1
|
Daniels MH, Castro J, Lee YT, Gotur D, Knockenhauer KE, Grigoriu S, Lockbaum GJ, Cheong JE, Lu C, Brennan D, Buker SM, Liu J, Yao S, Sparling BA, Sickmier EA, Ribich S, Blakemore SJ, Silver SJ, Boriack-Sjodin PA, Duncan KW, Copeland RA. Discovery of ATX968: An Orally Available Allosteric Inhibitor of DHX9. J Med Chem 2025. [PMID: 40298172 DOI: 10.1021/acs.jmedchem.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
DHX9 is an RNA/DNA helicase integral in the maintenance of genome stability that has emerged as an attractive target for oncology drug discovery. Disclosed herein is the discovery and optimization of a series of DHX9 inhibitors. Compound 1 was identified as a partial inhibitor of DHX9 ATPase activity but a full inhibitor of unwinding activity. Binding of 1 to a pocket distinct from the ATP binding site was confirmed by X-ray crystallography, enabling structure-based drug optimization. During this optimization, a sulfur-halogen bond was identified that increased on-target residence time without impacting equilibrium binding affinity. Analysis shows that cell potency more closely correlates with residence time than with equilibrium measurements of binding affinity or biochemical potency. Further optimization of potency and ADME properties led to the identification of ATX968, a potent and selective DHX9 inhibitor that is efficacious in a tumor xenograft model of microsatellite instability-high (MSI-H) colorectal cancer.
Collapse
Affiliation(s)
- Matthew H Daniels
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Jennifer Castro
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Young-Tae Lee
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Deepali Gotur
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Kevin E Knockenhauer
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Simina Grigoriu
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Gordon J Lockbaum
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Jae Eun Cheong
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Chuang Lu
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - David Brennan
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Shane M Buker
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Julie Liu
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Shihua Yao
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Brian A Sparling
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - E Allen Sickmier
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Scott Ribich
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Steve J Blakemore
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Serena J Silver
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - P Ann Boriack-Sjodin
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Kenneth W Duncan
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Robert A Copeland
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| |
Collapse
|
2
|
Song A, Liu B, Li W, Chen B, Gui P, Zhang H, Zhu C, Xu Y, Jiang T, Song J. Competitive binding between DDX21 and SIRT7 enhances NAT10-mediated ac 4C modification to promote colorectal cancer metastasis and angiogenesis- DDX21 promotes colorectal cancer metastasis. Cell Death Dis 2025; 16:353. [PMID: 40301349 PMCID: PMC12041575 DOI: 10.1038/s41419-025-07656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
DExD- box helicase 21 (DDX21) is overexpressed in colorectal cancer (CRC) and is positively correlated with poor prognosis and the malignant phenotype of CRC. Functional characterization indicated that DDX21 promotes CRC metastasis and angiogenesis both in vitro and in vivo. N-acetyltransferase 10 (NAT10) is a key regulator of the N4-acetylcytidine (ac4C) modification of mRNA, regulating the stabilization of mRNA via ac4C modification. Here, we identified that DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis. Overall, the present study revealed a mechanism of DDX21/NAT10-mediated mRNA stability in CRC, laying the foundation for the use of DDX21 as a therapeutic target to overcome metastasis and angiogenesis in CRC. DDX21 competitive binding with sirtuin 7 (SIRT7), inducing the overexpression of NAT10. Furthermore, DDX21 upregulates NAT10 expression to enhance ac4C modification and the stability of ATAD2, SOX4 and SNX5 mRNAs, which mediate CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Angxi Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenjing Li
- Central Laboratory, Xuzhou NO.1 people's hospital, Xuzhou, China
| | - Bingyuan Chen
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Pengkun Gui
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Xu J, Li N, Xie H, Duan C, Liao X, Li R, Zhang H, Pan Y, Ma X, Du S, Sheng J, Wang X, Yang L, Jin P. CSF3 promotes colorectal cancer progression by activating p65/NF-κB signaling pathway and inducing an immunosuppressive microenvironment. Transl Oncol 2025; 53:102310. [PMID: 39929064 PMCID: PMC11849657 DOI: 10.1016/j.tranon.2025.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Colony-stimulating factor 3 (CSF3) is a cytokine that promotes inflammation by stimulating the maturation, proliferation, and trafficking of myeloid progenitor cells. However, the functional importance of CSF3 in colorectal cancer (CRC) remains unclear. METHODS CSF3 expression levels in CRC cells and tissues were detected by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of CSF3 in the tumor associated malignant phenotypes and the tumorigenic capability of CRC cells. Immunocoprecipitation was performed to verify the regulatory effects of CSF3 on IκBα ubiquitination. RESULTS We found that CSF3 was overexpressed in CRC tissues compared to adjacent normal tissues, which correlated with poor patient survival. In vitro, silencing CSF3 significantly impaired cell proliferation, colony formation, and migration, while enhancing apoptosis. In vivo, silencing CSF3 resulted in reduced tumor growth, weight, and volume, indicating its potential as a therapeutic target. Mechanistically, CSF3 was found to mediate CRC development by activating the NF-κB signaling pathway, as evidenced by the decreased phosphorylation of p65 and reduced IκBα ubiquitination in CSF3-silenced cells. Furthermore, CSF3 silencing modulated immune infiltration in CRC, promoting an anti-tumor immune response and altering the tumor microenvironment. CONCLUSION CSF3 modulated the NF-κB signaling pathway through a distinct mechanism involving p65 phosphorylation and the activation of NF-κB by enhancing IκBα ubiquitination, thereby effectively promoting CRC development, and CSF3 may serve as a potential therapeutic target for repressing CRC advance and metastasis.
