1
|
Shi Y, Cai G, Zhang C, Li H, Nie Y, Yu S, Zhang B, Wu M, Luo W, Liu J, Guan Z. Resveratrol suppresses growth and VCAN expression in a Cancer-associated fibroblast-breast Cancer hybrid organoid. Int Immunopharmacol 2025; 153:114451. [PMID: 40101422 DOI: 10.1016/j.intimp.2025.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Cancer-associated fibroblast (CAF) is a major component of the tumor microenvironment (TME) and promotes breast cancer (BC) progression and drug resistance. Two-dimensional cell culture is insufficient to simulate the protective effects of CAFs on tumors, resulting in experimental bias in drug efficacy assays. CAF-organoid co-culture model applied in this study may help solve this problem. Resveratrol (Res) has been found to suppresses BC growth, yet its effects on CAF-protected BC remain unknown. METHODS Surgical resected BC tissues were harvested and established for BC organoids (BCOs, identified with pathological examination) and isolated for CAFs (identified with immunofluorescence) respectively. BCO-CAF co-culture system was established and was measured for the protection effects of CAFs on BCOs. The system was then treated with Res and tested for EdU proliferation assay and calcein-AM/PI viable/non-viable cell labeling. Biogenic analysis was performed and showed that VCAN from CAFs may be important in this process. Versican (VCAN) expression levels in CAFs with or without Res treatment were evaluated by immunohistochemistry, qRT-PCR, and Western blotting. RESULTS 19 BCO cases were successfully cultured and confirmed with pathological examination. Res showed inhibitory effects on 15 of the 19 BCO cases (78.95 %). Although CAFs facilitated organoid growth of BCOs by 69.75 ± 14.78 %, Res treatment eliminated this effect and caused extensive cell death (84.97 % ±5.06 %) in CAF-coated BCOs, accompanied by a decrease in VCAN and TGF-β expression in CAFs. CONCLUSIONS The anti-BC value of Res was further proved by showing its promising suppressive effects on BCOs with or without the presence of CAFs.
Collapse
Affiliation(s)
- Yixin Shi
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China; Clinical Research Center, Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou 510005, China
| | - Yichu Nie
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China; Clinical Research Center, Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Sifei Yu
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Beiying Zhang
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Moli Wu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wei Luo
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Zhanwen Guan
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
2
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
3
|
Geng C, Yan L, Li Y, Li H, Ji Y, Xiao Y, Wang Z, Chen X, Chen C, Yang Q, Tang B, Wang W. Layered Double Hydroxide Nanoparticles Loaded with Resveratrol Inhibit Glycolysis and Show Efficacy in the Treatment of Breast Cancer. Int J Nanomedicine 2025; 20:3423-3444. [PMID: 40125434 PMCID: PMC11927503 DOI: 10.2147/ijn.s492145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Background Breast cancer is one of the most common cancers among women. Tumor cell proliferation is highly dependent on aerobic glycolysis, so regulating aerobic glycolysis in breast cancer cells is a promising therapeutic strategy. Resveratrol (Res), as a potential new anti-breast cancer drug, has been shown to regulate the glycolysis of cancer cells and inhibit the metastasis and recurrence of breast cancer. The nano drug delivery system can regulate the aerobic glycolysis metabolism by targeting the signaling factors and reaction products of the tumor aerobic glycolysis process to enhance the anti-tumor effect. Methods A new albumin-modified layered double hydroxide resveratrol dosage form (BSA@LDHs-Res) was synthesized by hydrothermal co-precipitation. Characterization was carried out to determine the successful synthesis of the nanocarrier system. The bioactivity, glycolytic activity and biocompatibility were examined by in vitro cellular assays; in vivo experiments were performed to further evaluate the anti-tumor effects of the BSA@LDHs-Res dosage form for breast cancer. Results In this study, we obtained for the first time a bovine serum albumin-modified BSA@LDHs-Res loaded dosage form, which was able to enter breast cancer cells SKBR3 and MDA-MB-231 via endocytosis and successfully escaped from lysosomal capture. BSA@LDHs-Res inhibited the proliferation, migration, and invasion of two types of breast cancer cells, induced apoptosis, and promoted the reduction of mitochondrial membrane potential and ROS. BSA@LDHs-Res inhibited the expression and viability of the key enzymes of glycolysis, hexokinase 2 (HK2), pyruvate kinase (PK), and lactate dehydrogenase, resulting in decreased glucose consumption, decreased lactate accumulation, and decreased intracellular ATP levels. BSA@LDHs-Res was examined in the mouse model with good anti-tumor effects. Conclusion BSA@LDHs-Res is an efficient nanoreagent for the treatment of breast cancer. The albumin-modified resveratrol layered double hydroxide delivery system developed in this study will provide some theoretical references for further research and clinical application of tumor aerobic glycolysis.
