1
|
Grossini E, Ola Pour MM, Venkatesan S. The Role of Extracellular Vesicles in the Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Liver Diseases. Int J Mol Sci 2025; 26:5033. [PMID: 40507843 PMCID: PMC12154092 DOI: 10.3390/ijms26115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
The increasing prevalence of liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD), presents considerable medical challenges, particularly given the absence of approved pharmacological treatments, which underscores the necessity to comprehend its underlying mechanisms. Extracellular vesicles (EVs), which are tiny particles released by cells, play a crucial role in facilitating communication and can transport harmful molecules that promote inflammation and tissue damage. These EVs are involved in the progression of various types of liver disorders since they aggravate inflammation and oxidative stress. Because of their critical role, it is believed that EVs are widely involved in the initiation and progression of MASLD, as well as in viral hepatitis, alcoholic liver disease, drug-induced liver injury, and hepatocellular carcinoma. This review emphasizes recent findings regarding the functions of EVs in the above liver pathologies and underscores their potential as new therapeutic targets, paving the way for innovative approaches to address those detrimental liver conditions.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (M.M.O.P.); (S.V.)
| | | | | |
Collapse
|
2
|
Nadeau A, Tsering T, Abdouh M, Kienzle L, Cleyle J, Taylor L, Douanne N, Dickinson K, Siegel PM, Burnier JV. Characterization of extracellular vesicle-associated DNA and proteins derived from organotropic metastatic breast cancer cells. J Exp Clin Cancer Res 2025; 44:157. [PMID: 40410902 PMCID: PMC12100931 DOI: 10.1186/s13046-025-03418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND While primary breast cancer (BC) is often effectively managed, metastasis remains the primary cause of BC-related fatalities. Gaps remain in our understanding of the mechanisms regulating cancer cell organotropism with predilection to specific organs. Unraveling mediators of site-specific metastasis could enhance early detection and enable more tailored interventions. Liquid biopsy represents an innovative approach in cancer involving the analysis of biological materials such as circulating tumor DNA and tumor-derived extracellular vesicles (EV) found in body fluids like blood or urine. This offers valuable insights for characterizing and monitoring tumor genomes to advance personalized medicine in metastatic cancers. METHODS We performed in-depth analyses of EV cargo associated with BC metastasis using eight murine cell line models with distinct metastatic potentials and organotropism to the lung, the bone, the liver, and the brain. We characterized the secretome of these cells to identify unique biomarkers specific to metastatic sites. RESULTS Small EVs isolated from all cell lines were quantified and validated for established EV markers. Tracking analysis and electron microscopy revealed EV secretion patterns that differed according to cell line. Cell-free (cf)DNA and EV-associated DNA (EV-DNA) were detected from all cell lines with varying concentrations. We detected a TP53 mutation in both EV-DNA and cfDNA. Mass spectrometry-based proteomics analyses identified 698 EV-associated proteins, which clustered according to metastatic site. This analysis highlighted both common EV signatures and proteins involved in cancer progression and organotropism unique to metastatic cell lines. Among these, 327 significantly differentially enriched proteins were quantified with high confidence levels across BC and metastatic BC cells. We found enrichment of specific integrin receptors in metastatic cancer EVs compared to EVs secreted from non-transformed epithelial cells and matched tumorigenic non-metastatic cells. Pathway analyses revealed that EVs derived from parental cancer cells display a cell adhesion signature and are enriched with proteins involved in cancer signaling pathways. CONCLUSION Taken together, the characterization of EV cargo in a unique model of BC organotropism demonstrated that EV-DNA and EV proteomes were informative of normal and cancer states. This work could help to identify BC biomarkers associated with site-specific metastasis and new therapeutic targets.