Collapse
Affiliation(s)
- Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China
| | - Na Li
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Changwei Duan
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Xingchen Liao
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Ruoran Li
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Heng Zhang
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, PR China
| | - Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Shuwen Du
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| | - Lang Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| |
Collapse
|
4
|
Liang Y, Xiong X, Lin G, Bai X, Li F, Ko JM, Zhou Y, Xu A, Liu S, He S, Wei P, Chen Q, Tang L, Wang VY, Mai H, Luo C, Zeng Y, Lung ML, Ji M, Bei J. Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412580. [PMID: 39854120 PMCID: PMC11923910 DOI: 10.1002/advs.202412580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Indexed: 01/26/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.2 as a novel susceptibility gene for NPC. Further fine-mapping analyses pinpoint rs1058588, located within VAMP8, as a causal variant through eQTL colocalization, and GWAS analyses across multiple cohorts, achieving GWAS significance (OR = 1.18, P = 3.09 × 10-10). Functional assays demonstrate that VAMP8 exerts a tumorigenic role in NPC, enhancing cell proliferation, migration, and tumor growth. Mechanically, it is uncovered that rs1058588 modulates VAMP8 expression by altering its binding affinity to miR-185. Furthermore, the results show that VAMP8 interacts with DHX9 to facilitate the nuclear recruitment of p65, activating the NF-κB pathway. Collectively, the findings shed light on the genetic predisposition to NPC and underscore the critical role of the functional axis involving miR-185, VAMP8, DHX9, and the NF-κB pathway in NPC pathogenesis.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiang‐Yu Xiong
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Guo‐Wang Lin
- Department of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Xiaomeng Bai
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Faculty of Forensic MedicineGuangdong Province Translational Forensic Medicine Engineering Technology Research CenterZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Fugui Li
- Cancer Research Institute of Zhongshan CityZhongshan City People's HospitalZhongshan528403P. R. China
| | - Josephine Mun‐Yee Ko
- Department of Clinical OncologySchool of Clinical MedicineUniversity of Hong KongHong Kong SAR999077P. R. China
| | - Yun‐He Zhou
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - An‐Yi Xu
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Shu‐Qiang Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Pan‐Pan Wei
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qiu‐Yan Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Lin‐Quan Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Vivien Ya‐Fan Wang
- Faculty of Health SciencesUniversity of MacauAvenida da UniversidadeTaipaMacau SAR999078P. R. China
| | - Hai‐Qiang Mai
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Chun‐Ling Luo
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yanni Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Faculty of Forensic MedicineGuangdong Province Translational Forensic Medicine Engineering Technology Research CenterZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Maria Li Lung
- Department of Clinical OncologySchool of Clinical MedicineUniversity of Hong KongHong Kong SAR999077P. R. China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan CityZhongshan City People's HospitalZhongshan528403P. R. China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterSun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Clinical OncologySchool of Clinical MedicineUniversity of Hong KongHong Kong SAR999077P. R. China
- Sun Yat‐sen University Institute of Advanced Studies Hong KongScience ParkHong Kong SAR999077P. R. China
- Department of Medical OncologyNational Cancer Centre SingaporeSingapore169610Singapore
| |
Collapse
|
5
|
Castro J, Daniels MH, Brennan D, Johnston B, Gotur D, Lee YT, Knockenhauer KE, Lu C, Wu J, Nayak S, Collins C, Bansal R, Buker SM, Case A, Liu J, Yao S, Sparling BA, Sickmier EA, Silver SJ, Blakemore SJ, Boriack-Sjodin PA, Duncan KW, Ribich S, Copeland RA. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Cancer Res 2025; 85:758-776. [PMID: 39589774 PMCID: PMC11831107 DOI: 10.1158/0008-5472.can-24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
DHX9 is a multifunctional DExH-box RNA helicase with important roles in the regulation of transcription, translation, and maintenance of genome stability. Elevated expression of DHX9 is evident in multiple cancer types, including colorectal cancer. Microsatellite instable-high (MSI-H) tumors with deficient mismatch repair (dMMR) display a strong dependence on DHX9, making this helicase an attractive target for oncology drug discovery. In this report, we show that DHX9 knockdown increased RNA/DNA secondary structures and replication stress, resulting in cell-cycle arrest and the onset of apoptosis in cancer cells with MSI-H/dMMR. ATX968 was identified as a potent and selective inhibitor of DHX9 helicase activity. Chemical inhibition of DHX9 enzymatic activity elicited similar selective effects on cell proliferation as seen with genetic knockdown. In addition, ATX968 induced robust and durable responses in an MSI-H/dMMR xenograft model but not in a microsatellite stable/proficient MMR model. These preclinical data validate DHX9 as a target for the treatment of patients with MSI-H/dMMR. Additionally, this potent and selective inhibitor of DHX9 provides a valuable tool with which to further explore the effects of inhibition of DHX9 enzymatic activity on the proliferation of cancer cells in vitro and in vivo. Significance: DHX9 is required in cancer cells with deficient mismatch repair and can be inhibited by ATX968, providing a promising strategy for the development of precision cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuang Lu
- Accent Therapeutics, Lexington, Massachusetts
| | - Jie Wu
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | - April Case
- Accent Therapeutics, Lexington, Massachusetts
| | - Julie Liu
- Accent Therapeutics, Lexington, Massachusetts
| | - Shihua Yao
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Yang L, Li X, Yang Q, Ma R, Wu Z. Expression of DDX49 in breast cancer and its mechanism regulating the proliferation and metastasis of breast cancer cells. Growth Factors 2025; 43:45-55. [PMID: 40178930 DOI: 10.1080/08977194.2025.2484007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
DEAD-box RNA helicase (DDX) is linked to the invasion, drug resistance, proliferation, and epithelial-mesenchymal transition of tumour cells. This study examined the potential mechanisms of DDX49 in breast cancer. The expression of DDX49 in breast cancer tissues and cells was evaluated. The effects of DDX49 on proliferation, invasion, migration and apoptosis of breast cancer cells were evaluated. The expression of proteins associated with the JAK/STAT pathway was examined. A xenograft tumour model was established. DDX49 expression is elevated in breast cancer tissues and cell lines. shDDX49 suppressed the ability of breast cancer cells to proliferate, invade, and migrate, but promoted apoptosis. Conversely, overexpression of DDX49 exerted an opposite effect. The activation of the JAK-STAT signalling pathway is inhibited by the shDDX49. shDDX49 efficiently inhibits tumour growth in mice with breast cancer. shDDX49 may hinder the growth and spread of breast cancer cells by inhibiting the JAK-STAT pathway.