Collapse
Affiliation(s)
- Chenchen Geng
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Liuyang Yan
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yunhao Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Basic Courses, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Houcong Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Basic Courses, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yuhan Xiao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Zhifa Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Xiaoqi Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Baoding Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- School of Life Sciences, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
4
|
Zapatería B, Arias E. Aging, cancer, and autophagy: connections and therapeutic perspectives. Front Mol Biosci 2025; 11:1516789. [PMID: 39935707 PMCID: PMC11811537 DOI: 10.3389/fmolb.2024.1516789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025] Open
Abstract
Aging and cancer are intricately linked through shared molecular processes that influence both the onset of malignancy and the progression of age-related decline. As organisms age, cellular stress, genomic instability, and an accumulation of senescent cells create a pro-inflammatory environment conducive to cancer development. Autophagy, a cellular process responsible for degrading and recycling damaged components, plays a pivotal role in this relationship. While autophagy acts as a tumor-suppressive mechanism by preventing the accumulation of damaged organelles and proteins, cancer cells often exploit it to survive under conditions of metabolic stress and treatment resistance. The interplay between aging, cancer, and autophagy reveals key insights into tumorigenesis, cellular senescence, and proteostasis dysfunction. This review explores the molecular connections between these processes, emphasizing the potential for autophagy-targeted therapies as strategies that could be further explored in both aging and cancer treatment. Understanding the dual roles of autophagy in suppressing and promoting cancer offers promising avenues for therapeutic interventions aimed at improving outcomes for elderly cancer patients while addressing age-related deterioration.
Collapse
Affiliation(s)
- Begoña Zapatería
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esperanza Arias
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Aging Research Center, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Yapar EA, Ozdemir MN, Cavalu S, Dagıstan ÖA, Ozsoy Y, Kartal M. Phytoactive Molecules and Nanodelivery Approaches for Breast Cancer Treatment: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:795-812. [PMID: 38859783 DOI: 10.2174/0113892010299183240529094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment, but currently used conventional medicines and techniques limit their application. In recent years, significant advancements have been made in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules via nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Özlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Faculty of Pharmacy, Bezmialem Vakıf University, Department of Pharmacognosy, Istanbul, Türkiye
| |
Collapse
|
6
|
Palani S, Joseph J, Sridhar P, Bupesh G, Saravanan KM, Chandrasekaran R. Apoptotic and Molecular Mechanisms of Carthamidin in Breast Cancer Therapy: An Integrated In Vitro and In Silico Study. Mol Biotechnol 2024:10.1007/s12033-024-01331-2. [PMID: 39704751 DOI: 10.1007/s12033-024-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
The current study examines the anticancer properties of the chemical carthamidin in breast cancer through in-vitro and in silico analysis. This study's results demonstrated that carthamidin strongly inhibited the proliferation of MCF 7 cells in vitro, as evidenced by an IC50 value of 128.65 µg/mL at 24 h, determined using the MTT test. Laser confocal microscopy utilizing AO/EB labeling validated apoptotic effects through upregulating pro-apoptotic cell markers. At the same time, the ROS assay demonstrated elevated ROS production in the treated cells. LDH leakage was corroborated by leakage analysis, revealing high LDH levels at 100 µg/mL. The cellular growth parameters were subsequently examined via flow cytometry, showing that the cell cycle was halted in the G0/G1 phase, with 82.9% of the cells residing there. The molecular docking research demonstrated that carthamidin displayed a significant binding affinity with Notch receptors - NOTCH 1-4 and p53, with binding scores ranging from - 5.027 to - 7.402 kcal/mol. The results suggest that carthamidin has therapeutic potential in inducing apoptosis and impairing cancer cells, warranting further investigation in breast cancer treatments.