Collapse
Affiliation(s)
- Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Laura Kienzle
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jenna Cleyle
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lorne Taylor
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Peter M Siegel
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Rajavel A, Kumar J, Essakipillai N, Anbazhagan R, Panneerselvam R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Label-free Detection of Urine Extracellular Vesicles from Duchenne Muscular Dystrophy Patients Using Surface-Enhanced Raman Spectroscopy Combined with Machine Learning Models. ACS OMEGA 2025; 10:16874-16883. [PMID: 40321535 PMCID: PMC12044490 DOI: 10.1021/acsomega.5c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 05/08/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that affects males in the pediatric age group. Currently, there is no painless, cost-effective prognostic method available to monitor DMD progression. The main hypothesis of this study was that the biochemical composition of extracellular vesicles (EVs) isolated from the urine of DMD patients can be distinctly differentiated from that of healthy controls using surface-enhanced Raman Spectroscopy (SERS) combined with machine learning models. This differentiation is expected to provide a noninvasive, rapid, and accurate diagnostic tool for the early detection, staging, and monitoring of DMD by identifying the molecular signatures captured by SERS and leveraging the analytical power of machine learning algorithms. We collected fasting morning urine samples from 52 DMD patients and 17 healthy controls and isolated EVs using a Total Exosome Isolation kit. The SERS substrates are prepared using silver nanoparticles, which were employed to capture the molecular fingerprints of the EVs with uniformity and reproducibility, achieving relative standard deviation values of 7.3% and 8.9%. We observed alterations in phenylalanine and α-helical proteins in patients with DMD compared to controls. These spectral data were analyzed using PCA, Support Vector Machines, and k-Nearest Neighbor (KNN) algorithms to identify distinct patterns and stage DMD based on biochemical composition. Our integrated approach demonstrated 60% sensitivity and 100% specificity in distinguishing DMD patients from healthy controls, highlighting the potential of SERS and KNN for noninvasive, accurate, and rapid diagnosis of DMD. This method offers a promising avenue for early detection and personalized treatment strategies, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayasree Kumar
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Narayanan Essakipillai
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department
of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Rajapandiyan Panneerselvam
- Raman
Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati 522502, India
| | - Jayashree Ramakrishnan
- Department
of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department
of Paediatrics Neurology, Apollo Children’s
Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane
Protein Interaction Laboratory, Department of Genetic Engineering,
School of Bioengineering, SRM Institute
of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| |
Collapse
|
4
|
Lago-Baameiro N, Camino T, Vazquez-Durán A, Sueiro A, Couto I, Santos F, Baltar J, Falcón-Pérez JM, Pardo M. Intra and inter-organ communication through extracellular vesicles in obesity: functional role of obesesomes and steatosomes. J Transl Med 2025; 23:207. [PMID: 39979938 PMCID: PMC11844161 DOI: 10.1186/s12967-024-06024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) represent a sophisticated mechanism of intercellular communication that is implicated in health and disease. Specifically, the role of EVs in metabolic regulation and their implications in metabolic pathologies, such as obesity and its comorbidities, remain unclear. METHODS Extracellular vesicles (EVs) were isolated through serial ultracentrifugation from murine adipocytes treated with palmitate or oleic acid, whole visceral and subcutaneous adipose tissue (obesesomes) of bariatric surgery obese donors, and human hepatocytes under steatosis (steatosomes) for functional in vitro experiments. Functional effects on inflammation and glucose and lipid metabolism of target cells (human and murine macrophages and hepatocytes) were assessed using ELISA, RT-PCR, and immunodetection. Isolated EVs from human steatotic (steatosomes) and control hepatocytes (hepatosomes) were characterized for quantity, size, and tetraspanin profile by NTA and Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS), and their protein cargo analyzed by qualitative (DDA) and quantitative (DIA-SWATH) proteomics using LC-MS/MS. Proteins identified by proteomics were validated by capturing EVs on functionalized chips by SP-IRIS. RESULTS AND CONCLUSIONS In this study, we investigated the role of EVs in the local communication between obese adipocytes and immune cells within adipose tissue, and the interaction of steatotic and healthy hepatocytes in the context of fatty liver disease progression. Furthermore, we analyzed obese adipose tissue-to-liver interactions through EV-obesesomes to elucidate their role in obesity-associated hepatic metabolic dysregulation. Our findings reveal that obesesomes promote inflammation and the secretion of pro-inflammatory cytokines upon interaction with macrophages, exerting a significant impact on reducing insulin resistance and altering lipid and glucose metabolism upon interaction with hepatocytes; in both cases, EVs from palmitate-loaded adipocytes and obesesomes from human visceral adipose depots demonstrated the most deleterious effect. Additionally, EVs secreted by steatotic hepatocytes (steatosomes) induced insulin resistance and altered lipid and glucose metabolism in healthy hepatocytes, suggesting their involvement in MASLD development. Proteomic analysis of steatosomes revealed that these vesicles contain liver disease-associated proteins, rendering them significant repositories of real-time biomarkers for the early stages and progression of MASLD.