Collapse
Affiliation(s)
- Yuanbin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Yang
- Department of Chemotherapy Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangli Li
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruimin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Xing J, Feng X, Zhang R, Zhang K. Targeting Hepatocellular Carcinoma Growth: Haprolid's Inhibition of AKT Signaling Through DExH-Box Helicase 9 Downregulation. Cancers (Basel) 2025; 17:443. [PMID: 39941810 PMCID: PMC11816161 DOI: 10.3390/cancers17030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Objective: Haprolid, a novel compound extracted from Myxobacterium, has been proven to possess selective toxicity towards various tumor cells, effectively inhibiting the growth of hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains unclear. Methods: To identify differentially expressed proteins (DEPs), isobaric tags for relative and absolute quantitation (iTRAQ) were employed. The clinical significance of DExH-Box Helicase 9 (DHX9) was determined using tissue microarrays in HCC patients. Changes in protein expression were detected using Western blotting, qPCR, and immunohistochemistry. Cell proliferation was evaluated using CCK-8 and crystal violet staining. Cell apoptosis was assessed using Alexa Fluor 647 Annexin V. Xenograft tumor experiments were conducted in animals. Results: iTRAQ screening identified DHX9 as a DEP. DHX9 was discovered to be highly expressed in HCC tissues, correlating with poor prognosis in patients. Haprolid downregulated DHX9 expression, while knockdown of DHX9 suppressed HCC cell proliferation and migration and promoted apoptosis. Meanwhile, overexpression of DHX9 mitigated the inhibitory effect of Haprolid on HCC cells. Knockdown of DHX9 inhibited the AKT signaling pathway, and SC79 reversed the inhibitory effect of DHX9 knockdown on HCC cells. Xenograft experiments confirmed that the knockdown of DHX9 inhibited HCC growth, while the overexpression of DHX9 attenuated the inhibitory effect of Haprolid on HCC growth. Conclusions: Haprolid inhibits the AKT signaling pathway by downregulating DHX9, ultimately suppressing HCC growth. This finding opens up new avenues for targeted HCC therapy.
Collapse
Affiliation(s)
| | | | | | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (J.X.)
| |
Collapse
|
8
|
Liu N, Wang Q, Zhu P, He G, Li Z, Chen T, Yuan J, La T, Tian H, Li Z. DHX34 as a promising biomarker for prognosis, immunotherapy and chemotherapy in Pan-Cancer: A Comprehensive Analysis and Experimental Validation. J Cancer 2024; 15:6594-6615. [PMID: 39668816 PMCID: PMC11632995 DOI: 10.7150/jca.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/05/2024] [Indexed: 12/14/2024] Open
Abstract
Background: As a member of the DExD/H-box RNA helicase family, DHX34 has demonstrated a significant correlation with the development of multiple disorders. Nevertheless, a comprehensive investigation between DHX34 and pan-cancer remains unexplored. Methods: We analyzed the value of DHX34 in pan-cancer based on some databases, such as The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) by use the R language as well as some online analysis tools, including STRING, TISIDB, TISCH2. And based on our samples we performed Western blot (WB), qPCR and immunohistochemical staining (IHC) experiments. Results: DHX34 was highly expressed in most tumors, including Liver Hepatocellular Carcinoma (LIHC), compared to corresponding normal tissues. Among cervical cancers, DHX34 mutation frequency was the highest. Intriguingly, a positive correlation was observed between DHX34 expression and Mutational Burden (TMB) across 12 tumor types, and Microsatellite Instability (MSI) across 10 tumor types. Remarkably, DHX34 exhibited a favorable diagnostic value in a multitude of tumors. High expression of DHX34 is associated with poor prognosis in tumors such as adrenocortical carcinoma (ACC), renal papillary cell carcinoma (KIRP), low-grade glioma (LGG), and LIHC. Correlation analysis indicated that DHX34 expression correlated with clinicopathological features in a variety of tumors. The Protein-Protein Interaction (PPI) network and GSCALite database suggested that DHX34 and its ten co-expression genes might promote cancer progression by regulating the cell cycle. Gene Set Enrichment Analysis (GSEA) results further showed that DHX34 was positively correlated with pathways such as cell cycle, mitosis, and gene transcription regulation. The TISIDB database showed that DHX34 expression was closely associated with immune infiltration. Based on the TISCH2 database, we found that DHX34 was expressed in a number of immune cells, with relatively high expression in monocyte macrophages in LIHC. Conclusions: In summary, our study found that DHX34 is highly expressed in pan-cancer and has diagnostic and prognostic value. Targeting DHX34 may improve the therapeutic efficacy of immunotherapy and chemotherapy in a multitude of tumors.
Collapse
Affiliation(s)
- Nanbin Liu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Pengpeng Zhu
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gaixia He
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyu Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting Chen
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Jianing Yuan
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Cente of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Tumor and Immunology center of Precision Medicine Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li X, Zhang H, Li T. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma. Genome Biol 2024; 25:272. [PMID: 39407253 PMCID: PMC11476802 DOI: 10.1186/s13059-024-03383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Lactylation, a post-translational modification, is increasingly recognized for its role in cancer progression. This study investigates its prevalence and impact in oral squamous cell carcinoma (OSCC). RESULTS Immunohistochemical staining of 81 OSCC cases shows lactylation levels correlate with malignancy grading. Proteomic analyses of six OSCC tissue pairs reveal 2765 lactylation sites on 1033 proteins, highlighting its extensive presence. These modifications influence metabolic processes, molecular synthesis, and transport. CAL27 cells are subjected to cleavage under targets and tagmentation assay for accessible-chromatin with high-throughput sequencing, and transcriptomic sequencing pre- and post-lactate treatment, with 217 genes upregulated due to lactylation. Chromatin immunoprecipitation-quantitative PCR and real-time fluorescence quantitative PCR confirm the regulatory role of lactylation at the K146 site of dexh-box helicase 9 (DHX9), a key factor in OSCC progression. CCK8, colony formation, scratch healing, and Transwell assays demonstrate that lactylation mitigates the inhibitory effect of DHX9 on OSCC, thereby promoting its occurrence and development. CONCLUSIONS Lactylation actively modulates gene expression in OSCC, with significant effects on chromatin structure and cellular processes. This study provides a foundation for developing targeted therapies against OSCC, leveraging the role of lactylation in disease pathogenesis.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
10
|
Zhu G, Luo L, He Y, Xiao Y, Cai Z, Tong W, Deng W, Xie J, Zhong Y, Hu Z, Shan R. AURKB targets DHX9 to promote hepatocellular carcinoma progression via PI3K/AKT/mTOR pathway. Mol Carcinog 2024; 63:1814-1826. [PMID: 38874176 DOI: 10.1002/mc.23775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Aurora kinase B (AURKB) is known to play a carcinogenic role in a variety of cancers, but its underlying mechanism in liver cancer is unknown. This study aimed to investigate the role of AURKB in hepatocellular carcinoma (HCC) and its underlying molecular mechanism. Bioinformatics analysis revealed that AURKB was significantly overexpressed in HCC tissues and cell lines, and its high expression was associated with a poorer prognosis in HCC patients. Furthermore, downregulation of AURKB inhibited HCC cell proliferation, migration, and invasion, induced apoptosis, and caused cell cycle arrest. Moreover, AURKB downregulation also inhibited lung metastasis of HCC. AURKB interacted with DExH-Box helicase 9 (DHX9) and targeted its expression in HCC cells. Rescue experiments further demonstrated that AURKB targeting DHX9 promoted HCC progression through the PI3K/AKT/mTOR pathway. Our results suggest that AURKB is significantly highly expressed in HCC and correlates with patient prognosis. Targeting DHX9 with AURKB promotes HCC progression via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of General Surgery, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Laihui Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yongzhu He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Department of General Surgery, Division of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong Province, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yongqiang Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ziwei Cai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jin Xie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanxin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhigao Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Chen KL, Huang SW, Yao JJ, He SW, Gong S, Tan XR, Liang YL, Li JY, Huang SY, Li YQ, Zhao Y, Qiao H, Xu S, Zang S, Ma J, Liu N. LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein. Drug Resist Updat 2024; 76:101111. [PMID: 38908233 DOI: 10.1016/j.drup.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.