Collapse
Affiliation(s)
- Selvakumari Palani
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Priyadharshan Sridhar
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Giridharan Bupesh
- Department of Forestry, Nagaland University, Lumami, Nagaland, 798627, India.
| | | | - Rajkuberan Chandrasekaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
7
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
8
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
9
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Zhou M, Niu H, Cui D, Huang G, Li J, Tian H, Xu X, Liang F, Chen R. Resveratrol triggers autophagy-related apoptosis to inhibit the progression of colorectal cancer via inhibition of FOXQ1. Phytother Res 2024; 38:3218-3239. [PMID: 38682953 DOI: 10.1002/ptr.8184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Colorectal cancer (CRC) is a significant health problem with elevated mortality rates, prompting intense exploration of its complex molecular mechanisms and innovative therapeutic avenues. Resveratrol (RSV), recognised for its anticancer effects through SIRT1 activation, is a promising candidate for CRC treatment. This study focuses on elucidating RSV's role in CRC progression, particularly its effect on autophagy-related apoptosis. Using bioinformatics, protein imprinting and immunohistochemistry, we established a direct correlation between FOXQ1 and adverse CRC prognosis. Comprehensive in vitro experiments confirmed RSV's ability to promote autophagy-related apoptosis in CRC cells. Plasmids for SIRT1 modulation were used to investigate underlying mechanisms. Molecular docking, glutathione-S-transferase pull-down experiments and immunoprecipitation highlighted RSV's direct activation of SIRT1, resulting in the inhibition of FOXQ1 expression. Downstream interventions identified ATG16L as a crucial autophagic target. In vivo and in vitro studies validated RSV's potential for CRC therapy through the SIRT1/FOXQ1/ATG16L pathway. This study establishes RSV's capacity to enhance autophagy-related cell apoptosis in CRC, positioning RSV as a prospective therapeutic agent for CRC within the SIRT1/FOXQ1/ATG16L pathway.
Collapse
Affiliation(s)
- MinFeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HuiFang Niu
- School of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - DanDan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - GuoQuan Huang
- Department of Gastrointestinal Surgery, Enshi Central Hospital, Enshi City, China
| | - JinXiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - HaoRan Tian
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - XiaoJuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - FengXia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Kurzava Kendall L, Ma Y, Yang T, Lubecka K, Stefanska B. Epigenetic Effects of Resveratrol on Oncogenic Signaling in Breast Cancer. Nutrients 2024; 16:699. [PMID: 38474826 DOI: 10.3390/nu16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The crosstalk between oncogenic signaling pathways plays a crucial role in driving cancer development. We previously demonstrated that dietary polyphenols, specifically resveratrol (RSV) and other stilbenoids, epigenetically target oncogenes for silencing via DNA hypermethylation in breast cancer. In the present study, we identify signal transduction regulators among RSV-hypermethylated targets and investigate the functional role of RSV-mediated DNA hypermethylation in the regulation of Hedgehog and Wnt signaling. Non-invasive ER-positive MCF-7 and highly invasive triple-negative MCF10CA1a human breast cancer cell lines were used as experimental models. Upon 9-day exposure to 15 µM RSV, pyrosequencing and qRT-PCR were performed to assess DNA methylation and expression of GLI2 and WNT4, which are upstream regulators of the Hedgehog and Wnt pathways, respectively. Our results showed that RSV led to a DNA methylation increase within GLI2 and WNT4 enhancers, which was accompanied by decreases in gene expression. Consistently, we observed the downregulation of genes downstream of the Hedgehog and Wnt signaling, including common targets shared by both pathways, CCND1 and CYR61. Further analysis using chromatin immunoprecipitation identified increased H3K27 trimethylation and decreased H3K9 and H3K27 acetylation, along with abolishing OCT1 transcription factor binding. Those changes indicate a transcriptionally silent chromatin state at GLI2 and WNT4 enhancers. The inhibition of the Wnt signal transduction was confirmed using a phospho-antibody array that demonstrated suppression of positive and stimulation of negative Wnt regulators. In conclusion, our results provide scientific evidence for dietary polyphenols as epigenetics-modulating agents that act to re-methylate and silence oncogenes, reducing the oncogenic signal transduction. Targeting such an action could be an effective strategy in breast cancer prevention and/or adjuvant therapy.
