1
|
Lu D, Zhang Y, Zhu P, Wu J, Yuan C, Ni L. The roles of the ubiquitin-proteasome system in renal disease. Int J Med Sci 2025; 22:1791-1810. [PMID: 40225869 PMCID: PMC11983301 DOI: 10.7150/ijms.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway of specific intracellular protein degradation through proteasome degradation of ubiquitin-labeled substrates. Numerous biological processes, including the cell cycle, transcription, translation, apoptosis, receptor activity, and intracellular signaling, are regulated by UPS. Alterations of the UPS, which render them more or less susceptible to degradation, are responsible for disorders of renal diseases. This review aims to summarize the mechanism of UPS in renal diseases. Besides, this review explores the relationship among UPS, autophagy, and deubiquitination in the development of renal disease. The specific molecular linkages among these systems and pathogenesis, on the other hand, are unknown and controversial. In addition, we briefly describe some anti-renal disease agents targeting UPS components. This review emphasizes UPS as a promising therapeutic modality for the treatment of kidney disease. Our work, though still basic and limited, could provide options to future potential therapeutic targets for renal diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Danqin Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingying Zhang
- Department of Nephrology, Tongii Hospital of Tongji University, Shanghai, China
| | - Ping Zhu
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jiao Wu
- Department of Nephrology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Cheng Yuan
- Department of Oncology, Yichang Central People's Hospital and The First College of Clinical Medical Science, China Three Gorges University Yichang, Hubei, China
- Tumor Prevention and Treatment Center of Three Gorges University and Cancer Research Institute of Three Gorges University Yichang, Hubei, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Sun P, Chen Q, Chen X, Zhou J, Long T, Ma Y, Zhou M, Hu Z, Tian J, Zhu F, Yang Z, Xie L, Wu Q, Nie J. Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167656. [PMID: 39778778 DOI: 10.1016/j.bbadis.2025.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis. Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors. Whereas, whether it is implicated in renal tubular epithelial cell injury and kidney disease remains unexplored. In this study, we demonstrate that S100A7 is highly upregulated in tubular cells of both mouse renal fibrotic lesions and kidney biopsies from patients with chronic kidney disease (CKD). The level of renal S100A7 was associated with both the decline of renal function and the progression of renal fibrosis in CKD patients. Overexpressing S100A7a impaired fatty acid oxidation (FAO) and promoted lipid peroxidation in proximal tubular cells (PTCs). Mechanistically, S100A7a interacts with β-catenin, thereby preventing its ubiquitination and degradation by the β-TrCP-SCF complex, and in turn activated β-catenin signaling, downregulated the expression of PGC-1α. Additionally, S100A7a exacerbated lipid peroxidation via RAGE-p-ERK-NOX2 pathway. Specific deletion of S100a7a in tubular cells enhanced FAO and reduced lipid peroxidation, resulting in improved renal function and alleviation of renal fibrosis induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. Collectively, we delineate a previously unrecognized function of S100A7a in the progression of renal fibrosis.
Collapse
Affiliation(s)
- Pengxiao Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingzhou Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaomei Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Yang
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Liling Xie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaoyuan Wu
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China.
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China.