Collapse
Affiliation(s)
- Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ji-Jin Yao
- Department of Head and Neck Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
12
|
Xiao F, Zhu H, Xiong Y, Guo Y, Zhang Z, Zeng J, Xiao Y, Liao B, Shang X, Zhao S, Hu G, Huang K, Guo H. Positive feedback loop of c-myc/XTP6/NDH2/NF-κB to promote malignant progression in glioblastoma. J Exp Clin Cancer Res 2024; 43:187. [PMID: 38965580 PMCID: PMC11225266 DOI: 10.1186/s13046-024-03109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yaping Xiong
- Departments of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xuesong Shang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Siyi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
13
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
14
|
Murayama T, Nakayama J, Jiang X, Miyata K, Morris AD, Cai KQ, Prasad RM, Ma X, Efimov A, Belani N, Gerstein ER, Tan Y, Zhou Y, Kim W, Maruyama R, Campbell KS, Chen L, Yang Y, Balachandran S, Cañadas I. Targeting DHX9 Triggers Tumor-Intrinsic Interferon Response and Replication Stress in Small Cell Lung Cancer. Cancer Discov 2024; 14:468-491. [PMID: 38189443 PMCID: PMC10905673 DOI: 10.1158/2159-8290.cd-23-0486] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biomedical Science Graduate Program, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alexander D. Morris
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul M. Prasad
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrey Efimov
- Bio Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neel Belani
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emily R. Gerstein
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California
- Center for Novel Therapeutics, UC San Diego, La Jolla, California
- Department of Medicine, UC San Diego, La Jolla, California
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kerry S. Campbell
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lu Chen
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yibin Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Chellini L, Scarfò M, Bonvissuto D, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 2024; 43:225-234. [PMID: 38017132 DOI: 10.1038/s41388-023-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Marzia Scarfò
- Plaisant Polo Tecnologico s.r.l, Castel Romano, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- GSTeP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
17
|
Yao W, Cui X, Peng H, Zhang Y, Jia X, Wu S, Zhao J. IDO1 facilitates esophageal carcinoma progression by driving the direct binding of NF-κB and CXCL10. Cell Death Discov 2023; 9:403. [PMID: 37903782 PMCID: PMC10616276 DOI: 10.1038/s41420-023-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Esophageal carcinoma (EC), one of the most lethal human malignancies, lacks effective targeted therapies. Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in a variety of cancers, but its role and mechanism in EC are still unclear. Immunohistochemistry and qRT-PCR were used to analyze the expression of IDO1 in EC, and the prognostic value of IDO1 in EC was evaluated by Kaplan-Meier test. The in vitro and in vivo function loss/acquisition tests were performed to evaluate the biological effects of IDO1 in EC. The mechanism of action of IDO1-regulation EC was explored through Firefly luciferase & Renilla luciferase activity reporter, chromatin immunoprecipitation (ChIP) and immunofluorescence (IF) assays. Clinically, IDO1 expression was abnormally elevated in EC and positively correlated with overall survival. Functionally, IDO1 was contributed to the proliferation and migration of EC cells. Mechanically, IDO1 regulated the expression of chemokine C-X-C ligand 10 (CXCL10) by promoting the entry of NF-κB into the nucleus to combine with the promoter of CXCL10. Consistently, IDO1 facilitated EC progression may dependent on the presence of CXCL10. Moreover, NF-κB alleviated the inhibitory effect of IDO1 knockdown on EC. IDO1 drove the progression of EC by directly binding NF-κB and CXCL10, the finding that may provide an effective theoretical basis for precise therapies for EC.
Collapse
Affiliation(s)
- Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Zhengzhou, 450003, Henan province, China
| | - Xiaohai Cui
- Department of Thoracic Surgery, The first affiliated hospital of xi'an jiaotong university, No.277 Yanta West Road, Xi'an, 710061, Shanxi province, China
| | - Haodong Peng
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Zhengzhou, 45003, Henan province, China
| | - Yongkang Zhang
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Zhengzhou, 45003, Henan province, China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Zhengzhou, 450003, Henan province, China
| | - Sen Wu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Zhengzhou, 450003, Henan province, China.