Collapse
Affiliation(s)
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Baker R, Dell'Acqua G, Richards A, Thornton MJ. Nutraceuticals known to promote hair growth do not interfere with the inhibitory action of tamoxifen in MCF7, T47D and BT483 breast cancer cell lines. PLoS One 2024; 19:e0297080. [PMID: 38408073 PMCID: PMC10896530 DOI: 10.1371/journal.pone.0297080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Hair loss/thinning is a common side effect of tamoxifen in estrogen receptor (ER) positive breast cancer therapy. Some nutraceuticals known to promote hair growth are avoided during breast cancer therapy for fear of phytoestrogenic activity. However, not all botanical ingredients have similarities to estrogens, and in fact, no information exists as to the true interaction of these ingredients with tamoxifen. Therefore, this study sought to ascertain the effect of nutraceuticals (+/- estrogen/tamoxifen), on proliferation of breast cancer cells and the relative expression of ERα/β. METHODS Kelp, Astaxanthin, Saw Palmetto, Tocotrienols, Maca, Horsetail, Resveratrol, Curcumin and Ashwagandha were assessed on proliferation of MCF7, T47D and BT483 breast cancer cell lines +/- 17β-estradiol and tamoxifen. Each extract was analysed by high performance liquid chromatography (HPLC) prior to use. Cellular ERα and ERβ expression was assessed by qRT-PCR and western blot. Changes in the cellular localisation of ERα:ERβ and their ratio following incubation with the nutraceuticals was confirmed by immunocytochemistry. RESULTS Estradiol stimulated DNA synthesis in three different breast cancer cell lines: MCF7, T47D and BT483, which was inhibited by tamoxifen; this was mirrored by a specific ERa agonist in T47D and BT483 cells. Overall, nutraceuticals did not interfere with tamoxifen inhibition of estrogen; some even induced further inhibition when combined with tamoxifen. The ERα:ERβ ratio was higher at mRNA and protein level in all cell lines. However, incubation with nutraceuticals induced a shift to higher ERβ expression and a localization of ERs around the nuclear periphery. CONCLUSIONS As ERα is the key driver of estrogen-dependent breast cancer, if nutraceuticals have a higher affinity for ERβ they may offer a protective effect, particularly if they synergize and augment the actions of tamoxifen. Since ERβ is the predominant ER in the hair follicle, further studies confirming whether nutraceuticals can shift the ratio towards ERβ in hair follicle cells would support a role for them in hair growth. Although more research is needed to assess safety and efficacy, this promising data suggests the potential of nutraceuticals as adjuvant therapy for hair loss in breast cancer patients receiving endocrine therapy.
Collapse
Affiliation(s)
- Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | | | | | - M Julie Thornton
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
13
|
Dehghanzad M, Mohammadi M, Nejati M, Pouremamali F, Maroufi NF, Akbarzadeh M, Samadi N, Nouri M. The potential therapeutic effect of melatonin in oxaliplatin combination therapy against chemoresistant colorectal cancer cells. Mol Biol Rep 2024; 51:348. [PMID: 38401018 DOI: 10.1007/s11033-024-09316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Oxaliplatin is one of the main therapeutics in colorectal cancer (CRC) chemotherapy. However, in light of multidrug resistance (MDR) phenotype development, the efficacy of oxaliplatin has decreased. This study aimed to assess the potential therapeutic effect of melatonin in oxaliplatin combination therapy for drug-resistant colorectal cancer cells. METHODS AND RESULTS Initially, the oxaliplatin-resistant cell line was created of LS174T (LS174T/DR) by using the oxaliplatin IC50 concentration and resting cycles. MTT assays and flow cytometry were applied for assessing cell viability and apoptotic cells. The mRNA expression level of Bax, Bcl2, MT1, MT2, and ABCB1 as well as protein levels of ABCB1, Bcl2, BAX were measured by the qRT-PCR and western blot techniques respectively. P-gp activity was assessed by Rho123 staining. The IC50 concentration of oxaliplatin in resistant cells was increased from 500.7 ± 0.2 nM to 7119 ± 0.1 nM. Bcl2, MT1, MT2, and ABCB1 mRNA plus protein expression levels of Bcl2 and ABCB1 were significantly reduced in resistant cells, along with a marked increase in Bax mRNA and protein levels compared to parental cells. Rho 123 staining revealed a marked reduction in P-gp activities in the combination-treated group compared to the oxaliplatin-treated group. CONCLUSIONS The results of cytotoxicity assays, MTT, and flow cytometry revealed that the combination of melatonin and oxaliplatin exerts synergistic effects on induction of oxaliplatin's cytotoxicity in CRC. Our research suggests that combining the treatments of melatonin and oxaliplatin may be considered as a new approach to overcoming oxaliplatin resistance in CRC patients.