| |
Collapse
|
3
|
Wu X, Wu X, Wang Z, Tian X, Zhang C, Cao G, Gu Y, Yan T. Delivery of exogenous miR-19b by Wharton's Jelly Mesenchymal Stem Cells attenuates transplanted kidney ischemia/reperfusion injury by regulating cellular metabolism. Drug Deliv Transl Res 2025; 15:925-938. [PMID: 38918324 DOI: 10.1007/s13346-024-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) frequently occurs following kidney transplantation, and exosomes derived from umbilical cord mesenchymal stem cells (WJ-MSC-Exos) have shown promise in treating IRI in transplanted kidneys. Our study delved into the potential mechanism of WJ-MSC-Exos in ameliorating IRI in transplanted kidneys, revealing that miR-19b is abundantly present in WJ-MSC-Exos. Both in vivo and in vitro experiments demonstrated that the absence of miR-19b abolished the protective effects of WJ-MSC-Exos against renal IRI. Mechanistically, miR-19b suppressed glycogen synthase kinase-3β (GSK3β) expression, thereby stabilizing PDXK protein through direct binding. Treatment with WJ-MSC-Exos led to reduced PDXK levels and enhanced pyridoxine accumulation, ultimately mitigating IRI in transplanted kidneys and I/R-induced HK2 cell apoptosis. These findings elucidate the underlying mechanism of WJ-MSC-Exos in alleviating IRI in transplanted kidneys, unveiling novel therapeutic targets for post-kidney transplantation IRI and providing a solid theoretical foundation for the clinical application of WJ-MSC-Exos in IRI treatment post-transplantation.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xuan Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Chan Zhang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Zhu L, Liu YP, Yuan-Wang, Sun BX, Huang YT, Zhao JK, Liu JF, Yu LM, Wang HS. E3 ubiquitin ligase SYVN1 as a promising therapeutic target for diverse human diseases. Pharmacol Res 2025; 212:107603. [PMID: 39818260 DOI: 10.1016/j.phrs.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases. This review synthesizes recent findings regarding the physiological and pathophysiological roles of SYVN1, offering new insights into potential strategies for the prevention and treatment of human diseases, as well as suggesting avenues for future drug development. In this Review, we summarize the latest findings regarding the physiological and pathophysiological roles of SYVN1, elucidating the mechanisms by which SYVN1 can regulate the progression of various diseases in humans. These important findings provide new avenues for further investigation of SYVN1 protein, new insights into potential strategies to prevent and treat human diseases, and new directions for future drug development.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan-Wang
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Bo-Xuan Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Ji-Kai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| | - Hui-Shan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Zi C, Ma X, Zheng M, Zhu Y. VDAC1-NF-κB/p65-mediated S100A16 contributes to myocardial ischemia/reperfusion injury by regulating oxidative stress and inflammatory response via calmodulin/CaMKK2/AMPK pathway. Eur J Pharmacol 2025; 987:177158. [PMID: 39613175 DOI: 10.1016/j.ejphar.2024.177158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Myocardial injury triggers intense inflammatory reactions and oxidative stress responses. S100 calcium-binding protein A16 (S100A16), a multi-functional calcium (Ca2+)-binding protein, participates in inflammatory responses and contributes to ischemia/reperfusion (I/R) injury. Nevertheless, the precise mechanism by which S100A16 operates in myocardial I/R injury remains uncertain. Cardiac I/R injury was produced by ligation/release of the left anterior descending artery, and mouse cardiac cells were subjected to hypoxia/reoxygenation (H/R) to determine the biological effects in vitro. We demonstrated that S100A16 was upregulated in the ischemic hearts and cardiac cells after I/R and H/R injury. Adenovirus-mediated S100A16 inhibition led to a considerable improvement in cardiac function with a reduced infarct size, accompanied by a reduction in cardiomyocyte apoptosis. Similar effects of S100A16 inhibition on inflammation and reactive oxygen species (ROS) production were observed in cultured cardiomyocytes. Importantly, we showed that I/R and H/R treatment upregulated the expression of voltage-dependent anion channel 1 (VDAC1), which subsequently activated NF-κB/p65 to facilitate the binding of NF-κB/p65 to the S100A16 promoter, thereby activating the transcription and expression of S100A16. Mechanically, S100A16 responded to increasing Ca2+ and interacted with calmodulin (CaM) to regulate the activation of calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMPK pathway. In conclusion, VDAC1 sustained the NF-κB p65 pathway activation to elicit increased S100A16 expression, contributing to myocardial damage and heart failure post-I/R via the CaM/CaMKK2/AMPK pathway. This study revealed a crucial role of the VDAC1-S100A16 axis in the process of myocardial I/R injury, providing novel molecular targets for the treatment of cardiac conditions associated with I/R injury.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xian Ma
- Department of Blood Transfusion, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Maodong Zheng