| | - Jian Zhao
- Department of Thoracic Surgery, Liaoning Cancer Hospital, No.44-3 Xiaohe Yan Road, Dadong District, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
18
|
Luo J, Ji Y, Chen N, Song G, Zhou S, Niu X, Yu D. Nuclear miR-150 enhances hepatic lipid accumulation by targeting RNA transcripts overlapping the PLIN2 promoter. iScience 2023; 26:107837. [PMID: 37736048 PMCID: PMC10509351 DOI: 10.1016/j.isci.2023.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
Alcohol-associated liver disease is a prevalent chronic liver disease caused by excessive ethanol consumption. This study aims to investigate the role of miR-150 in regulating hepatic lipid homeostasis in alcoholic fatty liver (AFL). miR-150 was mainly distributed in the nucleus of hepatocytes and correlated with the degree of liver injury. The decreased expression of miR-150 observed in AFL was a compensatory response to ethanol-induced hepatic steatosis. Overexpression of miR-150 facilitated hepatic lipid accumulation in cellulo and exacerbated ethanol-induced liver steatosis in vivo. In silico analysis identified perilipin-2 (PLIN2) as a potential target gene of miR-150. miR-150 activated PLIN2 transcription by directly binding the RNA transcripts overlapping PLIN2 promoter and facilitating the recruitment of DNA helicase DHX9 and RNA polymeraseⅡ. Overall, our study provides fresh insights into the homeostasis regulation of hepatic steatosis induced by ethanol and identifies miR-150 as a pro-steatosis effector driving transcriptional PLIN2 gene activation.
Collapse
Affiliation(s)
- Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Song
- School of Public Health, Qingdao University, Qingdao, China
| | - Shuyue Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Xuan Niu
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Dan WY, Zhou GZ, Peng LH, Pan F. Update and latest advances in mechanisms and management of colitis-associated colorectal cancer. World J Gastrointest Oncol 2023; 15:1317-1331. [PMID: 37663937 PMCID: PMC10473934 DOI: 10.4251/wjgo.v15.i8.1317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Colitis-associated colorectal cancer (CAC) is defined as a specific cluster of colorectal cancers that develop as a result of prolonged colitis in patients with inflammatory bowel disease (IBD). Patients with IBD, including ulcerative colitis and Crohn's disease, are known to have an increased risk of developing CAC. Although the incidence of CAC has significantly decreased over the past few decades, individuals with CAC have increased mortality compared to individuals with sporadic colorectal cancer, and the incidence of CAC increases with duration. Chronic inflammation is generally recognized as a major contributor to the pathogenesis of CAC. CAC has been shown to progress from colitis to dysplasia and finally to carcinoma. Accumulating evidence suggests that multiple immune-mediated pathways, DNA damage pathways, and pathogens are involved in the pathogenesis of CAC. Over the past decade, there has been an increasing effort to develop clinical approaches that could help improve outcomes for CAC patients. Colonoscopic surveillance plays an important role in reducing the risk of advanced and interval cancers. It is generally recommended that CAC patients undergo endoscopic removal or colectomy. This review summarizes the current understanding of CAC, particularly its epidemiology, mechanisms, and management. It focuses on the mechanisms that contribute to the development of CAC, covering advances in genomics, immunology, and the microbiome; presents evidence for management strategies, including endoscopy and colectomy; and discusses new strategies to interfere with the process and development of CAC. These scientific findings will pave the way for the management of CAC in the near future.
Collapse
Affiliation(s)
- Wan-Yue Dan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Guan-Zhou Zhou
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
Huang N, Song Y, Shi W, Guo J, Zhang Z, He Q, Wu L, Li X, Xu F. DHX9-mediated pathway contributes to the malignant phenotype of myelodysplastic syndromes. iScience 2023; 26:106962. [PMID: 37305700 PMCID: PMC10250162 DOI: 10.1016/j.isci.2023.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
DHX9 is a member of the DEAH (Asp-Glu-Ala-His) helicase family and regulates DNA replication and RNA processing. DHX9 dysfunction promotes tumorigenesis in several solid cancers. However, the role of DHX9 in MDS is still unknown. Here, we analyzed the expression of DHX9 and its clinical significance in 120 MDS patients and 42 non-MDS controls. Lentivirus-mediated DHX9-knockdown experiments were performed to investigate its biological function. We also performed cell functional assays, gene microarray, and pharmacological intervention to investigate the mechanistic involvement of DHX9. We found that overexpression of DHX9 is frequent in MDS and associated with poor survival and high risk of acute myeloid leukemia (AML) transformation. DHX9 is essential for the maintenance of malignant proliferation of leukemia cells, and DHX9 suppression increases cell apoptosis and causes hypersensitivity to chemotherapeutic agents. Besides, knockdown of DHX9 inactivates the PI3K-AKT and ATR-Chk1 signaling, promotes R-loop accumulation, and R-loop-mediated DNA damage.
Collapse
Affiliation(s)
- Nanfang Huang
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang Song
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenhui Shi
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
21
|
Tao J, Ge Q, Meng J, Liang C, Hao Z, Zhou J. Overexpression of DDX49 in prostate cancer is associated with poor prognosis. BMC Urol 2023; 23:66. [PMID: 37106339 PMCID: PMC10134639 DOI: 10.1186/s12894-023-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is increasing evidence that DEAD-box helicases (DDX) can act either as promoters or suppressors in various cancer types. Nevertheless, the function of DDX49 in prostate cancer (PCa) is unknown. This study reveals the prognostic and predictive value of DDX49 in PCa. METHODS First, we evaluated the expression of DDX49 between PCa and normal tissues based on TCGA and GEO databases. Univariate and multivariate regression analyses were conducted to reveal the risk factors for PCa recurrence. A K-M curve was employed to assess the relationship between DDX49 and recurrence-free survival. In vitro, DDX49 expression was evaluated in PCa and normal prostate cell lines. Furthermore, we constructed a shDDX49 lentivirus to knock down the expression of DDX49. Celigo® Image Cytometer and MTT assay were performed to analyse cell proliferation in PC-3 cells. Cell cycle distribution was detected with flow cytometry analysis. Apoptosis affected by the lack of DDX49 was metred with the PathScan® Stress and Apoptosis Signalling Antibody Array Kit. RESULTS This study shows a high increase in DDX49 in PCa tissues in comparison with normal tissues and that increased DDX49 indicates a poor prognosis among PCa patients. Meanwhile, DDX49 knockdown suppressed the proliferation and migration of PC-3 cells, causing cell cycle arrest in the G1 phase. Stress and apoptosis pathway analysis revealed that the phosphorylation of HSP27, p53, and SAPK/JNK was reduced in the DDX49 knockdown group compared with the control group. CONCLUSIONS In summary, these results suggest that high expression of DDX49 predicts a poor prognosis among PCa patients. Downregulation of DDX49 can suppress cell proliferation, block the cell cycle, and facilitate cell apoptosis. Therefore, knockdown of DDX49 is a promising novel therapy for treating patients with PCa.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jialing Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
22
|
Liu S, Wu J, Lu X, Guo C, Zheng Q, Wang Y, Hu Q, Bian S, Luo L, Cheng Q, Liu Z, Dai W. Targeting CDK12 obviates the malignant phenotypes of colorectal cancer through the Wnt/β-catenin signaling pathway. Exp Cell Res 2023; 428:113613. [PMID: 37100369 DOI: 10.1016/j.yexcr.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and lies third in terms of morbidity due to the limited number of effective druggable targets. Since cancer stem cells (CSCs) are considered to be one of the roots of tumorigenesis, outgrowth and metastasis, targeting CSCs may be a promising strategy to reverse the malignant phenotypes of CRC. Cyclin-dependent kinase 12 (CDK12) has been reported to be involved in the self-renewal of CSCs in various cancers, rendering it an attractive potential target against CSCs to consequently limit the malignant phenotypes in CRC. In the present study, we aimed to investigate whether CDK12 can be a potential therapeutic target for patients with CRC and clarify its underlying mechanism. We found that CDK12, but not CDK13 is required for CRC survival. CDK12 was found to drive tumor initiation according to the colitis-associated colorectal cancer mouse model. In addition, CDK12 promoted CRC outgrowth and hepatic metastasis in the subcutaneous allograft and liver metastasis mouse models, respectively. In particular, CDK12 was able to induce the self-renewal of CRC CSCs. Mechanistically, the activation of Wnt/β-catenin signaling mediated by CDK12 was implicated in stemness regulation and malignant phenotype maintenance. These findings indicate that CDK12 is a candidate druggable target in CRC. Therefore, the CDK12 inhibitor SR-4835 warrants clinical trial testing in patients with CRC.