Collapse
Affiliation(s)
- Masoumeh Dehghanzad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohaddeseh Nejati
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farhad Pouremamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
- Department of Human Genetics, McGill University, Montreal, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran.
| |
Collapse
|
14
|
Ma YQ, Zhang M, Sun ZH, Tang HY, Wang Y, Liu JX, Zhang ZX, Wang C. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation. World J Gastrointest Oncol 2024; 16:493-513. [PMID: 38425392 PMCID: PMC10900166 DOI: 10.4251/wjgo.v16.i2.493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis. Resveratrol, a non-flavonoid polyphenolic compound found in a variety of Chinese medicinal materials, has shown excellent anti-GC effect. However, its exact mechanisms of action in GC have not been clarified. AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms. METHODS Action targets of resveratrol and GC-related targets were screened from public databases. The overlapping targets between the two were confirmed using a Venn diagram, and a "Resveratrol-Target-GC" network was constructed using Cytoscape software version 3.9.1. The protein-protein interaction (PPI) network was constructed using STRING database and core targets were identified by PPI network analysis. The Database for Annotation, Visualization and Integrated Discovery database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A "Target-Pathway" network was created by using Cytoscape 3.9.1. The RNA and protein expression levels of core target genes were observed using the Cancer Genome Atlas and the Human Protein Atlas databases. DriverDBv3 and Timer2.0 databases were used for survival and immune infiltration analysis. Subsequently, the findings were further verified by molecular docking technology and in vitro experiments. RESULTS A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases, and 181 intersection targets between the two were screened by Venn diagram. The top 20 core targets were identified by PPI network analysis of the overlapping targets. GO function analysis mainly involved protein binding, identical protein binding, cytoplasm, nucleus, negative regulation of apoptotic process and response to xenobiotic stimulus. KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, ErbB signaling pathway, etc. FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were selected by differential expression analysis, and they were closely associated with immune infiltration. Molecular docking results showed that resveratrol docked well with these two targets. Resveratrol treatment arrested the cell cycle at the S phase, induced apoptosis, and weakened viability, migration and invasion in a dose-dependent manner. Furthermore, resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression. CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation, migration, invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
Collapse
Affiliation(s)
- Ying-Qian Ma
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Ming Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Zhen-Hua Sun
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Hong-Yue Tang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Ying Wang
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jiang-Xue Liu
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Zhan-Xue Zhang
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Chao Wang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
15
|
Ruparelia KC, Zeka K, Beresford KJM, Wilsher NE, Potter GA, Androutsopoulos VP, Brucoli F, Arroo RRJ. CYP1-Activation and Anticancer Properties of Synthetic Methoxylated Resveratrol Analogues. Molecules 2024; 29:423. [PMID: 38257336 PMCID: PMC10818546 DOI: 10.3390/molecules29020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.
Collapse
Affiliation(s)
- Ketan C. Ruparelia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Keti Zeka
- Zayed Centre for Research into Rare Disease in Children, University College London, London WC1E 6BT, UK
| | - Kenneth J. M. Beresford
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Nicola E. Wilsher
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Gerry A. Potter
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Vasilis P. Androutsopoulos
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| |
Collapse
|
16
|
Vaz LD, Lainetti PDF, Leis AF, Pedro G, Fonseca-Alves CE, Laufer-Amorim R. Resveratrol and Viscum album anticancer effect in canine mammary tumor cell lines. BRAZILIAN JOURNAL OF VETERINARY PATHOLOGY 2024; 17:93-98. [DOI: 10.24070/bjvp.1983-0246.v17i2p93-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mammary gland tumors are the most common neoplasms in female intact dogs and share some biological and histopathological aspects with those in women with breast cancer, making them a good model in comparative oncology. Resveratrol is a polyphenol found in several plants, and some studies have indicated that it acts in the neoplastic process as an anticancer drug. Viscum album is a hemiparasitic plant widely used as an adjuvant treatment for cancer in some countries. Thus, this study aimed to evaluate the antitumor potential of resveratrol and homeopathic Viscum album together and separately using two previously characterized canine mammary tumor cell lines (UNESP-CM9 and UNESP-CM60). The cell viability test (MTT) was performed, which revealed an IC50 of 3.11 μl/100 ml for UNESP-CM9 and 2.993 μl/100 ml for UNESP-CM60 for Viscum album, and for resveratrol, the IC50 was 281.6 μM for UNESP-CM9 and 105.5 μM for UNESP-CM60. The combination of both natural compounds led to tumor cell death at a lower IC50. The cell migration assay demonstrated an increase in cell migration time with both treatments. UNESP-CM9 closed 35.66% of the wounds in the control group and 15.51% of the wounds in the viscum group, while UNESP-CM60 closed 39.46% of the wounds in the control group and 19.95% of the wounds in the viscum group and 2.41% of the wounds in the resveratrol group. Thus, these two compounds have antitumor potential, making them possible alternatives to conventional treatments.
