescence competition binding experiments and docking results showed that the binding affinity decreased with the increase in number of chlorine atoms of MeO-PCBs. The interaction mechanism of MeO-PCBs with thyroid transporter (TTR) and thyroid binding globulin (TBG) was compared by computational simulation and the binding free energies were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Electrostatic potential analysis, Hirshfeld surface analysis and electron density difference maps confirmed the existence of electrostatic interactions. Secondly, noncovalent interaction (NCI) analysis further indicated that the main driving force for the combination of MeO-PCBs to TTR and TBG were electrostatic interaction and van der Waals interaction. The conformational changes of the protein after binding were studied by a molecular dynamic simulation.
Collapse
Affiliation(s)
- Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuefan Rui
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yanting Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wenhui Liang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
20
|
Miao W, Jia D, Rui Y, Liang W, Chen Y, Liu H, Yi Z. Interaction Mechanisms of the Binding of Polychlorinated Biphenyls to Thyroid Hormone Transporters Revealed based on Quantum Chemistry and Spectroscopy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Uzoechi SC, Rosa BA, Singh KS, Choi YJ, Bracken BK, Brindley PJ, Townsend RR, Sprung R, Zhan B, Bottazzi ME, Hawdon JM, Wong Y, Loukas A, Djuranovic S, Mitreva M. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens 2023; 12:95. [PMID: 36678443 PMCID: PMC9865600 DOI: 10.3390/pathogens12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm's excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kumar Sachin Singh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Zhan
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria-Elena Bottazzi
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Yide Wong
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Dardiotis E, Kyriakides T. Drug and Gene Therapy for Treating Variant Transthyretin Amyloidosis (ATTRv) Neuropathy. Curr Neuropharmacol 2023; 21:471-481. [PMID: 36366846 PMCID: PMC10207904 DOI: 10.2174/1570159x21666221108094736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Variant Transthyretin Amyloidosis (ATTRv) neuropathy is an adult-onset, autosomal dominant, lethal, multisystemic disease due to the deposition of mutated transthyretin (TTR) in various organs, commonly involving the peripheral nerves and the heart. Circulating TTR tetramers are unstable due to the presence of mutated TTR and dissociate into monomers, which misfold and form amyloid fibrils. Although there are more than 140 mutations in the TTR gene, the p.Val50Met mutation is by far the commonest. In the typical, early-onset cases, it presents with a small sensory fibre and autonomic, length-dependent, axonal neuropathy, while in late-onset cases, it presents with a lengthdependent sensorimotor axonal neuropathy involving all fibre sizes. Treatment is now available and includes TTR stabilizers, TTR amyloid removal as well as gene silencing, while gene editing therapies are on the way. Its timely diagnosis is of paramount importance for a better prognosis.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, School of Health Sciences, Faculty of Medicine, University Hospital of Larissa, Larissa, Greece
| | - Theodoros Kyriakides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
23
|
Zhou S, Zou H, Wang Y, Lo GV, Yuan S. Atomic Mechanisms of Transthyretin Tetramer Dissociation Studied by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6667-6678. [PMID: 35993568 DOI: 10.1021/acs.jcim.2c00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dissociation of the transthyretin (TTR) tetramer into a monomer is closely related to various TTR amyloidoses in humans. While the tetramer dissociation has been reported to be the rate-limiting step for TTR aggregation, few details are known about the mechanism. Here, molecular dynamics (MD) simulations were performed by combining conventional MD and biased metadynamics to investigate the mechanism for the wild-type (WT) and mutant (T119M) structures. Both were found to have a great deal in common. Conventional MD simulations reveal that interfacial hydrophobic interactions contribute significantly to stabilize the tetramer. Interfacial residues including L17, V20, L110, and V121 with close contacts form a hydrophobic channel. Metadynamics simulations indicate that the mouth opening of the hydrophobic channel is the first and the most difficult step for dissociation. Interactions of V20 between opposing dimers lock four monomers into the tetramer, and disruption of the interactions is found to be involved in the final step. During the dissociation, an increasing extent of solvation was observed by calculating the radial distribution functions of water around interfacial hydrophobic residues, suggesting that water plays a role in driving the tetramer dissociation. Moreover, compared to T119, residue M119 has a longer side chain that extends into the hydrophobic channel, making solvation more difficult, consistent with a higher energy barrier for dissociation of the T119M tetramer. This result provides a good explanation for the protective role of the T119M mutation. Overall, this study can provide atomic-level insights to better understand the pathogenesis of TTR amyloidosis and guide rational drug design in the future.
Collapse
Affiliation(s)
- Shuangyan Zhou
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huizhen Zou
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yu Wang
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Glenn V Lo
- Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, Louisiana 70310, United States
| | - Shuai Yuan
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
24
|
Carmona-Calero EM, González-Toledo JM, Hernández-Abad LG, Castañeyra-Perdomo A, González-Marrero I. Early Regressive Development of the Subcommissural Organ of Two Human Fetuses with Non-Communicating Hydrocephalus. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121966. [PMID: 36553409 PMCID: PMC9776597 DOI: 10.3390/children9121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hydrocephalus is a central nervous system condition characterized by CSF buildup and ventricular hypertrophy. It is divided into two types: communicative and non-communicating hydrocephalus. Congenital hydrocephalus has been linked to several changes in the subcommissural organ (SCO). However, it is unclear whether these changes occur before or as a result of the hydrocephalic illness. This report presents three cases of human fetuses with hydrocephalus: one non-communicating case, two communicating cases, and two controls. Hematoxylin-Eosin (H&E) or cresyl violet and immunohistochemistry with anti-transthyretin were used to analyze SCO morphological and secretory changes. We conclude that in the cases presented here, there could be an early regression in the SCO of the communicating cases that is not present in the non-communicating case.