Collapse
Affiliation(s)
- Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaolu Lu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qisheng Zheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qiao Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Shuigen Bian
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Luo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qilai Cheng
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
23
|
Dai W, Guo C, Wang Y, Li Y, Xie R, Wu J, Yao B, Xie D, He L, Li Y, Huang H, Wang Y, Liu S. Identification of hub genes and pathways in lung metastatic colorectal cancer. BMC Cancer 2023; 23:323. [PMID: 37024866 PMCID: PMC10080892 DOI: 10.1186/s12885-023-10792-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent types of malignant tumours. Metastasis is the leading cause of cancer-related mortality, with lung metastases accounting for 32.9% of all metastatic CRCs. However, since the biological mechanism of lung metastatic CRC is poorly understood, limited therapeutic targets are available. In the present study, we aimed to identify the key genes and molecular processes involved in CRC lung metastasis. METHODS The differentially expressed genes (DEGs) between primary and lung metastatic CRC patients were obtained from the Gene Expression Omnibus (GEO) database via the GEO2R tool. The enriched biological processes and pathways modulated by the DEGs were determined with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome Gene Sets analyses. The search tool Retrieval of Interacting Genes (STRING) and Cytoscape were used to construct a protein-protein interaction (PPI) network among DEGs. RESULTS The DEGs were enriched in surfactant metabolism, cell-cell communication and chemokine signaling pathways. The defined hub genes were included CLU, SFTPD, CCL18, SPP1, APOE, BGN and MMP3. Among them, CLU, SFTPD and CCL18 might be associated with the specific lung tropism metastasis in CRC. In addition, the expression and prognostic values of the hub genes in CRC patients were verified in database of The Cancer Genome Atlas (TCGA) and GEO. Moreover, the protein levels of the hub genes were detected in primary and lung metastatic CRC cells, serum or tissues. Furthermore, SFTPD was confirmed to facilitate cellular proliferation and lung metastasis in CRC. CONCLUSION This bioinformatics study may provide a better understanding of the candidate therapeutic targets and molecular mechanisms for CRC lung metastasis.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Baole Yao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Dong Xie
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ling He
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yingying Li
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Huang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
24
|
Liu L, Zhou X, Cheng S, Ge Y, Chen B, Shi J, Li H, Li S, Li Y, Yuan J, Wu A, Liu X, Huang S, Xu Z, Dong J. RNA-binding protein DHX9 promotes glioma growth and tumor-associated macrophages infiltration via TCF12. CNS Neurosci Ther 2023; 29:988-999. [PMID: 36377508 PMCID: PMC10018109 DOI: 10.1111/cns.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.
Collapse
Affiliation(s)
- Liang Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuelan Zhou
- Department of AnesthesiologySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shan Cheng
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuyuan Ge
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Baomin Chen
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jia Shi
- Department of NeurosurgeryThird Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Haoran Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suwen Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yongdong Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiaqi Yuan
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Anyi Wu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinglei Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shilu Huang
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhipeng Xu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Dong
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
25
|
Wu K, Zhang Y, Liu Y, Li Q, Chen Y, Chen J, Duan C. Phosphorylation of UHRF2 affects malignant phenotypes of HCC and HBV replication by blocking DHX9 ubiquitylation. Cell Death Dis 2023; 9:27. [PMID: 36690646 PMCID: PMC9871042 DOI: 10.1038/s41420-023-01323-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Hepatitis B virus (HBV) infection is one of main contributors to poor prognosis and rapid progression of hepatocellular cancer (HCC). We previously identified the important role of the phosphorylation of ubiquitin-like with PHD and ring finger domains (UHRF2) in HBV-associated HCC. In this study we identify upregulated UHRF2 protein levels in HBV-associated HCC cells and tissues. UHRF2 overexpression promotes the viability, proliferation, migration and invasiveness of HBV-positive HCC cell lines, and enhances HBV DNA replication. To obtain a comprehensive understanding of the interaction networks of UHRF2 and their underlying mechanism, this study suggests that UHRF2 facilitates the ubiquitin-proteasome-mediated proteolysis of DExD/H (Asp-Glu-Ala-His) -box helicase enzyme 9 (DHX9). However, phosphorylation of UHRF2 by HBx at S643 inhibits E3 ubiquitin ligase activity of UHRF2 and improves DHX9 protein stability. Furthermore, results suggest that HBx promotes phosphorylation of UHRF2 by the ETS1-CDK2 axis through the downregulation of miR-222-3p in HBV-associated HCC specimens and cells. Our findings suggest that HBx-induced phosphorylation of UHRF2 S643 acts as a "switch" in HBV-associated HCC oncogenesis, activating the positive feedback between phosphorylated UHRF2 and HBV, provide evidence that UHRF2 is a new regulator and a potential prognostic indicator of poor prognosis for HBV-associated HCC.