Collapse
|
17
|
Yu W, Wang Z, Dai P, Sun J, Li J, Han W, Li K. The activation of SIRT1 by resveratrol reduces breast cancer metastasis to lung through inhibiting neutrophil extracellular traps. J Drug Target 2023; 31:962-975. [PMID: 37772906 DOI: 10.1080/1061186x.2023.2265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Neutrophil extracellular traps (NETs) play a crucial role in breast cancer metastasis. However, the therapeutic target of NETs in breast cancer metastasis is still unknown. Using a natural metabolite library and single-cell sequencing data analysis, we identified resveratrol (RES), a polyphenolic natural phytoalexin, and agonist of silent information regulator-1 (SIRT1) that suppressed NETs formation after cathepsin C (CTSC) treatment. In vivo, RES significantly hindered breast cancer metastasis in a murine orthotopic 4T1 breast cancer model. Serum levels of myeloperoxidase-DNA and neutrophil elastase-DNA in mouse breast cancer model were significantly lower after RES treatment. Correspondingly, the tumour infiltrated CD8+T cells in the lungs increased after the treatment. Mechanistically, RES targets SIRT1 in neutrophils and significantly inhibits the citrullination of histones H3, which is essential for chromatin decondensation and NETs formation. Furthermore, we identified that the NETs were suppressed by RES in bone marrow neutrophils after CTSC treatment, while specific deficiency of SIRT1 in neutrophils promoted NETs formation and breast cancer to lung metastasis. Thus, our results revealed that RES could be potentially identified as a viable therapeutic drug to prevent neutrophil cell death and breast cancer metastasis.
Collapse
Affiliation(s)
- Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuning Wang
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dai
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
19
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
20
|
Wei J, Li Y, Ye Z, Li Y, Zhou Z. Citrus Carotenoid Extracts Exert Anticancer Effects through Anti-Proliferation, Oxidative Stress, and Mitochondrial-Dependent Apoptosis in MCF-7 Cells. Foods 2023; 12:3469. [PMID: 37761178 PMCID: PMC10529845 DOI: 10.3390/foods12183469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Citrus is a globally popular fruit crop that contains bioactive compounds with numerous health benefits. Carotenoids are one of the main bioactive compounds present in citrus pulp. They possess exceptional antioxidant and anticancer properties, making them potentially effective in the prevention and treatment of breast cancer. Different citrus species, identified as ZMPG, DFGJ, NFMJ, XY, and ZHQC, were studied for their antioxidant activity and anticancer activity. XY had the highest total carotenoid content (75.30 µg/g FW), and ZHQC (ZH) had the lowest carotenoid content (19.74 µg/g FW). The composition of NFMJ, ZMPG, and DFHJ consisted of the most abundant number of carotenoids, while XY only had three types. The antioxidant capacity of the carotenoid extracts was evaluated, and ZH and DFHJ were identified as good sources of antioxidants. XY and ZH significantly inhibited cell proliferation, migration, and arresting cells during the G0/G1 phase. XY and ZH enhanced the accumulation of reactive oxygen species (ROS); reduced mitochondrial membrane potential (MMP); reduced the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and peroxidase (POD); decreased glutathione (GSH) levels; and increased the malonaldehyde (MDA) content. Apoptosis occurred through the mitochondrial-mediated pathway through the up-regulation of BAX, caspase-3, and caspase-9 and the down-regulation of Bcl-2. In this study, the carotenoid-rich extracts of citrus pulp were found to induce oxidative stress through their pro-oxidant potential and regulate cell apoptosis in MCF-7 cancer cells. These results indicate that citrus carotenoids act as pro-oxidants and have the potential to be utilized for the development of anti-breast cancer products.