Collapse
Affiliation(s)
- N Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - T Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Vazquez-Durán
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - I Couto
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía Plástica y Reparadora, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - F Santos
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J Baltar
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J M Falcón-Pérez
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - M Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Pauwels J, Van de Steene T, Van de Velde J, De Muyer F, De Pauw D, Baeke F, Eyckerman S, Gevaert K. Filter-Aided Extracellular Vesicle Enrichment (FAEVEr) for Proteomics. Mol Cell Proteomics 2025; 24:100907. [PMID: 39842778 PMCID: PMC11872570 DOI: 10.1016/j.mcpro.2025.100907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jana Van de Velde
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Freya De Muyer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Danaë De Pauw
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Femke Baeke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Yang Y, Chen Y, Liu C, Wang S, Zhao Y, Cao W, Wang K. Analysis of Exosomal miRNA and Hepatic mRNA Expression in the Dysregulation of Insulin Action in Perimenopausal Mice. J Diabetes Res 2025; 2025:6251747. [PMID: 39823117 PMCID: PMC11737908 DOI: 10.1155/jdr/6251747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Introduction: The aim of present study was to evaluate the impact of perimenopause on insulin resistance. Specifically, insulin sensitivity was assessed in a perimenopausal mouse model treated with 4-vinylcyclohexene diepoxide (VCD), together with the changes in exosomal miRNA and hepatic mRNA expression profiles. Methods: Homeostasis model assessment of insulin resistance (HOMA-IR) was utilized to assess the status of insulin resistance, and insulin action was evaluated during menopausal transition. RNA sequencing (RNA-seq) analysis was used to identify altered expression profiles of exosomal miRNAs and hepatic mRNAs. Differentially expressed miRNA (DEM)-differentially expressed gene (DEG) network analyses were also conducted. Furthermore, altered expression levels of these exosomal miRNAs and genes were validated in plasma exosomes and liver tissue of perimenopausal mice. Results: HOMA-IR in VCD-treated mice was significantly increased, and hepatic glycogen was significantly decreased. Key exosomal miRNAs (miR-17-3p, miR-134-5p, miR-700-5p, and miR-6899-3p) and hepatic genes (G6pdx, Ptpn2, Lepr, Kras, and Braf) may be associated with impaired insulin signaling during perimenopause. Conclusion: The perimenopausal period acts as a potential factor in introducing insulin resistance as evidenced by impaired insulin action and altered expression profiles of exosomal miRNAs and hepatic genes. The present study contributes to the understanding that abnormal cargos carried by plasma exosomes, such as miRNAs, may be related to altered expression of the corresponding genes in the liver and abnormal insulin response.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Changju Liu
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Su Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yijing Zhao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen Cao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kun Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Li W, Yu L. Role and therapeutic perspectives of extracellular vesicles derived from liver and adipose tissue in metabolic dysfunction-associated steatotic liver disease. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:355-369. [PMID: 38833340 DOI: 10.1080/21691401.2024.2360008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The global epidemic of metabolic diseases has led to the emergence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), which pose a significant threat to human health. Despite recent advances in research on the pathogenesis and treatment of MASLD/MASH, there is still a lack of more effective and targeted therapies. Extracellular vesicles (EVs) discovered in a wide range of tissues and body fluids encapsulate different activated biomolecules and mediate intercellular communication. Recent studies have shown that EVs derived from the liver and adipose tissue (AT) play vital roles in MASLD/MASH pathogenesis and therapeutics, depending on their sources and intervention types. Besides, adipose-derived stem cell (ADSC)-derived EVs appear to be more effective in mitigating MASLD/MASH. This review presents an overview of the definition, extraction strategies, and characterisation of EVs, with a particular focus on the biogenesis and release of exosomes. It also reviews the effects and potential molecular mechanisms of liver- and AT-derived EVs on MASLD/MASH, and emphasises the contribution and clinical therapeutic potential of ADSC-derived EVs. Furthermore, the future perspective of EV therapy in a clinical setting is discussed.