Collapse
Affiliation(s)
- Kejia Wu
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yiqi Zhang
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yuxin Liu
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Qingxiu Li
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| | - Yong Chen
- grid.203458.80000 0000 8653 0555Department of Hepatobillary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Juan Chen
- grid.412461.40000 0004 9334 6536Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 China
| | - Changzhu Duan
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
26
|
Wang X, Zhang C, Song H, Yuan J, Zhang L, He J. CircCCDC66: Emerging roles and potential clinical values in malignant tumors. Front Oncol 2023; 12:1061007. [PMID: 36698408 PMCID: PMC9869039 DOI: 10.3389/fonc.2022.1061007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) with a closed-loop structure. In recent years, circRNAs have become the focus of much research into RNA. CircCCDC66 has been identified as a novel oncogenic circRNA and is up-regulated in a variety of malignant tumors including thyroid cancer, non-small cell carcinoma, gastric cancer, colorectal cancer, renal cancer, cervical cancer, glioma, and osteosarcoma. It mediates cancer progression by regulating epigenetic modifications, variable splicing, transcription, and protein translation. The oncogenicity of circCCDC66 suppresses or promotes the expression of related genes mainly through direct or indirect pathways. This finding suggests that circCCDC66 is a biomarker for cancer diagnosis, prognosis assessment and treatment. However, there is no review on the relationship between circCCDC66 and cancers. Thus, the expression, biological functions, and regulatory mechanisms of circCCDC66 in malignant tumor and non-tumor diseases are summarized. The clinical value and prognostic significance of circCCDC66 are also evaluated, which can provide insights helpful to those exploring new strategies for the early diagnosis and targeted treatment of malignancies.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jiefeng He,
| |
Collapse
|
27
|
Chen LG, Cui Y, Lu WQ, Wu H, Jiang JS, Ding KF. The enigmatic helicase DHX9 as a candidate prognostic biomarker for resected pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1066717. [PMID: 36578944 PMCID: PMC9791203 DOI: 10.3389/fonc.2022.1066717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, and current therapies have limited efficacy on PDAC. The DEAH-box helicase 9 (DHX9) is widely reported to influence cell biological behavior via regulating DNA replication, genomic stability, transcription, translation, and microRNA biogenesis. However, the prognostic role of DHX9 in PDAC remains unclear. Thus, the objective of this study is to investigate the prognostic value of DHX9 expression in PDAC patients. Methods Tumor specimens from PDAC patients with surgical resection were obtained, and DHX9 was stained and analyzed in this study. Univariate and multivariate Cox regression analyses were utilized to identify independent risk factors of overall survival (OS) and recurrence-free survival (RFS). The prognostic nomograms for predicting OS and RFS were established to obtain superior predictive power. Results Among the enrolled 110 patients, 61 patients were identified as having high expression of DHX9. The correlation analysis revealed that higher DHX9 expression in PDAC was prone to have advanced N stage (p = 0.010) and TNM stage (p = 0.017). For survival, the median OS (21.0 vs. 42.0 months, p < 0.001) and RFS (12.0 vs. 24.0 months, p < 0.001) of patients in the high DHX9 group were significantly shorter than those in the low DHX9 group. Within the univariate and multivariate analyses, American Joint Committee on Cancer (AJCC) N stage (p = 0.036) and DHX9 expression (p = 0.041) were confirmed as independent prognostic factors of OS, while nerve invasion (p = 0.031) and DHX9 expression (p = 0.005) were independent prognostic factors of RFS. Finally, the novel prognostic nomograms for OS and RFS were established and showed superior predictive accuracy. Conclusion This study identified the independent prognostic value of DHX9 for RFS and OS in resected PDAC patients, and higher DHX9 expression was prone to have an earlier recurrence and shorter OS. Therefore, DHX9 may be a promising and valuable biomarker and a potential target for treating PDAC. More accurate and promising predictive models would be achieved when DHX9 is incorporated into nomograms.
Collapse
Affiliation(s)
- Le-gao Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Cui
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Wei-qin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Hao Wu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jin-song Jiang
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China,*Correspondence: Ke-feng Ding, ; Jin-song Jiang,
| | - Ke-feng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Ke-feng Ding, ; Jin-song Jiang,
| |
Collapse
|
28
|
Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res 2022; 41:178. [PMID: 35590370 PMCID: PMC9118622 DOI: 10.1186/s13046-022-02384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Prostate cancer (PC) is the most commonly diagnosed male malignancy and an important cause of mortality. Androgen deprivation therapy is the first line treatment but, unfortunately, a large part of patients evolves to a castration-resistant stage, for which no effective cure is currently available. The DNA/RNA helicase DHX9 is emerging as an important regulator of cellular processes that are often deregulated in cancer.
Methods
To investigate whether DHX9 modulates PC cell transcriptome we performed RNA-sequencing analyses upon DHX9 silencing in the androgen-responsive cell line LNCaP. Bioinformatics and functional analyses were carried out to elucidate the mechanism of gene expression regulation by DHX9. Data from The Cancer Genome Atlas were mined to evaluate the potential role of DHX9 in PC.
Results
We found that up-regulation of DHX9 correlates with advanced stage and is associated with poor prognosis of PC patients. High-throughput RNA-sequencing analysis revealed that depletion of DHX9 in androgen-sensitive LNCaP cells affects expression of hundreds of genes, which significantly overlap with known targets of the Androgen Receptor (AR). Notably, AR binds to the DHX9 promoter and induces its expression, while Enzalutamide-mediated inhibition of AR activity represses DHX9 expression. Moreover, DHX9 interacts with AR in LNCaP cells and its depletion significantly reduced the recruitment of AR to the promoter region of target genes and the ability of AR to promote their expression in response to 5α-dihydrotestosterone. Consistently, silencing of DXH9 negatively affected androgen-induced PC cell proliferation and migration.
Conclusions
Collectively, our data uncover a new role of DHX9 in the control of the AR transcriptional program and establish the existence of an oncogenic DHX9/AR axis, which may represent a new druggable target to counteract PC progression.