Collapse
Affiliation(s)
- Juanjuan Wei
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yurong Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Zimao Ye
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yi Li
- Zhejiang Citrus Research Institute, Taizhou 318020, China;
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
21
|
Viana AR, Bottari NB, Oviedo VR, Santos D, Londero JEL, Schetinger MRC, Flores EMM, Pigatto A, Schuch AP, Krause A, Krause LMF. Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:632-652. [PMID: 37434435 DOI: 10.1080/15287394.2023.2233989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Daniel Santos
- Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Aline Pigatto
- Postgraduate Program in Teaching Science and Mathematics, Franciscan University, Santa Maria, Brazil
| | - André Passaglia Schuch
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alexandre Krause
- Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
22
|
Mirabedini S, Musavi H, Makhlough A, Hashemi-Sooteh MB, Zargari M. Association of S19W polymorphism in APOA5 gene and serum lipid levels in patients with type 2 diabetic nephropathy. Horm Mol Biol Clin Investig 2023; 44:243-249. [PMID: 36855913 DOI: 10.1515/hmbci-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVES Type 2 diabetic Mellitus (T2DM) is the most common systemic and endocrine disease in humans, and diabetic nephropathy is one of the most serious complications of this disorder. The polymorphisms in the apolipoprotein A5 (ApoA5) gene are strongly related to hypertriglyceridemia and are considered a predisposing factor for diabetic nephropathy. The current study proposed to examine the association of APOA5-S19W polymorphism with serum lipids levels in patients with type 2 diabetic nephropathy in Mazandaran province. METHODS This case-control study was designed to determine the association of APOA5-S19W polymorphism with plasma lipid profile in 161 T2DM patients with nephropathy (DN+), without nephropathy (DN-), and in 58 healthy individuals. Lipid profile values were measured using Pars Azmoun commercial kits. S19W variant, one of the polymorphisms of the APOA5 gene, was determined by PCR-restriction fragment length polymorphism (PCR-RFLP) and Taq1 restriction enzyme. RESULTS In comparison between the three groups, DN+ had a higher mean TG than DN- and the control group (p<0.001). The incidence of the G allele in DN+ was not significant compared to groups of DN-. Comparing the relationship between the mean of biochemical variables with CC and CG genotypes showed that the mean level of TG in people with CC genotype was increased compared to people with CG genotype in diabetic patients. However, this increase was not significant (p=0.19). CONCLUSIONS There was no association between SNP APOA5 S19W and serum lipids in diabetic patients with and without nephropathy.
Collapse
Affiliation(s)
- Shivasadat Mirabedini
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadis Musavi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Atieh Makhlough
- Department of Internal Medicine, Diabetes Research Center, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad-Bagher Hashemi-Sooteh
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Vieira IRS, Tessaro L, Lima AKO, Velloso IPS, Conte-Junior CA. Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. Nutrients 2023; 15:3136. [PMID: 37513554 PMCID: PMC10384266 DOI: 10.3390/nu15143136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphenols derived from fruits, vegetables, and plants are bioactive compounds potentially beneficial to human health. Notably, compounds such as quercetin, curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol have been highlighted as antiproliferative agents for cancer. Due to their low solubility and limited bioavailability, some alternative nanotechnologies have been applied to encapsulate these compounds, aiming to improve their efficacy against cancer. In this comprehensive review, we evaluate the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer using in vitro studies and in vivo preclinical models, highlighting recent advancements in the field. It was found that polymeric nanomaterials, lipid-based nanomaterials, inorganic nanomaterials, and carbon-based nanomaterials are the most used classes of nanocarriers for encapsulating polyphenols. These delivery systems exhibit enhanced antitumor activity and pro-apoptotic effects, particularly against breast, lung, prostate, cervical, and colorectal cancer cells, surpassing the performance of free bioactive compounds. Preclinical trials in xenograft animal models have revealed decreased tumor growth after treatment with polyphenol-loaded delivery systems. Moreover, the interaction of polyphenol co-delivery systems and polyphenol-drug delivery systems is a promising approach to increase anticancer activity and decrease chemotherapy side effects. These innovative approaches hold significant implications for the advancement of clinical cancer research.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biology (IB), Department of Genetics and Morphology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Isabela Portella Silva Velloso
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
24
|