Collapse
Affiliation(s)
- Wandi Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Endocrine Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Henan, P.R. China
| |
Collapse
|
8
|
Hague WB, Williamson C, Beuers U. Intrahepatic cholestasis of pregnancy: Introduction and overview 2024. Obstet Med 2024; 17:138-143. [PMID: 39262909 PMCID: PMC11384812 DOI: 10.1177/1753495x241265772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024] Open
Abstract
Considerable progress has been made to explain the aetiology of intrahepatic cholestasis of pregnancy (ICP) and of the adverse pregnancy outcomes associated with high maternal total serum bile acids (TSBAs). The reported thresholds for non-fasting TSBA associated with the risk of stillbirth and spontaneous preterm birth can be used to identify pregnancies at risk of these adverse outcomes to decide on appropriate interventions and to give reassurance to women with lower concentrations of TSBA. Data also support the use of ursodeoxycholic acid to protect against the risk of spontaneous preterm birth. A previous history of ICP may be associated with higher rates of subsequent hepatobiliary disease: if there is a suspicion of underlying susceptibility, clinicians caring for women with ICP should screen for associated disorders or for genetic susceptibility and, where appropriate, refer for ongoing hepatology review.
Collapse
Affiliation(s)
- Wm Bill Hague
- Robinson Research Institute, The University of Adelaide, North Adelaide, Australia
| | | | - Ulrich Beuers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centres, Amsterdam, Netherlands
| |
Collapse
|
9
|
Useckaite Z. Extracellular vesicles: A potential new way to assess cholestasis. Obstet Med 2024; 17:179-183. [PMID: 39262910 PMCID: PMC11384818 DOI: 10.1177/1753495x241264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024] Open
Abstract
Extracellular vesicles (EVs) are small, nonreplicating, lipid-encapsulated nanoparticles that carry protein and nucleic acid cargo derived from their tissue of origin. Due to their capacity to provide comparable insights to solid organ biopsy through a minimally invasive collection procedure, EVs provide an attractive biomarker source. This review will provide an insight, how EVs in circulation may provide a novel way to assess cholestasis and will address the possibility of getting a better understanding of the mechanisms of cholestasis of pregnancy through the use of serial hepatic-specific EVs as a window.
Collapse
Affiliation(s)
- Zivile Useckaite
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Australia
| |
Collapse
|
10
|
Li T, Zhang W, Wang J, Liu B, Gao Q, Zhang J, Qian H, Pan J, Liu M, Huang Q, Fang A, Zhang Q, Gong X, Cui R, Liang Y, Lu Q, Wu W, Chi Z. Circulating Small Extracellular Vesicles Involved in Systemic Regulation Respond to RGC Degeneration in Glaucoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309307. [PMID: 38923329 PMCID: PMC11348076 DOI: 10.1002/advs.202309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) degeneration and vision loss. Since irreversible neurodegeneration occurs before diagnosable, early diagnosis and effective neuroprotection are critical for glaucoma management. Small extracellular vesicles (sEVs) are demonstrated to be potential novel biomarkers and therapeutics for a variety of diseases. In this study, it is found that intravitreal injection of circulating plasma-derived sEVs (PDEV) from glaucoma patients ameliorated retinal degeneration in chronic ocular hypertension (COH) mice. Moreover, it is found that PDEV-miR-29s are significantly upregulated in glaucoma patients and are associated with visual field defects in progressed glaucoma. Subsequently, in vivo and in vitro experiments are conducted to investigate the possible function of miR-29s in RGC pathophysiology. It is showed that the overexpression of miR-29b-3p effectively prevents RGC degeneration in COH mice and promotes the neuronal differentiation of human induced pluripotent stem cells (hiPSCs). Interestingly, engineered sEVs with sufficient miR-29b-3p delivery exhibit more effective RGC protection and neuronal differentiation efficiency. Thus, elevated PDEV-miR-29s may imply systemic regulation to prevent RGC degeneration in glaucoma patients. This study provides new insights into PDEV-based glaucoma diagnosis and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Wen‐Meng Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jie Wang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Bai‐Jing Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qiao Gao
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jing Zhang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Hai‐Dong Qian