Collapse
|
29
|
Dai W, Wu J, Peng X, Hou W, Huang H, Cheng Q, Liu Z, Luyten W, Schoofs L, Zhou J, Liu S. CDK12 orchestrates super-enhancer-associated CCDC137 transcription to direct hepatic metastasis in colorectal cancer. Clin Transl Med 2022; 12:e1087. [PMID: 36254394 PMCID: PMC9577262 DOI: 10.1002/ctm2.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic metastasis is the primary and direct cause of death in individuals with colorectal cancer (CRC) attribute to lack of effective therapeutic targets. The present study aimed to identify potential druggable candidate targets for patients with liver metastatic CRC. METHODS The transcriptional profiles of super-enhancers (SEs) in primary and liver metastatic CRC were evaluated in publicly accessible CRC datasets. Immunohistochemistry of human CRC tissues was conducted to determine the expression level of CDK12. Cellular proliferation, survival and stemness were examined upon CDK12 inhibition by shCDK12 or a selective CDK12 inhibitor named SR-4835 with multiple in vitro and in vivo assays. RNA sequencing and bioinformatics analyses were carried out to investigate the mechanisms of CDK12 inhibition in CRC cells. RESULTS We identified CDK12 as a driver gene for direct hepatic metastasis in CRC. Suppression of CDK12 led to robust inhibition of proliferation, survival and stemness. Mechanistically, CDK12 intervention preferentially repressed the transcription of SE-associated genes. Integration of the SE landscape and RNA sequencing, BCL2L1 and CCDC137 were identified as SE-associated oncogenic genes to strengthen the abilities of cellular survival, proliferation and stemness, eventually increasing liver metastasis of CRC. CONCLUSIONS Our data highlight the potential of CDK12 and SE-associated oncogenic transcripts as therapeutic targets for patients with liver metastatic CRC.
Collapse
Affiliation(s)
- Wei Dai
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Junhong Wu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaopeng Peng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Wen Hou
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Hao Huang
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Qilai Cheng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Zhiping Liu
- Center for ImmunologyGannan Medical UniversityGanzhouJiangxiChina
| | | | | | - Jingfeng Zhou
- Department of Hematology and OncologyInternational Cancer CenterShenzhen Key LaboratoryShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen University Health Science CenterShenzhenChina
| | - Shenglan Liu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
30
|
Chen X, Lin L, Chen G, Yan H, Li Z, Xiao M, He X, Zhang F, Zhang Y. High Levels of DEAH-Box Helicases Relate to Poor Prognosis and Reduction of DHX9 Improves Radiosensitivity of Hepatocellular Carcinoma. Front Oncol 2022; 12:900671. [PMID: 35814441 PMCID: PMC9256992 DOI: 10.3389/fonc.2022.900671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiver hepatocellular carcinoma (LIHC), one of the most common primary malignancies, exhibits high levels of molecular and clinical heterogeneity. Increasing evidence has confirmed the important roles of some RNA helicase families in tumor development, but the function of the DEAH-box RNA helicase family in LIHC therapeutic strategies has not yet been clarified.MethodsThe LIHC dataset was downloaded from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to group the patients. Least absolute shrinkage and selection operator Cox regression and univariate and multivariate Cox regression were used to develop and validate a prognostic risk model. The Tumor Immune Estimation Resource and Tumor Immune Single Cell Hub databases were used to explore the role of DEAH-box RNA helicases in LIHC immunotherapy. In vitro experiments were performed to investigate the role of DHX9 in LIHC radiosensitivity.ResultsTwelve survival-related DEAH-box RNA helicases were identified. High helicase expression levels were associated with a poor prognosis and clinical features. A prognostic model comprising six DEAH-box RNA helicases (DHX8, DHX9, DHX34, DHX35, DHX38, and DHX57) was constructed. The risk score of this model was found to be an independent prognostic indicator, and LIHC patients with different prognosis were distinguished by the model in the training and test cohorts. DNA damage repair pathways were also enriched in patients with high-risk scores. The six DEAH-box RNA helicases in the risk model were substantially related to innate immune cell infiltration and immune inhibitors. In vitro experiments showed that DHX9 knockdown improved radiosensitivity by increasing DNA damage.ConclusionThe DEAH-box RNA helicase signature can be used as a reliable prognostic biomarker for LIHC. In addition, DHX9 may be a definitive indicator and therapeutic target in radiotherapy and immunotherapy for LIHC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Letao Lin
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guanyu Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huzheng Yan
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meigui Xiao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xu He
- Interventional Medical Center, Zhuhai People’s Hospital, Zhuhai, China
| | - Fujun Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| | - Yanling Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| |
Collapse
|
31
|
Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022; 13:896472. [PMID: 35720303 PMCID: PMC9203851 DOI: 10.3389/fimmu.2022.896472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Thymic epithelial cells (TECs) critically participate in T cell maturation and selection for the establishment of immunity to foreign antigens and immune tolerance to self-antigens of T cells. It is well known that many intracellular and extracellular molecules elegantly have mastered the development of medullary TECs (mTECs) and cortical TECs (cTECs). However, the role played by NTP-dependent helicase proteins in TEC development is currently unclear. Herein, we created mice with a TEC-specific DExD/H-box helicase 9 (Dhx9) deletion (Dhx9 cKO) to study the involvement of Dhx9 in TEC differentiation and function. We found that a Dhx9 deficiency in TECs caused a significant decreased cell number of TECs, including mTECs and thymic tuft cells, accompanied by accelerated mTEC maturation but no detectable effect on cTECs. Dhx9-deleted mTECs transcriptionally expressed poor tissue-restricted antigen profiles compared with WT mTECs. Importantly, Dhx9 cKO mice displayed an impaired thymopoiesis, poor thymic T cell output, and they suffered from spontaneous autoimmune disorders. RNA-seq analysis showed that the Dhx9 deficiency caused an upregulated DNA damage response pathway and Gadd45, Cdkn1a, Cdc25, Wee1, and Myt1 expression to induce cell cycle arrest in mTECs. In contrast, the p53-dependent upregulated RANK-NF-κB pathway axis accelerated the maturation of mTECs. Our results collectively indicated that Dhx9, a cytosolic nuclear sensor recognizing viral DNA or RNA, played an important role in mTEC development and function in mice.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| |
Collapse
|