Chen S, Li B, Chen L, Jiang H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J Transl Med 2023; 21:380. [PMID: 37308949 DOI: 10.1186/s12967-023-04233-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease in developed countries. Evidence of the benefits of resveratrol (RES) for the treatment of DKD is accumulating. However, comprehensive therapeutic targets and underlying mechanisms through which RES exerts its effects against DKD are limited. METHODS Drug targets of RES were obtained from Drugbank and SwissTargetPrediction Databases. Disease targets of DKD were obtained from DisGeNET, Genecards, and Therapeutic Target Database. Therapeutic targets for RES against DKD were identified by intersecting the drug targets and disease targets. GO functional enrichment analysis, KEGG pathway analysis, and disease association analysis were performed using the DAVID database and visualized by Cytoscape software. Molecular docking validation of the binding capacity between RES and targets was performed by UCSF Chimera software and SwissDock webserver. The high glucose (HG)-induced podocyte injury model, RT-qPCR, and western blot were used to verify the reliability of the effects of RES on target proteins. RESULTS After the intersection of the 86 drug targets and 566 disease targets, 25 therapeutic targets for RES against DKD were obtained. And the target proteins were classified into 6 functional categories. A total of 11 cellular components terms and 27 diseases, and the top 20 enriched biological processes, molecular functions, and KEGG pathways potentially involved in the RES action against DKD were recorded. Molecular docking studies showed that RES had a strong binding affinity toward PPARA, ESR1, SLC2A1, SHBG, AR, AKR1B1, PPARG, IGF1R, RELA, PIK3CA, MMP9, AKT1, INSR, MMP2, TTR, and CYP2C9 domains. The HG-induced podocyte injury model was successfully constructed and validated by RT-qPCR and western blot. RES treatment was able to reverse the abnormal gene expression of PPARA, SHBG, AKR1B1, PPARG, IGF1R, MMP9, AKT1, and INSR. CONCLUSIONS RES may target PPARA, SHBG, AKR1B1, PPARG, IGF1R, MMP9, AKT1, and INSR domains to act as a therapeutic agent for DKD. These findings comprehensively reveal the potential therapeutic targets for RES against DKD and provide theoretical bases for the clinical application of RES in the treatment of DKD.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No.277, Xi'an, 710061, Shaanxi, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No.277, Xi'an, 710061, Shaanxi, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No.277, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
26
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
27
|
Correa-Romero BF, Olivares-Marin IK, Regalado-Gonzalez C, Nava GM, Madrigal-Perez LA. The role of the SNF1 signaling pathway in the growth of Saccharomyces cerevisiae in different carbon and nitrogen sources. Braz J Microbiol 2023:10.1007/s42770-023-00954-y. [DOI: 10.1007/s42770-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
|
28
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
29
|
Bakhshandeh N, Mohammadi M, Mohammadi P, Nazari E, Damchi M, Khodabandelu S, Mokhtari H. Increased expression of androgen receptor and PSA genes in LNCaP (prostate cancer) cell line due to high concentrations of EGCG, an active ingredient in green tea. Horm Mol Biol Clin Investig 2022:hmbci-2022-0054. [PMID: 36578191 DOI: 10.1515/hmbci-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Androgen receptor (AR) play a key role in the onset and progression of prostate cancer. Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound and the active ingredient in green tea, which is involved in modulating gene expression through epigenetic alterations. Previous studies have shown that EGCG at low concentrations reduces the expression of AR and prostate-specific antigen (PSA) in the LNCaP cell line of prostate cancer. In this study, the effect of higher EGCG concentrations on AR and PSA expression in LNCaP prostate cancer cell line was investigated. METHODS In this study, LNCaP prostate cancer cell line was used and after MTT test, concentrations of 40, 60 and 80 μg/mL EGCG were used for treatment. Then, the expression of AR and PSA genes was evaluated by RT-PCR. AR protein expression was also assessed by Western blotting. RESULTS The present study showed that treatment of LNCaPs cells by EGCG reduces cell proliferation. The IC50 value was 42.7 μg/mL under experimental conditions. It was also observed that EGCG at concentrations of 40 and 80 μg/mL increased the expression of AR and PSA (p<0.05). CONCLUSIONS The present study showed that the effect of EGCG on AR expression was different at different concentrations, so that unlike previous studies, higher concentrations of EGCG (80 and 40 μg/mL) increased AR and PSA expression. It seems that due to the toxic effects of EGCG in high concentrations on cancer cells and the possibility of its effect on normal cells, more caution should be exercised in its use.
Collapse
Affiliation(s)
- Nadereh Bakhshandeh
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mohammadi
- Health System Research, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Parisa Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Nazari
- Department of Biology, Islamic Azad University, Gorgan Branch, Gorgan, Iran
| | - Mehdi Damchi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sajad Khodabandelu
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Mokhtari
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|