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Jun‐Yi Pan
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ming Liu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qing Huang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ai‐Wu Fang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qi Zhang
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian‐Hui Gong
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ren‐Zhe Cui
- Department of OphthalmologyAffiliated Hospital of Yanbian UniversityYanji136200China
| | - Yuan‐Bo Liang
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qin‐Kang Lu
- Department of OphthalmologyYinzhou People's HospitalMedical School of Ningbo UniversityNingbo315040China
| | - Wen‐Can Wu
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Zai‐Long Chi
- State Key Laboratory of OphthalmologyOptometry and Visual ScienceEye Hospital of Wenzhou Medical UniversityWenzhou325027China
- National Clinical Research Center for Ocular DiseasesEye Hospital of Wenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
11
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
12
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
13
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2024; 24:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Ferro A, Saccu G, Mattivi S, Gaido A, Herrera Sanchez MB, Haque S, Silengo L, Altruda F, Durazzo M, Fagoonee S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024; 14:277. [PMID: 38540698 PMCID: PMC10967855 DOI: 10.3390/biom14030277] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, EVs have emerged as promising vehicles for coding and non-coding RNAs (ncRNAs), which have demonstrated remarkable potential as biomarkers for various diseases, including chronic liver diseases (CLDs). EVs are small, membrane-bound particles released by cells, carrying an arsenal of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and other ncRNA species, such as piRNAs, circRNAs, and tsRNAs. These ncRNAs act as key regulators of gene expression, splicing, and translation, providing a comprehensive molecular snapshot of the cells of origin. The non-invasive nature of EV sampling, typically via blood or serum collection, makes them highly attractive candidates for clinical biomarker applications. Moreover, EV-encapsulated ncRNAs offer unique advantages over traditional cell-free ncRNAs due to their enhanced stability within the EVs, hence allowing for their detection in circulation for extended periods and enabling more sensitive and reliable biomarker measurements. Numerous studies have investigated the potential of EV-enclosed ncRNAs as biomarkers for CLD. MiRNAs, in particular, have gained significant attention due to their ability to rapidly respond to changes in cellular stress and inflammation, hallmarks of CLD pathogenesis. Elevated levels of specific miRNAs have been consistently associated with various CLD subtypes, including metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), and chronic hepatitis B and C. LncRNAs have also emerged as promising biomarkers for CLD. These transcripts are involved in a wide range of cellular processes, including liver regeneration, fibrosis, and cancer progression. Studies have shown that lncRNA expression profiles can distinguish between different CLD subtypes, providing valuable insights into disease progression and therapeutic response. Promising EV-enclosed ncRNA biomarkers for CLD included miR-122 (elevated levels of miR-122 are associated with MASLD progression and liver fibrosis), miR-21 (increased expression of miR-21 is linked to liver inflammation and fibrosis in CLD patients), miR-192 (elevated levels of miR-192 are associated with more advanced stages of CLD, including cirrhosis and HCC), LncRNA HOTAIR (increased HOTAIR expression is associated with MASLD progression and MASH development), and LncRNA H19 (dysregulation of H19 expression is linked to liver fibrosis and HCC progression). In the present review, we focus on the EV-enclosed ncRNAs as promising tools for the diagnosis and monitoring of CLD of various etiologies.
Collapse
Affiliation(s)
- Arianna Ferro
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Gabriele Saccu
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Simone Mattivi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Andrea Gaido
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy;
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Lorenzo Silengo
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Fiorella Altruda
- Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy; (L.S.); (F.A.)
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (A.F.); (G.S.); (S.M.); (A.G.); (M.D.)