Collapse
Affiliation(s)
- Emilia M. Carmona-Calero
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Campus de Ofra, Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Investigación y Ciencias Puerto del Rosario, 35600 Las Palmas de Gran Canaria, Spain
| | - Juan M. González-Toledo
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Campus de Ofra, Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - Luis G. Hernández-Abad
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Campus de Ofra, Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - Agustin Castañeyra-Perdomo
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Campus de Ofra, Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Investigación y Ciencias Puerto del Rosario, 35600 Las Palmas de Gran Canaria, Spain
- Correspondence:
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Campus de Ofra, Universidad de La Laguna, 38320 Santa Cruz de Tenerife, Spain
| |
Collapse
|
25
|
Huang H, Zhang Q, Zhang Y, Sun X, Liu C, Wang Q, Huang Y, Li Q, Wu Z, Pu C, Sun A. Identification of the Level of Exosomal Protein by Parallel Reaction Monitoring Technology in HCC Patients. Int J Gen Med 2022; 15:7831-7842. [PMID: 36267426 PMCID: PMC9578473 DOI: 10.2147/ijgm.s384140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Reliable biomarkers for the diagnosis and differential diagnosis of various stages of liver cancer are lacking. In this study, we aim to detect the levels of differentially expressed proteins (DEPs) in serum exosomes of patients with different liver diseases using a sensitive method. PATIENTS AND METHODS Exosomes were purified and validated. The expression of DEPs in exosomes from patients with chronic hepatitis B (CHB), liver cirrhosis (LC) and hepatocellular carcinoma (HCC) was validated by parallel reaction monitoring (PRM) technology and Western blotting, and the biological functions were analyzed by bioinformatics analysis. RESULTS A total of 11 DEPs were identified by PRM technology. Significantly higher level of haptoglobin (Hp) was detected in HCC patients as compared to LC and CHB patients. HCC patients had a significantly lower level of transthyretin (TTR) in the patients with CHB. Among the patients with HCC who undertaken surgery, the postoperative levels of CRP, SERPINA3 and Heparin cofactor 2 (SERPIND1) were significantly reduced compared to their respective preoperative levels. CONCLUSION Hp and TTR may be potential markers for early diagnosis of HCC. CRP, SERPINA3 and SERPIND1 may serve as potential prognostic indicators for HCC patients undertaken surgery.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Qiqi Zhang
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Yong Zhang
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Xueying Sun
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Chunyan Liu
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Qi Wang
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Yushuang Huang
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, People’s Republic of China
| | - Zepan Wu
- College of Life Science, Liaoning Normal University, Dalian, 116081, People’s Republic of China
| | - Chunwen Pu
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China,Correspondence: Chunwen Pu, Department of Biobank, Dalian Public Health Clinical Center, No. 269, Guibai Road, Ganjingzi District, Dalian, 116001, People’s Republic of China, Email
| | - Aijun Sun
- Department of Biobank, Dalian Public Health Clinical Center, Dalian, 116001, People’s Republic of China,Aijun Sun, Department of biobank, Dalian Public Health Clinical Center, No. 269, Guibai Road, Ganjingzi District, Dalian, 116001, People’s Republic of China, Email
| |
Collapse
|
26
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Mesgarzadeh JS, Romine IC, Smith-Cohen EM, Grandjean JMD, Kelly JW, Genereux JC, Wiseman RL. ATF6 Activation Reduces Amyloidogenic Transthyretin Secretion through Increased Interactions with Endoplasmic Reticulum Proteostasis Factors. Cells 2022; 11:1661. [PMID: 35626697 PMCID: PMC9139617 DOI: 10.3390/cells11101661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
The extracellular aggregation of destabilized transthyretin (TTR) variants is implicated in the onset and pathogenesis of familial TTR-related amyloid diseases. One strategy to reduce the toxic, extracellular aggregation of TTR is to decrease the population of aggregation-prone proteins secreted from mammalian cells. The stress-independent activation of the unfolded protein response (UPR)-associated transcription factor ATF6 preferentially decreases the secretion and subsequent aggregation of destabilized, aggregation-prone TTR variants. However, the mechanism of this reduced secretion was previously undefined. Here, we implement a mass-spectrometry-based interactomics approach to identify endoplasmic reticulum (ER) proteostasis factors involved in ATF6-dependent reductions in destabilized TTR secretion. We show that ATF6 activation reduces amyloidogenic TTR secretion and subsequent aggregation through a mechanism involving ER retention that is mediated by increased interactions with ATF6-regulated ER proteostasis factors including BiP and PDIA4. Intriguingly, the PDIA4-dependent retention of TTR is independent of both the single TTR cysteine residue and the redox activity of PDIA4, indicating that PDIA4 retains destabilized TTR in the ER through a redox-independent mechanism. Our results define a mechanistic basis to explain the ATF6 activation-dependent reduction in destabilized, amyloidogenic TTR secretion that could be therapeutically accessed to improve treatments of TTR-related amyloid diseases.
Collapse
Affiliation(s)
- Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isabelle C. Romine
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ethan M. Smith-Cohen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julia M. D. Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph C. Genereux
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|