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ying Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
6
|
Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci 2024; 81:480. [PMID: 39636415 PMCID: PMC11621299 DOI: 10.1007/s00018-024-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota. CKD is always accompanied by intestinal inflammation and oxidative stress, which lead to rapid systemic translocation of bacterial-derived uraemic toxins, including indoxyl sulphate, phenyl sulphate and indole-3-acetic acid, and the consequent development and aggravation of renal fibrosis. Although inflammation and oxidative stress have been extensively discussed, there is a paucity of reports on the effects of gut microbiota on renal fibrosis and gut microbiota mediation of oxidative stress and inflammation. This review provides an overview of gut microbiota on inflammation and oxidative stress in renal fibrosis, briefly discusses regulation of the gut flora using microecological preparations and natural products, such as resveratrol, curcumin and emodin as treatments for CKD, and provides a clear pathophysiological rationale for the design of promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Qi-Yuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
7
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
8
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Wang Y, Kuang Z, Xing X, Qiu Y, Zhang J, Shao D, Huang J, Dai C, He W. Proximal tubular FHL2, a novel downstream target of hypoxia inducible factor 1, is a protector against ischemic acute kidney injury. Cell Mol Life Sci 2024; 81:244. [PMID: 38814462 PMCID: PMC11139843 DOI: 10.1007/s00018-024-05289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or β-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and β-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and β-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, β-catenin, GSK-3β or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and β-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and β-catenin signaling through the interactions with its multiple protein partners.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ziwei Kuang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Xueqi Xing
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jie Zhang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Dandan Shao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
10
|
Han S, Jin R, Huo L, Teng Y, Zhao L, Zhang K, Li R, Su D, Liang X. HIF-1α participates in the regulation of S100A16-HRD1-GSK3β/CK1α pathway in renal hypoxia injury. Cell Death Dis 2024; 15:316. [PMID: 38710691 PMCID: PMC11074340 DOI: 10.1038/s41419-024-06696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-β1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and β-catenin while decreasing GSK-3β. HIF-1α inhibition restored HRD1 and β-catenin upregulation and GSK-3β downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3β/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Shuying Han
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Runbing Jin
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Huo
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Gu C, Liu Y, An X, Yin G, Sun C. Dysregulated SYVN1 promotes CAV1 protein ubiquitination and accentuates ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107668. [PMID: 38423151 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Stroke is a major cause of death and severe disability, and there remains a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke (IS) to protect the brain against damage before and during recanalization. Caveolin-1 (CAV1), an integrated protein that is located at the caveolar membrane, has been reported to exert neuroprotective effects during IS. Nevertheless, the mechanism remains largely unknown. Here, we explored the upstream modifiers of CAV1 in IS. METHODS E3 ubiquitin ligases of CAV1 that are differentially expressed in IS were screened using multiple databases. The transcription factor responsible for the dysregulation of E3 ubiquitin-protein ligase synoviolin (SYVN1) in IS was predicted and verified. Genetic manipulations by lentiviral vectors were applied to investigate the effects of double-strand-break repair protein rad21 homolog (RAD21), SYVN1, and CAV1 in a middle cerebral artery occlusion (MCAO) mouse model and mouse HT22 hippocampal neurons induced by oxygen-glucose deprivation (OGD). RESULTS SYVN1 was highly expressed in mice with MCAO, and knockdown of SYVN1 alleviated IS injury in mice, as evidenced by limited infarction volume, the lower water content in the brain, and repressed apoptosis and inflammatory response. RAD21 inhibited the transcription of SYVN1, thereby reducing the ubiquitination modification of CAV1. Overexpression of RAD21 elicited a neuroprotective role as well in mice with MCAO and HT22 induced with OGD, which was overturned by SYVN1. CONCLUSION Transcriptional repression of SYVN1 by RAD21 alleviates IS in mice by reducing ubiquitination modification of CAV1.
Collapse
Affiliation(s)
- Chunjie Gu
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Yang Liu
- Department of Rheumatology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Xiuli An
- Department of Neurology, The Second Hospital of Harbin, Harbin 150056, Heilongjiang, China.