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Centre “Guido Tarone”, 10126 Turin, Italy
| |
Collapse
|
15
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
16
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
17
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
18
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
19
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
20
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
21
|
Grossini E, Smirne C, Venkatesan S, Tonello S, D'Onghia D, Minisini R, Cantaluppi V, Sainaghi PP, Comi C, Tanzi A, Bussolati B, Pirisi M. Plasma Pattern of Extracellular Vesicles Isolated from Hepatitis C Virus Patients and Their Effects on Human Vascular Endothelial Cells. Int J Mol Sci 2023; 24:10197. [PMID: 37373343 DOI: 10.3390/ijms241210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis C virus (HCV) patients are at increased risk of cardiovascular disease (CVD). In this study, we aimed to evaluate the role of extracellular vesicles (EVs) as pathogenic factors for the onset of HCV-related endothelial dysfunction. Sixty-five patients with various stages of HCV-related chronic liver disease were enrolled in this case series. Plasma EVs were characterized and used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, and reactive oxygen species (ROS) release. The results showed that EVs from HCV patients were mainly of endothelial and lymphocyte origin. Moreover, EVs were able to reduce cell viability and mitochondrial membrane potential of HUVEC, while increasing ROS release. Those harmful effects were reduced by the pretreatment of HUVEC with the NLR family pyrin domain containing 3 (NLRP3)/AMP-activated protein kinase and protein kinase B blockers. In conclusion, in HCV patients, we could highlight a circulating pattern of EVs capable of inducing damage to the endothelium. These data represent a novel possible pathogenic mechanism underlying the reported increase of CVD occurrence in HCV infection and could be of clinical relevance also in relation to the widespread use of antiviral drugs.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carlo Smirne
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Davide D'Onghia
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Rosalba Minisini
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- CAAD-Center for Autoimmune and Allergic Diseases, and IRCAD-Interdisciplinary Research Center for Autoimmune Diseases, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Adele Tanzi
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Benedetta Bussolati
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
22
|
Spiers HVM, Stadler LKJ, Smith H, Kosmoliaptsis V. Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics 2023; 15:891. [PMID: 36986753 PMCID: PMC10052210 DOI: 10.3390/pharmaceutics15030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited nanoparticles excreted into the extracellular space by all cells. They carry a cargo rich in proteins, lipids and DNA, as well as a full complement of RNA species, which they deliver to recipient cells to induce downstream signalling, and they play a key role in many physiological and pathological processes. There is evidence that native and hybrid EVs may be used as effective drug delivery systems, with their intrinsic ability to protect and deliver a functional cargo by utilising endogenous cellular mechanisms making them attractive as therapeutics. Organ transplantation is the gold standard for treatment for suitable patients with end-stage organ failure. However, significant challenges still remain in organ transplantation; prevention of graft rejection requires heavy immunosuppression and the lack of donor organs results in a failure to meet demand, as manifested by growing waiting lists. Pre-clinical studies have demonstrated the ability of EVs to prevent rejection in transplantation and mitigate ischemia reperfusion injury in several disease models. The findings of this work have made clinical translation of EVs possible, with several clinical trials actively recruiting patients. However, there is much to be uncovered, and it is essential to understand the mechanisms behind the therapeutic benefits of EVs. Machine perfusion of isolated organs provides an unparalleled platform for the investigation of EV biology and the testing of the pharmacokinetic and pharmacodynamic properties of EVs. This review classifies EVs and their biogenesis routes, and discusses the isolation and characterisation methods adopted by the international EV research community, before delving into what is known about EVs as drug delivery systems and why organ transplantation represents an ideal platform for their development as drug delivery systems.
Collapse
Affiliation(s)
- Harry V M Spiers
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lukas K J Stadler
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hugo Smith
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
23
|
Basthi Mohan P, Rajpurohit S, Musunuri B, Bhat G, Lochan R, Shetty S. Exosomes in chronic liver disease. Clin Chim Acta 2023; 540:117215. [PMID: 36603656 DOI: 10.1016/j.cca.2022.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chronic liver disease (CLD) is the major cause of mortality and morbidity, particularly in developing countries. Although there has been a significant advancement in the identification and treatment of liver diseases over time, clinical results are not satisfactory in advanced liver disease. Thus, it is crucial to develop certain technology for early detection, and curative therapies and to investigate the molecular mechanisms behind CLD's pathogenesis. The study of exosomes in CLD is a rapidly developing field. They are structurally membrane-derived nano vesicles released by various cells. In CLD, exosomes released from injured hepatic cells affect intercellular communication, creating a microenvironment conducive to the illness's development. They also carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets for various liver diseases. End-stage liver disease can only be treated by a liver transplant, however, the low availability of compatible organs, high expenses of treatment, and surgical complications significantly lower patient survival rates. Early diagnosis and therapeutic intervention of CLD positively affect the likelihood of curative treatment and high patient survival rates. Considering the possibility that exosomes could be employed as tools for disease diagnostics and clinical intervention, The current study briefly summarizes the roles of exosomes and their cargo in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Bhat
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajiv Lochan
- Lead Consultant- Liver transplant Surgeon, Manipal Hospital, Old Airport Road, Bangalore, and Adjunct Professor Manipal Academy of Higher Education, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
24
|
Newman LA, Useckaite Z, Wu T, Sorich MJ, Rowland A. Analysis of Extracellular Vesicle and Contaminant Markers in Blood Derivatives Using Multiple Reaction Monitoring. Methods Mol Biol 2023; 2628:301-320. [PMID: 36781794 DOI: 10.1007/978-1-0716-2978-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are naturally occurring membranous particles that can be isolated from blood and other biofluids. EVs have drawn considerable attention for their potential as a minimally invasive biomarker source for a range of conditions, based on tissue-specific expression of proteins and other molecular information. To promote robust characterization of EV isolates, the International Society for Extracellular Vesicles (ISEV) has established consensus minimal requirements for the study of extracellular vesicles (MISEV) reporting guidelines. A core element of MISEV guidance is the recommendation for the analysis of protein markers in samples, including positive EV-associated markers and negative contaminant markers based on commonly co-isolated components of the sample matrix. Furthermore, there is growing interest in circulating EVs enriched for tissue-specific origin, and in this context, the degree of nontarget EV "contamination" (e.g., EVs derived from blood cells) may inform assessment of sample purity. The increasing application of EVs as a liquid biopsy for clinical applications requires a high-throughput multiplexed approach that enables analysis of protein markers from small volumes of starting material, ideally utilizing the same platform for measuring biomarkers of interest. To this end, targeted liquid chromatography mass spectrometry using multiple reaction monitoring (LC-MRM-MS) is a key platform for the quantitative assessment of target proteins within EV samples. Here we describe a protocol for the isolation of EVs from blood and parallel analytical methods targeting general EV markers and blood cell-derived EV markers, along with guidance of best practice for sample collection and processing.
Collapse
Affiliation(s)
- Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ting Wu
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
25
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Deutsch M, Aloizos G, Fortis SP, Papageorgiou EG, Tsagarakis A, Manolakopoulos S. The Emerging Role of Extracellular Vesicles and Autophagy Machinery in NASH-Future Horizons in NASH Management. Int J Mol Sci 2022; 23:12185. [PMID: 36293042 PMCID: PMC9603426 DOI: 10.3390/ijms232012185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most frequent chronic hepatic disease in the general population, while it is the first cause of liver transplantation in the US. NAFLD patients will subsequently develop non-alcoholic steatohepatitis (NASH), which is characterized by aberrant hepatocellular inflammation with or without the presence of fibrosis. The lack of specific biomarkers and therapeutic strategies makes non-alcoholic steatohepatitis (NASH) management a difficult task for clinicians. Extracellular vesicles (EVs) constitute a heterogenic population of vesicles produced by inward or outward plasma-membrane budding. There is an emerging connection between autophagy EVs production, via an unconventional non-degradative procedure. Alterations in the amount of the secreted EVs and the cargo they carry are also involved in the disease progression and development of NASH. Autophagy constitutes a multistep lysosomal degradative pathway that reassures cell homeostasis and survival under stressful conditions, such as oxygen and energy deprivation. It prevents cellular damage by eliminating defected proteins or nοn-functional intracellular organelles. At the same time, it reassures the optimal conditions for the cells via a different mechanism that includes the removal of cargo via the secretion of EVs. Similarly, autophagy machinery is also associated with the pathogenetic mechanism of NAFLD, while it has a significant implication for the progression of the disease and the development of NASH. In this review, we will shed light on the interplay between autophagy and EVs in NASH, the emerging connection of EVs production with the autophagy pathway, and their possible manipulation for developing future therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Evangelos Koustas
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Melanie Deutsch
- 2nd Department of Internal Medicine, Hippokration General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias Avenue Str., 11527 Athens, Greece
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Spilios Manolakopoulos
- 2nd Department of Internal Medicine, Hippokration General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, Leof. Vasilissis Sofias Avenue Str., 11527 Athens, Greece
| |
Collapse
|