| | - Gang Yin
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Chenghe Sun
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| |
Collapse
|
12
|
Zhao X, Liu D, Zhao Y, Wang Z, Wang Y, Chen Z, Ning S, Wang G, Meng L, Yao J, Tian X. HRD1-induced TMEM2 ubiquitination promotes ER stress-mediated apoptosis through a non-canonical pathway in intestinal ischemia/reperfusion. Cell Death Dis 2024; 15:154. [PMID: 38378757 PMCID: PMC10879504 DOI: 10.1038/s41419-024-06504-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a typical pathological course in the clinic with a high morbidity rate. Recent research has pointed out the critical role of ubiquitination during the occurrence and development of intestinal I/R by precisely mediating protein quality control and function. Here, we conducted an integrated multiomic analysis to identify critical ubiquitination-associated molecules in intestinal I/R and identified endoplasmic reticulum-located HRD1 as a candidate molecule. During intestinal I/R, excessive ER stress plays a central role by causing apoptotic pathway activation. In particular, we found that ER stress-mediated apoptosis was mitigated by HRD1 knockdown in intestinal I/R mice. Mechanistically, TMEM2 was identified as a new substrate of HRD1 in intestinal I/R by mass spectrometry analysis, which has a crucial role in attenuating apoptosis and promoting non-canonical ER stress resistance. A strong negative correlation was found between the protein levels of HRD1 and TMEM2 in human intestinal ischemia samples. Specifically, HRD1 interacted with the lysine 42 residue of TMEM2 and reduced its stabilization by K48-linked polyubiquitination. Furthermore, KEGG pathway analysis revealed that TMEM2 regulated ER stress-mediated apoptosis in association with the PI3k/Akt signaling pathway rather than canonical ER stress pathways. In summary, HRD1 regulates ER stress-mediated apoptosis through a non-canonical pathway by ubiquitinating TMEM2 and inhibiting PI3k/Akt activation during intestinal I/R. The current study shows that HRD1 is an intestinal I/R critical regulator and that targeting the HRD1/TMEM2 axis may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Lu Meng
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China.
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
13
|
Liang LL, He MF, Zhou PP, Pan SK, Liu DW, Liu ZS. GSK3β: A ray of hope for the treatment of diabetic kidney disease. FASEB J 2024; 38:e23458. [PMID: 38315453 DOI: 10.1096/fj.202302160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3β (glycogen synthase kinase 3β), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3β participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3β in DKD and its damage mechanism in different intrinsic renal cells. GSK3β is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3β inhibitors on DKD are also discussed.
Collapse
Affiliation(s)
- Lu-Lu Liang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Meng-Fei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Pan-Pan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| |
Collapse
|
14
|
Wang Y, Ran L, Lan Q, Liao W, Wang L, Wang Y, Xiong J, Li F, Yu W, Li Y, Huang Y, He T, Wang J, Zhao J, Yang K. Imbalanced lipid homeostasis caused by membrane αKlotho deficiency contributes to the acute kidney injury to chronic kidney disease transition. Kidney Int 2023; 104:956-974. [PMID: 37673285 DOI: 10.1016/j.kint.2023.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fugang Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenrui Yu
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Ke Yang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
15
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
16
|
Hu Y, Zhang R, Lu S, Zhang W, Wang D, Ge Y, Jiang F, Qin X, Liu Y. S100 Calcium Binding Protein A16 Promotes Cell Proliferation by triggering LATS1 ubiquitin degradation mediated by CUL4A ligase to inhibit Hippo pathway in Glioma development. Int J Biol Sci 2023; 19:2034-2052. [PMID: 37151881 PMCID: PMC10158029 DOI: 10.7150/ijbs.79924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/08/2023] [Indexed: 05/09/2023] Open
Abstract
Background: S100 Calcium Binding Protein A16 (S100A16), a novel member of S100 protein family, is linked to tumorigenic processes and abundantly expressed in CNS tissues. Our study aimed to explore the biological function and possible mechanism of S100A16 in the progression of glioma. Methods: Sequence data of S100A16 and survival prognosis of glioma patients were initially analyzed using public databases. Glioma tissues were collected to examine S100A16 expression levels. Glioma cell lines and nude mice were subjected to in vitro and in vivo functional experiments. Western blot, immunofluorescence (IF), immunoprecipitation (IP) and ubiquitination assays were done to further elucidate the underlying mechanism. Results: This study firstly revealed that S100A16 was markedly up-regulated in glioma, and patients with higher S100A16 levels have a shorter survival time. S100A16 overexpression promoted the proliferation, invasion and migration of glioma cells, and the tumor formation of nude mice. Importantly, we identified S100A16 as a negative regulator of the Hippo pathway which could decrease LATS1 expression levels, promote the YAP nuclear import and initiate the downstream target genes CYR61 and CTGF. Moreover, our data showed that S100A16 destabilized LATS1 protein by inducing the CUL4A-mediated LATS1 ubiquitination degradation. Conclusions: This study demonstrated a vital biological role of S100A16 in glioma progression mechanism by promoting CUL4A-mediated LATS1 ubiquitination to inhibit Hippo signaling pathway. S100A16 could be a novel biomarker and treatment option for glioma patients.
Collapse
Affiliation(s)
- Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rihua Zhang
- Department of Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shan Lu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wensong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaoqi Ge
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|